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Industrial applications that depend on jetting-based technology, such as painting or additive layered manu-
facturing, involve sequential deposition of droplets onto a moving surface. Spreading and receding dynamics of
these impinging drops depend on the momentum transferred by the moving wall to the droplet liquid, which in
turn governs the geometric precision and surface finish of the printed outcome. In this work, the impingement
dynamics of microdroplets on a flat, smooth, and moving solid surface is computed using a phase-field-based
lattice Boltzmann method. Moreover, the motion of the three-phase moving contact line is captured using a
geometry-based contact angle formulation. First, we investigate the influence of various process and materials
parameters such as wall velocity, droplet viscosity, surface tension, and wettability on the impact behavior of
drops. The surface wettability significantly affects the droplet morphology; an elongated tail like structure forms
on the rear end of the droplet which becomes sharper as the moving surface becomes more hydrophobic. Fur-
thermore, we examine the underlying flow physics of the symmetry breaking during the spreading and recoiling
phases. For a given contact angle, an increase in wall velocity is found to expedite droplet spreading. In addition,
for the first time we explore the oblique droplet impingement dynamics on moving dry walls in this work. It
is observed that wall momentum affects the structure of the leading edge during the inline impact situations,
whereas the moving surface controls the delay in flow reversal inside the droplet for opposing impact scenarios.
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I. INTRODUCTION

Interactions between falling droplets with a moving solid
surface are ubiquitous in nature and form the governing
elemental step in several industrial applications. In every-
day situations, such as standing in a shower or rain drops
splashing on the windshield of a moving car, we observe
this commonly occurring phenomenon of droplet impinge-
ment on moving surfaces. As such, the intricate interplay
the surface tension forces, droplet viscosity, fluid inertia, and
wall momentum leading to different morphological structures
evolving spatiotemporally often goes unnoticed. However, the
understanding of the fluid dynamical aspects of these interac-
tions becomes pivotal in droplet-based industrial applications
such as the impact of ink droplets on a moving sheet of
paper; spray painting and cooling over a moving surface;
fuel droplets impacting on a moving piston; and jetting-based
additive manufacturing technology [1], where the geometrical
precision and surface finish of the additive layers is controlled
by droplet-wall interactions. In jetting technology, a train of
droplets impacts onto a moving surface as they are deposited
side by side, making up the additive layer. The impingement
dynamics not only depend on the physical and chemical
properties of the droplet but also on the motion of the target
surface. It is this coupled interaction between the supplied
wall momentum and the impacting droplet which determines
the overall impingement dynamics. A basic understanding
of this interaction process and insights of the underlying
flow mechanisms for varying conditions are essential for
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improving the geometrical precision of the desired product.
How does a droplet evolve spatiotemporally when impinged
onto a moving solid surface? We set out to investigate this
question in the current work.

Due to its relevance in both nature and technological appli-
cations such as ink-jet printing, spray cooling and painting,
microfabrication, fuel spray in combustion chambers, and
enhanced oil recovery, to mention a few, researchers have
always been intrigued about understanding the underlying
rapid dynamics of droplet impact on solid surfaces. Wor-
thington [2] was the first to investigate this phenomenon
systematically, and different aspects of droplet impaction
have been investigated using theory [3–5], experiments [6–9],
and numerical simulations [10–13]. Comprehensive reviews
elucidating the important dynamical aspects of the impact
process of a single droplet on stationary thin films and drywall
are presented in the review articles provided by Yarin [9]
and Rein [14]. While different impact outcomes are observed,
such as complete rebound, partial rebound, and receding
breakup, when a droplet impacts onto a stationary surface, a
distinct similarity in most of these outcomes is the presence
of symmetric morphological features and flow field inside
the drop during its spreading and receding phases. Situa-
tions in which the symmetry in the flow field and droplet
shape is broken as it impacts a stationary solid surface arise
due to inhomogeneities in chemical properties [15–17] and
roughness of the target surface [18–20]. Raman et al. [15]
performed three-dimensional lattice Boltzmann simulations
to investigate droplet impact on solid surfaces exhibiting a
gradient in the surface contact angle. They observed that the
motion of the droplet is characterized by intense recoiling of
the upstream end of the droplet followed by the secondary
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spreading of the downstream end. A droplet impinging nor-
mally onto a textured hydrophobic surface with a gradient in
surface roughness is observed to bounce off obliquely from
the substrate [19]. Such behavior is attributed to the transfer of
vertical momentum into the horizontal direction. Experiments
performed by Vaikuntanathan et al. [18] of droplet impact
onto the junction line between the hydrophobic textured and
the hydrophilic smooth portions of a dual-textured substrate
revealed that the initial droplet spreading is unaffected by
the dual-textured feature of the substrate. However, the net
movement of the droplet onto the hydrophilic region is noted
due to intense recoiling speeds. More recently, Zhao and
Chen [20] simulated droplet impact on micropatterned sur-
faces using many-body dissipative particle dynamics. They
demonstrated that a nonuniform spacing between the pillars
leads to the coexistence of the Cassie and Wenzel states which
causes the droplet to migrate against the wettability gradient.
If the surface is smooth with a constant contact angle, then
asymmetry in the shape of the impinging droplet is observed
when the target surface is subjected to mechanical motion.

Unlike the extensive literature available on droplet impact
onto stationary surfaces, there are few works investigating
the dynamics of an impinging drops on moving dry [21–23]
and wet walls [24–26]. Xie et al. [24] performed a three-
dimensional numerical investigation of droplet impact on
flowing films. A control-volume finite-element method-based
solver with adaptive unstructured meshes was employed in
their study. For an air-water system, the impacting drop was
characterized by a horseshoelike structure at the leading end,
whereas the trailing part developed into an elongated tail.
Several dimples characterize the air-water interface at the
trailing end before the droplet system breaks into several
liquid filaments and droplets. However, for the steam-water
system, the droplet has a canopy-shaped frontal end with
no formation of the long tail, and only one single large
dimple was formed as the droplet touches the base film. Ming
and Jing [25] observed asymmetric splashing when a droplet
impacts normally onto a moving wall covered by a thin film.
While splashing is enhanced in the direction opposite to the
wall motion, it is observed that lamella growth is attenuated
in the streamwise direction. This suppression effect in the
streamwise direction becomes more evident with increasing
wall velocity. The velocity distribution near the tip of the
crown on the downstream side was found to be asymmetric.
Similarly, asymmetry in droplet morphology in the form of an
inclined central jet is observed by Raman et al. [26] when
two droplets impact simultaneously on moving thin films.
The momentum flux supplied by the moving liquid or film
to the impacting droplet in a given direction leads to this
asymmetry in velocity distribution and surface morphology.
Also, there is a constant supply of liquid from the film into
the evolving ejecta, the magnitude of which depends on its
moving velocity. On moving dry walls, the impact behavior
of the droplet is governed by the motion of the three-phase
contact line relative to the moving surface. Bird et al. [22]
observed symmetry breaking when an ethanol drop impacts
onto a moving aluminum surface. The portion of the lamella
moving along the wall continued to spread over the wall.
However, the upstream lamella moving into the opposite
direction delaminated from the surface and was airborne,

resulting in splashing. The amount of liquid detaching from
the moving wall increases with the increase in wall velocity
[27]. This asymmetric droplet splashing behavior on dry
walls is found to be dependent monotonically on droplet
speed, diameter, substrate speed, and ambient pressure [21].
Corona splash is found to be entirely suppressed by reducing
ambient pressure. However, the droplet viscosity exhibited a
nonmonotonic effect on the splashing threshold. A splashing
mechanism on a moving surface and on an inclined surface
were found to be different by Zen et al. [28], as the effect
of gravity suppressed upstream splash on an inclined surface.
More recently, Almohammadi and Amirfazli [23] found that
the wettability of the moving surface significantly affects the
downstream behavior of the lamella and the droplet splashing
is azimuthally asymmetric. Hydrophobic moving surfaces
favor larger delamination of the lamella from the surface when
compared with a hydrophilic surface. An asymmetric break-
up of the flow field inside the impacting drop has been found
to suppress droplet rebounding off a hydrophobic surface [29].

From the significantly few studies related to droplet im-
paction onto moving dry walls, it is found that the central
focus of these investigations has been on the outcome of
droplet splashing. Almost all existing works have not consid-
ered the role of the moving substrate on droplet deposition
and rebound outcomes, situations which are encountered in
ink-jet printing and jetting-based additive manufacturing [1].
In contrast to droplet splashing, where the primary interest
of investigation is the ejecting lamella, the understanding of
the morphology and dynamics of the entire droplet system
is necessary to obtain the desired geometrical precision in
these applications. Therefore in this work, we set out to
fill the following gaps of knowledge. First, we investigate
droplet deposition and rebound impact outcomes by providing
a systematic numerical study of the droplet impact on a
moving solid surface with different wettabilities. In order to
elucidate the underlying physical mechanisms, the energetics
of spreading and recoiling phases have been investigated
by monitoring surface energy evolution, whereas flow-field
dynamics inside the droplet is explored to analyze symmetry
breaking. Second, the authors know of no prior research
on oblique droplet impact onto moving dry walls. In many
practical situations, the impact is not normal to the target
surface, and the alignment of the line of impact with respect to
the translational direction of the moving surface is essential to
consider. We investigate both the inline and opposing oblique
droplet impact scenarios in this study for the first time.

The remainder of the paper is organized as follows: The
problem setup along with the details of the computational
domain and the applied boundary conditions are outlined in
Sec. II. Section III describes the system of equations govern-
ing the phase-field lattice Boltzmann model. The geometry-
based contact angle model is introduced in this section. We
then proceed with the presentation of the results and discus-
sions in Sec. IV. Concluding remarks are provided in Sec. V.

II. PROBLEM STATEMENT

A sketch outlining the problem definition is provided in
Fig. 1. The droplet and the surrounding fluid are considered
to be incompressible, viscous, and immiscible. The droplet
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FIG. 1. A schematic representation of a droplet with diameter Di,
impacting on a moving dry wall. The angle of impingement is α and
the wall moves with a constant translational velocity Uw along the
positive x direction.

density and viscosity are denoted by ρl and μl , respectively,
while those of the surrounding fluid are represented by ρg

and μg. The effects of gravity are considered to be negli-
gible, and the surface tension coefficient is assumed to be
constant. A droplet of diameter Di impinges onto a solid
surface with an impact velocity and impingement angle of Ui

and α, respectively. The solid surface moves with a constant
translational wall velocity of Uw. All the length and velocity
scales are made nondimensional by the initial droplet diameter
(Di) and the impact velocity (Uo), respectively. Accordingly,
the nondimensional time is given as T ∗ = tDi/Uo, where t
is the simulation time in lattice units. Important dimension-
less parameters governing droplet impact on solid substrate
include the Weber number, We = ρlU 2

o Di/σ , which indicates
the ratio of inertial force to surface tension; the Reynolds
number, Re = ρlUoDi/μl , which denotes the ratio of inertial
force to viscous force; the density ratio, ρr = ρl/ρr ; and
viscosity ratio, μr = μl/μg. The density ratio and viscosity
ratio in the current work are set to be ρr = 1000 and μr =
40, respectively. The realistic dimensions of the droplets
considered in this study are in micrometers, as illustrated in
the experimental validation of this solver [29]. Hence, the
influence of gravity in this study is considered to be negligible
since the radius of droplet is smaller than the capillary length.
The resulting Bond number for the impacting droplet on the
moving wall would be of the order of O(10−4). To investigate
the role of surface movement and wettability, we set the
Reynolds number and the Weber number of the impinging
droplet at Re = 600 and We = 51.2, respectively. The compu-
tational domain is a cuboid with its nondimensional size set to
be 6.44 × 2.44 × 1.72. The no-slip wall boundary conditions
are applied on the top and bottom boundary. For the bottom
boundary, the no-slip boundary condition is imposed using
the bounce back scheme [30] in which the colliding particles
not only reverse their momenta but also gain momentum due
to the wall velocity Uw. Periodic boundary conditions are
imposed on the side boundaries.

III. MATHEMATICAL FORMULATION

To understand the interaction dynamics between a wall
impinging drop and a moving dry wall, we employ the phase-
field-based lattice Boltzmann method [31–34]. Two particle

distribution functions are used in this model [31] to recover
the incompressible Navier-Stokes equation (gα) and a macro
interface capturing phase-field equation ( fα). The model con-
sists of stress and potential forms of intermolecular forcing
terms in the momentum equation and the phase-field model
for the order parameter, respectively. Stable discretization
schemes are considered to discretize the forcing terms in each
collision step, which helps in improving numerical stability
for high-density ratio cases. The discrete Boltzmann equation
(DBE) for pressure and momentum is expressed as:

∂gα

∂t
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∂gα

∂xi

= −
(
gα − geq

α

)
λ
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where λ is the relaxation time due to collision and eα is the
microscopic particle velocity. The corresponding DBE for the
order parameter is given as
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where τ = λ/δt .
The equilibrium distribution functions are given by
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where cs = 1/
√

3 and wα are the corresponding integral
weights for a D3Q19 lattice velocity model:

wα = 1
3 , α = 0

wα = 1
18 , α ∈ [1, 6]

wα = 1
36 , α ∈ [7, 18] (5)

and

�α (u) = wα

[
1 + eα.u

c2
s

+ (eα.u)2

2c4
s

− (u.u)

2c2
s

]
. (6)

These two equations are discretized along the characteristics
over a time step δt . The trapezoidal rule is employed for time
integration in [t, t + δt] which is coupled with the space inte-
gration in (x + eαδt, t + δt ). The resulting lattice Boltzmann
equations are solved in three steps:
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(i) Prestreaming step
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(ii) Streaming

ḡ(x + eαδt, t + δt ) = ḡα (x, t ), (9)

f̄ (x + eαδt, t + δt ) = f̄α (x, t ). (10)

(iii) Poststreaming step
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The chemical potential φ is given by

φ ≈ 4β
(
ρ − ρsat

v

)(
ρ − ρsat

l

)[
ρ − 1

2

(
ρsat

v + ρsat
l

)]
, (13)

where β is a constant and ρsat
v and ρsat

l are the saturation
densities of the vapor and liquid phases, respectively. The
interface thickness, denoted as D, is given by

D = 4(
ρsat

l − ρsat
v

)
√

κ

2β
, (14)

where κ is a constant related to the magnitude of surface
tension. The surface tension force σ is represented as

σ =
(
ρsat

l − ρsat
v

)3

6

√
2κβ. (15)

The density of the fluid ρ, hydrodynamics pressure p, and
the velocity u are calculated by taking the moments of the
corresponding distribution function:
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(18)

The relaxation parameter τ is related to the kinematic viscos-
ity ν = τc2

s δt , which can be calculated by a linear interpola-
tion

τ = Cτl − (1 − C)τv, (19)

where τl and τv are the relaxation times for liquid and vapor,
respectively, and the parameter C is the composition approxi-
mated by

C =
(
ρ − ρsat

v

)
(
ρsat

l − ρsat
v

) . (20)

The mixed difference scheme and the second-order central
difference scheme are considered for discretizing the forcing
terms in the prestreaming and poststreaming collision steps,
respectively. Further details on the discretization schemes can
be found in Ref. [31].

A geometry formulation contact angle proposed by Ding
and Spelt [35] is employed to model the three-phase contact
line. This geometric scheme also models the contact angle
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hysteresis and its applicability on droplet impact problem has
been demonstrated [15]. The procedure essentially involves
updating the values of the order parameter (density in the
present model) to enforce the following equation:

n · ∇ρ = − tan

(
π

2
− θ

)
|∇ρ − (n · ∇ρ)n|. (21)

From the above form, we can achieve the desired wettability
between the solid and the fluid by specifying the desired
contact angle. Once the density on the boundary points is
specified, the normal gradient condition in Eq. (21) is satisfied
in the solver.

Verification and calibration of the employed 3D solver have
been discussed in detail in our previous papers [15,36]. Var-
ious benchmark problems such as evaluation of Laplace law
for a stationary bubble, determining the static contact angle
for droplet resting on surfaces with different wettabilities, and
experimental validation for single [37] and consecutive drops
[17] impacting droplet on a solid surface were performed.
It is important to note that in the current study we employ
a constant contact angle model to investigate the droplet-
wall interaction dynamics. Unlike the dynamic contact angle
model, the model in the present work does not account for
the contact line velocity and flow parameters while computing
the contact angle. A comprehensive review of various contact
line models is discussed in Sui et al. [38].

IV. RESULTS AND DISCUSSION

In the following subsections, we will present the numer-
ical results and elucidate the physics of the droplet-wall
interactions. The role of surface wettability, wall velocity,
droplet viscosity, and impact angle on the interaction dy-
namics are systematically investigated. We perform a grid
independence test by comparing the maximum contact area
(A∗

max) for droplets impacting with the same initial impact
conditions with Re = 600, We = 51.2, θ = 90◦, and Uw =
0.075. Table I shows A∗

max for three different grid resolutions.
Compared to the case with Di = 85 lattice units, only a slight
variation of 3.36% in A∗

max is observed for the case with
Di = 70 lattice units. Based on the grid independence test,
the droplet diameter is set to be 70 lattice units for all the
simulations. The simulation is initialized with the droplet
placed in contact with the wall such that the distance between
the wall and the droplet center is 0.5Di.

A. Effect of surface wettability

When a droplet impacts onto a moving surface, the mo-
mentum exchange between the droplet-wall system depends

TABLE I. Numerical convergence showing the effect of grid
resolution on the maximum contact area (A∗

max). Three different
droplet radii were considered with the impact conditions being fixed
at Re = 600, We = 51.2, Uw = 0.075, and θ = 90◦.

Di (in lattice units) 50 70 85

A∗
max 3.277 3.705 3.834

Relative error 14.52 % 3.36 % –

on the volume of droplet liquid in contact with the substrate.
One of the factors which govern this transaction is the wet-
tability of the target surface, characterized by the contact
angle (θ ). Figure 2 illustrates the time evolution snapshots
of a single droplet impacting on a dry surface moving with
a translational velocity of Uw = 0.075. The left and right
columns in Fig. 2 correspond to surfaces with θ = 90◦ and
140◦, respectively. When a drop impacts a surface, a region
of high pressure is generated at the point of contact [4] due
to the compression of the fluid normal to the solid boundary.
This leads to the redirection of the fluid momentum from the
normal to the lateral direction, resulting in a pressure decay
as the droplet undergoes inertial spreading. On a stationary
surface, the droplet liquid moves uniformly in all directions,
leading to symmetric spreading and recoiling phases. This
symmetry is broken when the drop impacts onto a moving
surface as shown in Fig. 2 at T ∗ = 2.05. Due to the wall
movement, there is a continuous supply of momentum to
the spreading droplet liquid near the wall region along the
direction of surface motion. This leads to rapid transport and
accumulation of the droplet liquid into the downstream rims
when compared to the rims in the upstream region of the
recoiling droplet. For the case with θ = 90◦, we observe a
distinct rim in the downstream direction while the upstream
rim seems to be merged with the rear end of the droplet.
However, for θ = 140◦, rims on both sides are clearly visible
whose radii of curvature is larger than the case with θ = 90◦.
As time precedes, the droplet undergoes recoiling and keeps
moving forward. A well-defined tail like structure is noticed
for the case with θ = 90◦ at T ∗ = 6.85. This demarcates the
droplet into two distinct regions: the rounded frontal end with
a larger contact area whose size grows due to the accumulation
of droplet liquid and the sharper rearward end whose tail like
structure converges as time precedes (T ∗ = 12.00). Absence
of such morphological features are noticed for θ = 140◦.
During the time period between T ∗ = 4.1 to T ∗ = 12.00,
we observe the height of the droplet keeps increasing and it
eventually lifts off the surface, leading to droplet rebound.
However, due to the momentum supplied by the moving wall,
the droplet has a horizontal velocity component as it leaves
the substrate and takes off obliquely.

As the contact angle decreases, the fluid-substrate free
energy increases, leading to greater capillary spreading. This
is illustrated from the temporal evolution of the contact area
(A∗) with different static contact angles shown in Fig. 3(a).
With an increase in θ , the contact area (A∗) of impinging
droplet decreases in time. Initially, we observe that the tem-
poral evolution of A∗ is independent of θ because the droplet
spreading phase is dominated by inertia. As the droplet begins
to slow down at the end of the crashing time (T ∗ = 1), the
increasing effect of capillary spreading for lower θ results in
increasing maximum contact area. For θ = 140◦, we observe
that A∗ converges to zero at T ∗ = 9.5 as the droplet rebounds
off the surface. Figure 3(b) illustrates the temporal evolution
of the X center of mass (Xm) of the droplet for different
contact angles. We observe that Xm decreases as the surface
contact angle increases. Moreover, we notice that at a given
time instant, the difference in Xm between any two cases
increases as time precedes. As the contact area increases,
the momentum supplied by the wall to the droplet system
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FIG. 2. Temporal sequence of droplet impingement dynamics illustrating the effect surface wettabilities for two different cases: θ = 90◦

(left column) and θ = 140◦ (right column). For all cases, the wall velocity is fixed at Uw = 0.075. The value of the contour density shown
in this figure corresponds to ρ = 0.5(ρl + ρg). Rebound is suppressed for θ = 90◦, whereas oblique lift-off from the surface is observed for
θ = 140◦. The scale bar is 50 lattice units.

increases. This leads to rapid movement of the droplet system
along the direction of wall motion. When the contact angle
increases, the radius of curvature subtended by the moving
contact line increases because the droplet undergoes inertial
spreading. This leads to an increase in the surface energy
of the spreading rims as more droplet liquid is accumulated
inside them, which in turn is converted into kinetic energy
when the droplet begins its recoiling phase. Most of this
kinetic energy is transferred along the wall-normal direction
[29]. However, due to the asymmetry introduced into the
droplet system from the momentum supplied by the moving
wall, a fraction of this vertical momentum is transferred to
the streamwise direction. Fig. 3(c) shows the time evolution
of the vertical velocity component of the droplet for different
contact angles. As the contact angle increases, the kinetic
energy transferred along the z direction increases due to
intense recoiling, resulting in a rise in Uz as θ increases. This
observation is further elucidated from the interface profiles
shown in Fig. 4(a) at T ∗ = 6.85 for different contact angles
considered in this section. As we move from left to right,
the surface contact angle decreases from θ = 140◦ to 70◦.
The height of the droplet, at a given time instant, decreases
with a decrease in contact angle. The interface profiles vary
from being slender and vertically elongated to being tapered
and sharp ended as θ decreases. The location of the interface
profiles also complements the observations made in Fig. 3(b).
The temporal evolution of surface energy (Eσ ) illustrated in

Fig. 3(d) shows an increase in Eσ with decreasing θ . This in-
crease in the droplet surface area is attributed to the combined
influence of capillary spreading and the resulting increase in
the transfer of vertical momentum toward the streamwise di-
rection. Figure 4(b) shows the interface profiles of the contact
line footprint for different θ . As contact angle increases, the
contact line retracts at a faster recoiling rate. This leads to
sharper trailing edges as θ is increased. In contrast, due to the
increase in accumulation of the droplet liquid in the frontal
end, this end becomes increasingly broader and blunt as θ

decreases.
While the surface wettability governs the contact area of

the impinging droplet, and thereby controls the spreading dy-
namics on a moving surface, the magnitude of the momentum
supplied by the moving wall to the droplet liquid depends
on the wall transverse velocity. This, in turn, influences the
spreading and receding dynamics of the impacting droplet. We
next investigate the influence of wall velocity on the droplet
impingement dynamics for a constant contact angle.

B. Wall velocity-induced flow-field asymmetry

Before we begin our investigation on the influence of
varying wall velocities, it is imperative to discern the under-
lying mechanisms of droplet spreading and recoiling between
stationary and moving wall scenarios. In order to elucidate
the role of wall motion during the inertial spreading phase
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FIG. 3. Temporal evolution of the (a) contact area (A∗), (b) position of the X center of mass (Xm), (c) volume-averaged drop velocity along
the wall-normal direction, and (d) surface energy of a droplet impacting onto a target wall moving with a velocity of Uw = 0.075 for different
surface wettabilities. The contact area and surface energy have been nondimensionalized by πD2

i /4 and πD2
i σ , respectively. The line colors

are assigned as (i) black (online and printed versions), (ii) red (online version), and gray (printed version).

of the droplet impact process, Fig. 5 illustrates the velocity
field inside the impinging droplet along the mid-y plane on a
stationary (a) and moving [(b) and (c)] surfaces at T ∗ = 1.02.
The contact angle for all the situations considered in this
section is fixed at θ = 110◦. As the droplet impinges onto
a stationary surface, the droplet liquid propagates in a radially
downward direction leading to the inertial spreading phase of
the droplet impact. Surface tension forces decelerate this flow
propagating radially outward. As a result, the droplet liquid
slows down in the peripheral region and begins to get accumu-

lated inside it. The velocity field shown in Fig. 5(a) illustrates
this behavior. Although the direction of the velocity field is
radially downward and outward for the central and peripheral
regions, respectively, a clear contrast in the velocity magni-
tude is observed between these two regions. It is to be noted
that the magnitude of the velocity vectors close to the wall
region is nearly zero. Moreover, due to the outward motion of
the propagating rim, the velocity field in the surrounding fluid
near rim has the same sense of direction. The entire flow field
inside the impinging droplet during this inertial spreading

FIG. 4. (a) Instantaneous interface profiles of the impinging droplet along the mid-y plane and (b) the contact line footprint at T ∗ = 6.85
for different contact angles: θ = 70◦ (dash dot dot), 90◦ (dashed), 110◦ (solid), and 140◦ (dash dot). The wall is moving with a constant velocity
of Uw = 0.075. The scale bar is 50 lattice units.
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(a) (b)

(c)

FIG. 5. Instantaneous velocity-field plots inside the peripheral rims of the impacting droplet along the mid-y plane during the inertial
spreading phase illustrating flow-field symmetry for a stationary wall case with Uw = 0 inside the (a) left rim at T ∗ = 1.02. The flow field
inside the right rim (not shown here) is symmetrical to that show in (a). Asymmetry in flow field is observed inside the (b) right rim and (c) left
rim when a droplet impinges onto a moving surface (Uw = 0.1) with θ = 110◦. The scale bar is 10 lattice units.

phase is symmetric about the central z axis. This symmetry in
velocity field inside the droplet is broken when the wall moves
along the x direction with a constant velocity Uw = 0.1, as
shown in Figs. 5(b) and 5(c). We observe in Fig. 5(b) that
the difference in the velocity magnitude between the central
and the right peripheral region is much lesser than that ob-
served for the stationary counterpart. This is attributed to the
momentum diffusion taking place from the high-velocity fluid
close to the wall region, which is observed from the length of
the velocity vectors near the wall region, into the fluid layers
above it. As a result of this momentum diffusion from the wall
region, the velocity fluid inside the right rim is high enough
to resist the decelerating effects of surface tension forces in
this region. In addition, it is observed from the velocity field
that the momentum supplied by the moving wall facilitates in
diverting the downward moving flow field in the central region
along the direction of wall motion. This additional influx of
droplet liquid from the central region into the right rim also
attributes to the increase in the velocity magnitude inside this
region. Consequently, this has an opposing effect on the flow
field inside the left rim as shown in Fig. 5(c). The velocity
vectors shows that the high-momentum fluid near the wall
region diverts the incoming fluid from the central region of
the droplet along the direction of wall motion. This, in turn,
expedites the decelerating influence of surface tension forces,
leading to a clear difference not only in the magnitude but also
in the direction of the velocity field inside the right rim and the
central region of the impinging droplet. The direction of the
velocity field in the surrounding fluid near the left rim has an
opposite sense of direction with that of the fluid inside the rim.
With an outward moving right rim and receding left rim, the
symmetry of the flow field inside the droplet is broken during
the inertial spreading phase of droplet impact on a moving
wall.

For the stationary case, by the end of the inertial spreading
phase, the droplet reaches its maximum extent of spreading.
The kinetic energy of the droplet reaches its minimum, and the
surface tension forces begin to dominate, leading to the initi-
ation of droplet recoiling. Figure 6(a) illustrates the velocity
field inside the droplet along the mid-y plane at T ∗ = 1.71
during the recoiling phase of the impinging droplet on a
stationary wall. We observe that the direction of the velocity
field inside the rims is parallel to the surface and opposite to
each other, whereas the fluid inside the central region contin-
ues to move downward as the central part of the drop contin-
ues to undergo spreading. At this time instant, the entire flow
field is symmetric along the central z axis with droplet liquid
inside the rims and central region propagating radially inward
and downward, respectively. On the contrary, the momentum
imparted by a moving wall induces a unidirectional flow field
inside the droplet as shown in Fig. 6(b). Complemented by
the direction of the wall momentum and the restoring effects
of surface tension forces, we notice that the flow field inside
the left rim moves inward with a higher velocity compared
to the right rim, where the decelerating effects of surface
tension and wall momentum have opposing effects. This is
observed as the magnitude of the velocity field inside the
right rim decreases as we move upward along the wall-normal
direction. The breakup in the flow-field symmetry is limited
not only inside the droplet but also in the surrounding flow
field. Two counter-rotating vortices near the peripheral rims
are observed in Fig. 6(a) as the droplet recoils, resulting from
the drag induced by the receding rims onto the surrounding
fluid. However, we observe only a single vortex structure near
the left rim as shown in Fig. 6(b).

When an impinging droplet contacts the stationary solid
surface, it exhibits radial deformation due to the inertial forces
of the droplet liquid. This deformation is characterized by an
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FIG. 6. Instantaneous velocity-field plots inside the impacting droplet along the mid-y plane during the recoiling phase illustrating
symmetry and asymmetry for (a) Uw = 0 and (b) Uw = 0.1, respectively, at T ∗ = 1.71. The surface is characterized with a contact angle
of θ = 110◦ and moves with Uw = 0.1. The scale bar is 20 lattice units.

increase of the surface area and variation in the local curvature
along the peripheral rims as the droplet liquid accumulates
inside it. Thus, a restoring force due to the Laplace pressure
acting inside these rims emerges and attempts to dampen the
increase in surface area due to inertial forces. The competition
between these two opposing forces leads to the generation
of capillary waves which travel along the free surface of the
droplet. Such capillary waves have also been observed when
the shape of the impinging droplet is elliptic at the instant of
impact [39] or when the target surface is oscillating [29]. The
contour on the left panel of Fig. 7, extracted along the mid-y
plane, presents the temporal sequence of the movement of the
capillary wave originating close to the peripheral rims due to
the competing effects of the decelerating surface tension and
inertial forces. The trough of this capillary wave is denoted
in red. We observe that the motion of this traveling wave is

symmetric about the central axis and moves in the radially
inward direction as the droplet undergoes the recoiling phase.
The two troughs of the capillary wave converge (T ∗ = 2.4
and subsequently empty into each other at T ∗ = 3.08. It has
been observed in earlier work [39] that when the impact speed
is sufficiently high, the collapse of the waves leads to the
formation of a small air cavity, which eventually produces the
eruption of a thin jet.

When a droplet impacts a moving surface, the momentum
diffusing from the moving wall to the droplet liquid leads
to a unidirectional flow field inside the drop as illustrated in
Fig. 6(b). Hence, the inertial force experienced in the down-
stream direction is higher than that acting on the upstream
rim of the droplet. This leads to an increase in the droplet
surface area along the downstream direction which is greater
when compared with the upstream part. Subsequently, the

FIG. 7. Motion of the capillary wave moving along the free surface of the droplet when it impact a stationary surface (left column) and
a moving surface (right column, Uw = 0.125) at different time instants with θ = 110◦. Both the troughs of the capillary are marked in red
outline (gray dashed line pattern in printed grayscale version) for the stationary wall case, implying the symmetry of the wave. However, the
breakdown in this symmetry is highlighted with different colors and line patterns (blue corresponds to dash-dot-dot pattern and red corresponds
to dashed pattern) in the case of a moving wall. The scale bar is 20 lattice units.
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FIG. 8. Temporal evolution of the (a) spread factor (D∗), (b) kinetic energy, and (c) surface energy (Eσ ) of a droplet impinging onto
a surface with contact angle θ = 110◦ moving with different wall velocities. The line colors are assigned as (i) black (online and printed
versions), (ii) red (online version), and gray (printed version).

magnitude of the restoring effects of the interfacial forces
acting on these two regions is different. This is observed
from the local curvature of the spreading rims as shown in
Fig. 7 (right column) at T ∗ = 1.02. As a consequence of
these two competing forces, a capillary wave traveling along
drop surface is generated having different wave structure and
motion near the peripheral rims. The two dissimilar troughs
of the traveling capillary wave are marked with different
colors as illustrated in Fig. 7 (right column). As the droplet
liquid is drained away from the upstream rim, droplet surface
deformation by the inertial forces is minimized, thereby fa-
cilitating the restoring effects of the interfacial forces. This is
manifested by the temporal reduction of the local curvature
(T ∗ = 1.02 and 1.71) of the corresponding trough of the
capillary wave (marked in blue) which is illustrated in Fig. 7.
As time precedes, this trough collapses at T ∗ = 2.4, during
which the interface assumes a linear shape which constitutes
the tail of the droplet. With a continuous supply of wall
momentum along the downstream direction, the tail of the
droplet incurvates at T ∗ = 3.08, leading to the formation
of local curvature on the interface. In contrast, the trough
of the capillary wave near the downstream rim (marked in
red) sustains for a longer time. As the inertial forces are
supplemented by the momentum diffusion from the moving
wall leading to higher surface deformation, the height of the
trough decreases from T ∗ = 1.02 to 1.71. Surface tension
forces begin to dominate as we notice an increase in the local

curvature (T ∗ = 1.71–2.4) of the downstream rim due to a
greater influx of the droplet liquid. Consequently, the height
of the trough increases, attains a maximum resulting in the
collapse of the downstream trough of the capillary wave. It
is to be noted that the increase in Laplace pressure due to
the negative curvature of the trough (T ∗ = 2.4) amplifies its
collapse.

The propagation of the capillary wave shown in Fig. 7
clearly illustrates the breakup in the symmetry of the wave
motion on the droplet-free surface. For the stationary case,
the two troughs of the wave propagate toward each other with
equal speeds and collapse at the same point. However, when
the surface moves with a constant velocity, the capillary wave
does not converge radially inward and undergoes dissipation
at different points along the droplet-free surface. The asym-
metry in flow field inside the droplet and propagation of the
capillary wave traveling wave on its free surface depends on
the momentum imparted by the moving wall to the imping-
ing droplet. This in turn depends on the magnitude of wall
velocity (Uw). Figure 8(a) illustrates the temporal evolution
of the spread factor (D∗) for different wall velocities. During
the initial duration of the impact process, we observe that
D∗ is independent of Uw. This is attributed to the fact that
the momentum possessed by the droplet during its inertial
spreading phase is much higher than that supplied to the
droplet by the moving wall. This behavior complements the
temporal evolution of the total kinetic energy and surface
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FIG. 9. Time evolution of (a) surface energy (Eσ ) and (b) vertical component of velocity (Uz) for different Weber numbers (We) with
Re = 600, Uw = 0.075, and surface contact angle θ = 90◦.

energy inside the droplet during the inertial phase as illus-
trated in Figs. 8(b) and 8(c), respectively. However, when
the droplet slows down as it reaches its maximum spread,
the role momentum supplied by the moving wall on the
impact dynamics becomes prominent. The temporal evolution
of the kinetic energy [Fig. 8(b)] illustrates that the inertial
forces inside the droplet increase with an increase in Uw. This
gives rise to an increased deformation of the droplet surface
area which corresponds to the increase in Eσ with time as
Uw increases. We notice that as time proceeds, D∗ for the
case with Uw = 0.125 decreases at a faster rate than other
cases considered in this section. Since the droplet surface
deformation during its recoiling phase is higher than the other
cases, the conversion of Eσ into KE is also higher. This leads
to an increase in the recoiling rate of the droplet.

We now understand that the magnitude of the momentum
diffusion from the moving wall into the impinging droplet
depends on the wall velocity. This, in turn, governs the asym-
metry induced in droplet deformation and flow field. However,
the extent to which the wall momentum influences the impact
dynamics is inhibited by the restoring and resisting effects
of surface tension and viscous forces acting on the droplet,
respectively. We now turn our attention to the effects of these
forces on the droplet impact dynamics.

C. Role of fluid properties: Surface tension and viscosity

The nature of surface tension force is to resist the formation
of new surfaces as the impinging droplet undergoes spread-
ing due to inertial forces. For a given Uw, the momentum
supplied by the moving wall to the impinging droplet is
fixed. During the inertial spreading phase (T ∗ = 1.0), due
to the dominating influence of the initial kinetic energy of
the impacting droplet, this resistance on droplet spreading is
independent of the surface tension. However, as σ decreases,
the resistance offered by the peripheral rims to the influx of
droplet liquid decreases, thereby leading to higher surface
deformation of the spreading droplet. Hence, the momentum
transfer between the wall and the droplet liquid increases.
This is illustrated in Fig. 9(a) which shows the temporal
evolution of Eσ for different We obtained by varying the value
of surface tension. The maximum value of Eσ increases with
an increase in We. We observe that this trend in the evolution

of Eσ for varying We continues as time precedes. The rate
of decrease in Eσ , after it reaches its maximum, decreases
with increasing We with Eσ being nearly the same value
for We = 102.4. This is attributed to the fact that a higher
value of σ facilitates the reduction in droplet surface area as
it under goes recoiling. To further elucidate the behavior of
surface tension forces on the dynamics of droplet motion, we
illustrate the temporal evolution of Uz in Fig. 9(b). Positive
and negative values of Uz correspond to the droplet recoiling
and spreading, respectively. Under the influence of increased
capillary forces for We = 25.6, the droplet undergoes primary
recoiling between T ∗ = 1 and T ∗ = 5, followed by secondary
spreading and recoiling. These oscillations in Uz illustrate the
competing dynamics of the restoring surface tension forces
against the inertial forces which are supplemented by the wall
momentum. As We increases, we notice that the amplitude
of these oscillations in Uz reduces. For We = 102.4, we
observe that the value of Uz remains close to zero after its
inertial spreading, signifying that the inertial forces primarily
dominate the receding droplet dynamics.

The shear deformation of a fluid element is resisted by
the viscous stresses acting on it. Thus, increase in dynamic
viscosity of the fluid will inhibit the inertia-driven droplet
spreading as illustrated from the temporal evolution of A∗
shown in Fig. 10(a) for varying Ohnesorge numbers (Oh).
While we observe that the maximum A∗ (A∗

max) is lowest for
the case with Oh = 0.1431, the minimum A∗

max is noted for
Oh = 0.0715 instead of the least viscous case with Oh =
0.0119. At the later stages of inertial spreading, the droplet
slows down, and the restoring effects of surface tension forces
commence flow reversal inside the droplet. For Oh = 0.0119,
the weak viscous forces are unable to resist this flow reversal
and undergo rapid recoiling when compared with other cases
as shown in Fig. 10(a). However, supplemented by the wall
momentum, the viscous forces for the case with Oh = 0.0715
resist the surface tension–driven flow reversal, and the droplet
continues to undergo inertial spreading exceeding the maxi-
mum value of A∗ for the case with Oh = 0.0119. The damping
influence of viscous stress is further elucidated in Fig. 10(b)
which shows the temporal evolution of Uz for different Oh.
For Oh = 0.0119, Uz shows oscillatory behavior while the
velocity profile for the case with Oh = 0.1431 is dampened
by viscous stresses and does not exhibit any oscillations.
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FIG. 10. Temporal evolution of the (a) contact area (A∗) and (b) volume-averaged vertical component of droplet velocity (Uz) for different
Ohnesorge numbers (Oh) to investigate the effect of drop viscosity. The Webers number, wall velocity, and surface contact angle were set to
be We = 51.2, Uw = 0.075, and θ = 90◦, respectively.

While the physiochemical factors, such as the surface
contact angle, influence the area covered of the impinging
droplet and therefore the momentum supplied by the moving
wall, physical factors, such as the angle of impact, regulate
the droplet impingement dynamics on moving walls. The in-
terplay between the supplied wall momentum and anisotropic
mass distribution inside the droplet originating from the con-
tribution of tangential component of impact velocity leads
to different spreading and recoiling dynamics. To investigate
this, we next focus on oblique droplet impingement dynamics
on moving dry surfaces.

D. Oblique droplet impingement dynamics

We begin our investigation by considering situations in
which the directional sense of the tangential component of
the impact velocity (U||) is inline with the wall velocity. The
wall velocity and surface contact angle are set to be 0.075
and 90◦, respectively. Figure 11 shows the snapshots of the
droplet impact sequence at different time steps with impact
angle α = 30◦ (left column) and α = 60◦ (right column). At
T ∗ = 1.026, we observe that the droplet initially deposits
and spreads like an elongated pancake due to the tangential
velocity component for α = 30◦. During this inertial phase
of the impact process, the spreading dynamics is primarily
governed by the impact velocity whose effect dominates the
momentum supplied by the moving wall. As time proceeds,
assisted by the wall motion and restoring effects of surface
tension forces, the droplet liquid propagates from the trailing
edge to the leading rim. Facilitated by the receding trailing
edge, accumulation of the droplet liquid leads to increased
thickness of the leading rim (T ∗ = 1.71–2.736) and increases
the droplet height (T ∗ = 5.814). With the kinetic energy in-
side the droplet being converted into surface energy and a frac-
tion of it being dissipated due to viscous effects, the droplet
height decreases at T ∗ = 8.208. The role of the tangential
component of impact velocity on the droplet morphology be-
comes more prominent as α increases. Instead of an elongated
pancake shape which is observed for the case with α = 30◦
at T ∗ = 1.026, we notice an inclined satellite–shaped droplet
morphology. As α increases, the tangential component of the
impact velocity increases leading to greater influx of droplet

liquid along the tangential direction. The crashing time, which
is the time taken by the droplet to undergo maximum spread,
is delayed and anisotropy in the droplet shape is observed
during its inertial spreading phase. A distinct difference in
the two cases considered here is observed in the formation
of the leading rims. The thickness of the leading rim for
α = 30◦, which is in contact with the surface, is increased due
to the accumulation of droplet liquid transported from both
the U|| and wall momentum due to Uw. However, for α = 60◦,
the leading lamella is entirely lift-off from the surface and
continues to elongate along the streamwise direction. Due to
the reduction in the normal component of the impact velocity,
the central region of the droplet undergoes delayed maxi-
mum spread (T ∗ = 1.710). This leads to the pumping of the
droplet liquid into the elongating lamella and the formation
of peripheral rims with large local curvatures. As surface
tension forces begin to control of the recoiling dynamics, the
elongated lamella thickens and grows in height, as observed
at T ∗ = 2.736. Supplemented by the increased recoiling of
the rear end, which is in contact with the moving wall, the
peripheral rims coalesce, and the droplet acquires a shape
of a slanted cylinder with a spherical top. The increase in
droplet height with increasing α is illustrated by observing the
temporal evolution of the contact area as shown in Fig. 11(b).
As α increases, the normal component of the impact velocity
decreases. This leads to the reduction in the initial droplet
momentum along the z direction, and thereby the droplet
covers lesser contact area during its inertial spreading phase.
This is illustrated in Fig. 11(b) as the maximum A∗ decreases
with an increase in α. Due to volume conservation, the height
of the droplet decreases with an increase in the impact angle.
While we observe that for the cases with α = 0◦, 30◦, and 45◦,
A∗ converges to the same value as time proceeds, the temporal
evolution of A∗ for α = 60◦ deviates from this behavior. To
delve deeper into this deviation, we probe the temporal evolu-
tion of the volume-averaged z component of droplet velocity
as shown in Fig. 11(c). Compared to all other considered cases
which follow a similar trend in Uz, the temporal evolution of
Uz for α = 60◦ shows a sharp increase in Uz from T ∗ = 3–6.
Hence, due to the high momentum of the droplet liquid along
the z direction, the droplet elongates as a vertical columnlike
structure with a smaller contact area. This increase in fluid
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FIG. 11. (a) Snapshots of oblique inline droplet impingement on substrates with different impact angles: α = 30◦ (left column) and α = 60◦

(right column). The scale bar is 50 lattice units. Temporal evolution of the (b) contact area (A∗) and (c) volume-averaged vertical component
of droplet velocity (Uz) for different impact angles (α) with the inline configuration. For all the cases, the wall velocity and surface contact
angle are fixed at Uw = 0.075 and θ = 90◦, respectively. The line colors are assigned as (i) black (online and printed versions), (ii) red (online
version), and gray (printed version).

momentum along the z direction is attributed to the increase
in surface energy of the droplet during its recoiling phase.
As mentioned before, the curvature of peripheral rims of the
elongated leading lamella increases as the droplet liquid is
pumped in from the region as shown in Fig. 11(a) at T ∗ =
1.710. This increase in interfacial curvature leads to intense

recoiling of the droplet system. However, instead of recoiling
in a direction parallel to the wall, the momentum supplied by
the moving wall, and the motion of the receding trailing edge
divert the fluid motion along the vertical direction. This results
in the formation of a slanted columnlike droplet morphology,
as observed at T ∗ = 5.814 and 8.208.
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FIG. 12. (a) Snapshots of oblique opposing droplet impingement on substrates with different impact angles: α = −20◦ (left column) and
α = −40◦ (right column). The scale bar is 50 lattice units. Time evolution of the (b) contact area (A∗) and (c) surface energy (Eσ ) of the
impinging droplet for different impact angles (α) with the opposing configuration. For all the cases, the wall velocity and surface contact
angle are fixed at Uw = 0.075 and θ = 90◦, respectively. The line colors are assigned as (i) black (online and printed versions), (ii) red (online
version), and gray (printed version).

We next investigate the situation wherein the impact an-
gle is negative. The negative impact angle implies that the
tangential component of the impact velocity has an oppo-
site directional sense when compared to the wall velocity.
Figure 12(a) illustrates the temporal evolution of droplet
impaction dynamics on a moving wall with α = −20◦ (left

column) and −40◦ (right column), respectively. Similarly to
the observations for the inline cases, during the early stages of
the impact process, we observe an asymmetry in the droplet
shape at T ∗ = 0.684. However, due to the direction of the
tangential velocity component, the spreading lamella with a
higher curvature is formed on the upstream side of the moving
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wall. As time progresses, the deviation of droplet morphology
from the inline configuration becomes more prominent. The
moving wall continues to supply momentum to the droplet
liquid, close to the wall region, in the downstream direction.
This leads to the temporal growth in the thickness of the down-
stream rim. At the same time, due to the tangential component
of the impact velocity, the upstream lamella continues to
propagate along the upstream direction. This movement of the
downstream and upstream rims in opposite directions results
in the stretching and elongation of the droplet system along
the wall parallel direction as observed at T ∗ = 1.710 and
3.048. The elongation is dependent on the impact angle, which
governs the magnitude of the initial tangential momentum
of the impinging droplet. It is to be noted that unlike the
inline configuration where a single growing downstream rim
primarily characterizes the downstream rim after the crashing
time, as shown in Fig. 11(a) at T ∗ = 1.710 and 2.736, the
opposing case is delineated by two rims of varying curvature
even at high impact angles. At T ∗ = 3.048, the upstream rim
formed for the case with α = −20◦ is in contact with the mov-
ing wall, whereas the upstream rim for α = −40◦ is lift-off
from the surface. As the momentum is continuously supplied
from the moving wall along the downstream direction and
facilitated by the surface tension effects, the rear end begins to
recoil, and the droplet liquid propagates from an upstream to a
downstream direction. This motion combined with the upward
recoiling of the flattened central region results in the growth
of droplet height (T ∗ = 8.550 and 11.970). The onset of this
recoiling motion and reversal in the direction of fluid motion
inside the droplet is delayed with an increase in the magnitude
of α. This is observed from the droplet shapes observed at
T ∗ = 8.550 and 11.970. For the case with α = −40◦, the
droplet surface is more streamlined and flattened along the
direction of wall motion. The interface shape for α = −20◦
is blunter on the front side and shows a sharp transition,
leading to the formation of a tail structure on the rear end.
This formation of a sharp tail structured rear end for opposing
cases is a distinct feature which is not observed for the inline
impact scenarios at a given contact angle. This is attributed
to the reversal in the flow direction inside the droplet during
the recoiling phase of the opposing oblique droplet impact
situations. The temporal evolution of the contact area (A∗)
shown in Fig. 12(b) quantifies the stretching and elongating
behavior of the droplet which is amplified as the absolute
value of the impact angle increases. During the initial stages
of impact, we observed that A∗ is primarily dependent on the
normal component of the impact velocity. Therefore, during
its inertial spreading phase, A∗ increases as α magnitude de-
creases. Nevertheless, as the two end of the droplet continue to
propagate in the opposite direction and lead to droplet stretch-
ing along the direction of wall motion, A∗ increases with an
increase in the absolute value of α. It is to be noted that we
observe a reversal in trend for the temporal evolution A∗ for
opposing cases when compared with the inline configuration.
In the latter case, an increase in α leads to droplet elongation
along the wall-normal direction, whereas droplet elongation
is mainly along the wall movement direction for the opposing
impact scenarios. This increase in the surface area on the
impinging droplet is complemented by the temporal evolution
of the surface energy (Eσ ) for different impact angles shown

in Fig. 12(c). As the absolute value of α increases, the surface
energy of the droplet system increases, signifying the increase
in surface area of the elongating droplet.

V. CONCLUSIONS

We have performed a three-dimensional numerical investi-
gation of a droplet impacting on a smooth dry moving solid
surface. A high-density ratio-based phase-field lattice Boltz-
mann method is employed in conjunction with a geometric-
based contact line formulation for the moving contact line.
The results from this work indicate rich morphology in droplet
interface profiles when compared to those of droplet impinge-
ment on stationary surfaces. An elongated tail like structure
is observed at the trailing end of the recoiling droplet, the
end of which becomes sharper as the contact angle increases.
The impinging droplet is discerned to lift off obliquely from
a moving hydrophobic surface. The momentum imparted by
the moving wall is found to induce a flow diversion from
the central region toward the downstream direction, giving
rise to symmetry breaking during the spreading and recoiling
phases of the droplet impingement process. Furthermore, we
elucidate the propagation mechanism of the capillary waves
traveling along the droplet-free surface when it impinges onto
a stationary and moving surface. The troughs of the propa-
gating capillary waves was found to collapse into each other
when the drop impacts onto a stationary surface, whereas
they are observed to dissipate at different locations and time
instants when impinged onto a moving surface. For the first
time, we analyzed oblique droplet impingement dynamics on
moving dry surfaces. For the inline droplet impact situations,
at higher impact angles, the momentum supplied by the
moving wall assists in the diversion of the receding droplet
liquid along upward direction, resulting in the formation of
a slanted and elongated droplet structure. However, for the
opposing impact scenarios, we notice droplet stretching along
the direction parallel to the moving wall which is character-
ized by the formation of two distinct rims at the upstream and
downstream directions. Unlike the inline case, the recoiling
phase of droplet impingement in opposing impact situations is
always characterized by a tail like structure. The current study
suggests that, apart from the spreading phase, the momentum
supplied by the moving wall plays a vital role in the receding
dynamics. The understanding of recoiling dynamics of the
droplet, especially in complex situations like oblique impinge-
ment, is pivotal when it further interacts and coalesces with
neighbor impinging drops as encountered in several industrial
applications. While we focus on presenting the underlying
flow physics when a droplet impinges onto a moving dry
surface in this work, a detailed parametric study on the
droplet impact outcomes on moving surfaces for different
Reynolds number and Weber number is an important scope
for future work. Regime maps and correlations constructed
from such a case study could be used directly in practical
applications.
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