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Propulsion by stiff elastic filaments in viscous fluids
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Flexible filaments moving in viscous fluids are ubiquitous in the natural microscopic world. For example,
the swimming of bacteria and spermatozoa as well as important physiological functions at organ level, such as
the cilia-induced motion of mucus in the lungs, or individual cell level, such as actin filaments or microtubules,
all employ flexible filaments moving in viscous fluids. As a result of fluid-structure interactions, a variety of
nonlinear phenomena may arise in the dynamics of such moving flexible filaments. In this paper we derive the
mathematical tools required to study filament-driven propulsion in the asymptotic limit of stiff filaments. Motion
in the rigid limit leads to hydrodynamic loads which deform the filament and impact the filament propulsion. We
first derive the general mathematical formulation and then apply it to the case of a helical filament, a situation
relevant for the swimming of flagellated bacteria and for the transport of artificial, magnetically actuated motors.
We find that, as a result of flexibility, the helical filament is either stretched or compressed (conforming previous
studies) and additionally its axis also bends, a result which we interpret physically. We then explore and interpret
the dependence of the perturbed propulsion speed due to the deformation on the relevant dimensionless dynamic
and geometric parameters.
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I. INTRODUCTION

Many biophysical processes and engineering problems ex-
hibit rich nonlinear behavior due to fluid-structure interactions
[1,2]. Examples include tall buildings responding to winds [3],
the flapping of bird wings [4,5], and the motion of aircrafts
[6]. Physiological flows [7] provide additional examples, for
example, the vibrating vocal folds [8], heart valves open-
ing and closing with blood flow [9], lungs expanding and
contracting with breathing [10,11], and pulse propagation in
blood vessels [12]. Going all the way down to the microscopic
world, one comes across elastic structures being deformed
due to hydrodynamic loads from flows which are, in turn,
affected by the deformation. Examples including deforming
cilia [13,14], fluctuating actin filaments [15], polymerizing
microtubules [16], the waving flagella of spermatozoa, and the
rotating flagellar filaments of bacteria [17,18].

A prevalent morphology in the microscopic natural world
is that of a helix. DNA [24,25], spirochaetes [26,27], spiro-
plasma [28], trypanosoma [29], and bacterial flagellar fil-
aments [17], all take the shape of helices and spirals, as
illustrated in Figs. 1(a)–1(c). In particular, the chiral shape
of a helix is able to couple hydrodynamically rotation to
translation. As such, it is used as the propulsive machinery
for bacteria swimming in viscous fluids. The helical flagellar
filaments of bacteria such as Escherichia coli (E. coli) are
several micrometers in length and 20 nm in radius, and are
rotated at a typical frequency of 100 Hz by specialized rotary
motors [30,31].
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In the microengineering world, different types of ex-
ternally powered motors have been proposed, studied, and
constructed. Examples include rigid helical propellers often
termed “artificial bacterial flagella” [21,22], and motors that
use flexible filaments [23,32,33], both of which are illustrated
in Figs. 1(d)–1(f). One of the aspiring applications of such
artificial microswimmers is noninvasive medicine [34,35],
in which swimmers are to access targeted locations in the
body, such as tumors, in order to deliver drugs [36] or
perform delicate surgical tasks [37]. In view of the former
application, one interesting possibility is that of the motor
being propelled by the drug itself taking the shape of long
strips that twist up into a helical shape upon rotation [38].
Magnetically propelled microswimmers with a flexible helix
can be also be manufactured [23,39] and display rich non-
linear dynamics such as velocity profiles peaked at certain
operational frequencies [23]. In addition, nonlinearity can be
exploited in achieving selective control of microswimmers in
large numbers, a desirable feature for any practical application
[40–42].

The multitude of biological systems that involve the dy-
namics of an elastic helix in a viscous fluid environment
and the number of microengineering applications are com-
pelling evidence for the need to study the elastohydrodynamic
coupling theoretically. In the context of bacterial flagellar
filaments, there have been several experimental, numerical,
and analytical investigations to address this problem. The-
oretical and experimental studies were combined to derive
the relationship between the elongation of a flagellar filament
(modeled as a chain of segments) and the flow that it is sub-
jected to [43]. Experimental studies showed different speeds
between forward and backward swimming of the single polar-
flagellated bacterium Vibrio alginolyticus [44]. These were
followed by a numerical analysis for the deformation of a
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FIG. 1. Examples of microscopic helices in the natural and
artificial world: (a) Polar monotrichous Pseudomonas aeruginosa
bacteria [19] [reprinted from Fujii, Shibata, and Aizawa, J. Mol. Biol.
379, 273 with permission from Elsevier; Copyright (2008) Elsevier].
(b) Spirochaete bacterium [20] [reprinted (adapted) from Johnson,
Hyde, and Rumpel, Yale J. Biol. Med. 57, 529 with permission
from Yale J. Biol. Med.; Copyright (1984) Yale J. Biol. Med].
(c) The structure of part of a DNA double helix, reproduced from
Wikimedia Commons; (d) chiral magnetic propeller [21] [reprinted
(adapted) with permission from Ghosh and Fischer, Nano Lett. 9,
2243 with permission from American Chemical Society; Copyright
(2009) American Chemical Society]. (e) Artificial bacterial flagel-
lum [22] [reprinted (adapted) with permission from Zhang, Abbott,
Dong, Peyer, Kratochvil, Zhang, Bergeles, and Nelson, Nano Lett.
9, 3663 with permission from American Chemical Society; Copy-
right (2009) American Chemical Society]. (f) Flexible nanowire
motor [23] [reprinted (adapted) with permission from Pak, Gao,
Wang, and Lauga, Soft Matter 7, 8169 with permission from The
Royal Society of Chemistry; Copyright (2011) The Royal Society of
Chemistry].

flagellum rotating in a viscous fluid [45]. Studies of the
deformation according to the Kirchhoff rod model combined
with the Calladine model of the detailed structure of the
filament provided analytical expressions for the bending mo-
ment, curvature, and torsion of deformed flagellar filaments
of swimming bacteria Vibrio alginolyticus and Salmonella.
The deformation was obtained numerically and a comparison
with experimental data provided an estimate of the elastic
bending coefficient of the flagellar filament on the order of
EI � 10 pN(μm)2 [46,47].

The extension or compression of an elastic helix by flow
and external fields has been studied analytically in the limit
of a long, stiff helix [48]. Force-extension curves were also
derived in studies of helical springs subjected to uniaxial
tension [49]. The propulsive force from a rotating, flexible,
helical rod in a viscous fluid and the onset of the buckling in-
stability above a critical rotation velocity have been studied by
means of experiments and simulations [50–52]. In particular,
simulations based on a model that uses Kirchhoff’s classical
elasticity theory for curved rods were used to investigate the

transitions between the polymorphic forms of the bacterial
flagellum [50,51].

In this work, we put forward the mathematical frame-
work necessary to address the steady-state locomotion of stiff
elastic, slender filaments in viscous fluids. The motion of
the filament induces a hydrodynamic load that deforms it.
This in turn affects the kinematics because the shape has
changed. Implementing the overall force and torque balance
at leading order involves integrating the hydrodynamic load
with the unknown velocity and rotation rate over the new
deformed shape as if it were rigid, and inverting the sys-
tem to solve for the unknown velocity and rotation rate.
In order to obtain the perturbation to the rigid kinematics,
one needs in particular to perturb the hydrodynamic resis-
tance matrices. In this paper, we show how to do this for
a long, slender filament of arbitrary shape. We next apply
our analytical framework to study the setup of an elastic
helix that is rotating and translating, or equivalently is in
the presence of such an external flow of a viscous fluid.
We study the limit where the helix is very stiff, so that
any deformation is small, and very long, so that it rotates
about its long axis and does not wobble [53]. This setup is
relevant to bacterial flagellar filaments and a popular design
for magnetically actuated artificial microswimmers. The latter
consists of a flexible helix clamped onto a magnetic head on
which an external magnetic torque is exerted. We calculate
below the full three-dimensional deformation analytically and
its feedback on the swimming speed of a bacterium during
swimming in a straight line. Our results of the deforma-
tion agree with previous analytical results of the extension
and compression in Ref. [48], and capture and explain the
bending of the helix axis that was observed in the numer-
ical results of Ref. [46] and whose origin has been unclear
so far.

Our paper is organized as follows. In Sec. II we out-
line the mathematics framework for the steady motion of
a stiff-elastic, slender filament of any shape in a viscous
fluid. We show how the Kirchhoff model for an elastic rod
(Sec. II A) combined with resistive-force theory for the hydro-
dynamic load (Sec. II B) lead to the deformation (Sec. II C)
and how this in turn perturbs the leading-order kinematics
(Sec. II D). The latter is obtained by implementing the force
and torque balance (Sec. II E). We formulate this dynamic
balance for two specific setups: first, that of a flexible fil-
ament actuated by a magnetic torque exerted on the head
on which it is clamped (Sec. II F) and second the case of
swimming bacterium rotating a flexible flagellar filament
relative to its cell body (Sec. II G). Since the prevalent ge-
ometry for these two cases is a helical one, in Sec. III we
give the common details of the hydrodynamic load, bend-
ing moment, and the deformation of the helix (Sec. III A).
We next interpret the bending of the helix axis and pro-
ceed to investigate the feedback of the deformation on the
kinematics (Sec. III B). We then calculate the perturbations
to the resistance matrices due to the small deformation.
Applying the appropriate forms for the force and torque
balance, in both the artificial (Sec. III B 4) and biological
(Sec. III B 5) setup, we derive the perturbation of the swim-
ming velocity and discuss the physical interpretations of our
results.
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II. PROPULSION BY ELASTIC FILAMENTS:
GENERAL FRAMEWORK

We first consider in this section the propulsion of elastic
filaments of arbitrary shapes, and apply it to two cases: exter-
nally actuated microswimmer propulsion driven by a rotating
magnetic field and bacterial propulsion. In both cases, our
setup involves a long elastic filament with one end clamped
on a head or cell body and which rotates with angular velocity
ω (in the laboratory frame) and translates with velocity U.
The particular case of helical filaments will be considered in
Sec. III.

In the context of artificial microswimmers, the head is
magnetized and actuated by an external magnetic field B
rotating about a fixed axis, say the z axis. Assuming the
head to have a constant dipole moment m, the field exerts a
magnetic torque Mmag = μ0m × B on the head which thus
rotates and, with the proper filament shape, also translates. In
the case of bacteria, there is instead a rotary motor embedded
in the cell that produces a torque Mmot actuating the flagellar
filament in rotation. The filament, which in many cases is stiff,
is connected to the motor via a very flexible short hook [54].

Following the actuation of the magnetized head or the
bacterial motor, the elastic filament attached onto it will rotate
and (if of the right shape) also translate. Due to hydrodynamic
loads, it will also start deforming, until it reaches shape equi-
librium. In this work we aim at characterizing the steady state
equilibrium configuration of the filament obtained after all
transients, where the shape no longer changes and for which
elastic and hydrodynamic stresses balance. The swimming
kinematics are then governed by the force and torque balance
over the entire swimming organism (or device), which involve
integrating hydrodynamic loads over the new deformed shape.
The fluid-structure interactions manifest themselves therefore
via the deformation induced by the hydrodynamic load and
by the feedback of the deformation on the kinematics via
dynamic balance.

In both applications, the magnetized head or cell body and
the filament will translate at the same speed in steady state. In
the case of the artificial motor, the head and tail will share the
same rotation rate since the tail is clamped onto the head. In
our model of bacterium, we do not include details of the hook,
but instead assume that its high flexibility allows different
rotation rates between the cell body and flagellar filament, the
values of which are determined by torque balance.

A. Elastic rod

Working in the frame of reference of the filament, let r(s)
denote the location of its center line and {di(s)}i=1,2,3 the local
material frame (which we will take later to coincide with the
Frenet-Serret frame) so that d3 is tangent to the center line

∂sr = d3. (1)

The configuration of the material frame along the filament is
then described by

∂sdi = D × di, (2)

D = D1d1 + D2d2 + D3d3, (3)

where D is the Darboux vector, measuring the strains in the
rod. Its components in the material frame are the material cur-
vatures (D1 = κ (1), D2 = κ (2) ) and the material twist (D3 =
τ ) of the rod.

The elastic behavior of the filament is governed by the
classical Kirchhoff equations for a rod [55], which give the
balance of forces and moments on a cross section

∂sF + K = 0, (4)

∂sM + d3 × F + N = 0, (5)

where F is the internal force acting on a cross section of the
rod, M is the bending moment, and K, N are the distributed
(external) force and torque densities, respectively. The con-
stitutive equation for a Hookean material gives the bending
moment as [55]

M = EI (1)(δD1)d1 + EI (2)(δD2)d2 + μSJ (δD3)d3, (6)

where δDi = Di − D(0)
i are the deviations of the material

curvatures and twist in the deformed state from their values
in the reference configuration. In this paper, we add a (0)
superscript or subscript to indicate quantities pertaining to
the reference configuration. As appropriate for a linearly
elastic material, the deviations of the curvatures and twist are
therefore linearly related to the components of the bending
moment via Young’s modulus E and the shear modulus μS of
the material and depend on three geometrical coefficients: the
principal moments of inertia I (1) and I (2) and the twist rigidity
J of the rod. For a rod with a circular cross section of radius
r, these take the values

I (1) = I (2) = πr4/4, J = πr4/2. (7)

B. Hydrodynamic load

1. Resistive-force theory

The viscous tractions due to the motion of a slender
filament in a viscous fluid at low Reynolds number are well
captured by resistive-force theory [18,56–58]. This technique
integrates fundamental solutions of the Stokes equations along
the center line of a slender filament to give an expression for
the local hydrodynamic force per unit length K, exerted on the
filament due to its motion in a viscous fluid. At the position
labeled by the contour-length parameter value s, the local
hydrodynamic force per unit length exerted on the filament
is then given:

K(s) = −ζ⊥[Vrel(s) − (d3(s) · Vrel(s))d3(s)]

− ζ‖(d3(s) · Vrel(s))d3(s), (8)

where Vrel(s) is the local relative velocity between the fila-
ment and the fluid at that position and ζ‖, ζ⊥ are the drag
coefficients for motion parallel and perpendicular to the local
tangent of the filament. There are many forms of the drag co-
efficients in various geometries [56–59], and for the purpose
of studying helical filaments in Sec. III, we will use Lighthill’s
coefficients given by

ζ⊥ ≈ 4πμ

ln(0.18�/r) + 1/2
, ζ‖ ≈ 2πμ

ln(0.18�/r)
, (9)
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where μ is the dynamic viscosity of the fluid and �, r are
the contour wavelength and cross-sectional radius of a helical
filament, respectively. The ratio of the two coefficients is
approximately equal to 1

2 :

ζ‖ = ρζ⊥, ρ = 1

2

ln(0.18�/r) + 1/2

ln(0.18�/r)
≈ 1

2
. (10)

The fact that the perpendicular drag coefficient is approxi-
mately twice the parallel one is the extension to a curved fila-
ment of the fact that it is approximately twice as hard to pull a
rod through a viscous fluid in a direction perpendicular to its
length than lengthwise. This drag anisotropy is at the heart of
locomotion of microorganisms and artificial microswimmers.
For example, it is the crucial ingredient coupling rotation to
translation for bacterial flagellar filaments [31].

There are two sources of hydrodynamic moments acting on
the filament. The first one is the moment due to the distribution
of forces in Eq. (8). The second is the viscous torque per unit
length Nvisc, that resists the rotation of an element of the rod
about d3 (i.e., its center line) given by

Nvisc = −ζr (d3.ω)d3, (11)

where ζr is the rotational drag coefficient

ζr = 4πμr2. (12)

This second viscous torque Nvisc can be typically neglected
for filaments with sufficiently small cross-sectional radius
r. Consider a helical filament with helical radius R0 in its
reference configuration and compare the magnitude of the
moment (measured with respect to the helical axis) due
the hydrodynamic force per unit length K with that of Nvisc in
the expression for the bending moment M in Eq. (18). Their
ratio scales as [48]

|Nvisc|
|r × K| ∼ μωr2

μωR2
0

∼
(

r

R0

)2

. (13)

This ratio is very small unless one is dealing with nearly
straight filament configurations, which is typically not the
case for the helical geometry of bacteria and artificial mi-
cromotors. The second viscous torque Nvisc can therefore be
safely neglected.

Once steady state has been reached, the filament rotates
with uniform angular velocity ω and translates with uniform
velocity U . We may then consider the frame in which the fila-
ment is stationary. The relative velocity between the filament
and the fluid is given by

Vrel = U + ω × r(s), (14)

which allows access to the leading-order estimate for the force
density K in Eq. (8).

The next step is to calculate the internal force F and
bending moment M by integrating the Kirchhoff equations (4)
and (5). We assume that the end point at s = L of the filament
is free,

F(L) = 0, M(L) = 0, (15)

allowing to obtain explicitly

F(s) =
∫ L

s
K(s′) ds′, (16)

M(s) =
∫ L

s
[d3(s′) × F(s′) + Nvisc(s′)] ds′. (17)

Using that d3(s′) = ∂s′ [r(s′)] we can rewrite ∂s′ [r(s′)] ×
F(s′) = ∂s′ [r(s′) × F(s′)] − r(s′) × ∂s′ [F(s′)], integrate by
parts, and use Eq. (4) to obtain

M(s) = [r(s′) × F(s′)]|Ls +
∫ L

s
r(s′) × K(s′) + Nvisc(s′) ds′.

(18)

Using the boundary conditions of Eq. (15), we then obtain the
integral formula

M(s) + r(s) × F(s) =
∫ L

s
r(s′) × K(s′) + Nvisc(s′) ds′.

(19)

As we will see in Sec. II F, the second term in the left-hand
side of Eq. (19) arises naturally when one considers the torque
balance with respect to the origin, as the bending moment
M(s) is defined with respect to the center of the cross section
at arc length position s along the filament.

C. Deformation

As a result of the hydrodynamic forcing, the filament will
deform. In the limit of stiff filaments, i.e., of high Young’s
modulus, the filament will undergo small deformations and
the material frame will be slightly perturbed. As the material
frame needs to stay orthonormal, this can be represented by
a set of three small local rotation vectors δφ(s) along the rod
[60] so that

δdi(s) = δφ(s) × d(0)
i (s). (20)

In order to relate the bending moment to the deformation,
we need to relate the perturbations to the components of the
Darboux vector δDi that appear in the constitutive equation (6)
to the small rotations δφ(s) of Eq. (20), following Ref. [55].
This is done by considering the first-order perturbations to the
two sides of Eq. (2). Perturbing the left-hand side of Eq. (2)
and using Eq. (20) leads to

δ(∂sdi ) = ∂s(δdi ) = ∂s
[
(δφ) × d(0)

i

]
= [∂s(δφ)] × d(0)

i + (δφ) × [
D(0) × d(0)

i

]
. (21)

Perturbing next the right-hand side of Eq. (2) leads to (δD) ×
d(0)

i + D(0) × (δdi ) and equating the two expressions we ob-
tain

[∂s(δφ)] × d(0)
i + (δφ) × (

D(0) × d(0)
i

)
− (δD) × d(0)

i − D(0) × (
δφ × d(0)

i

) = 0. (22)

Using the Jacobi identity for the second and last terms of
Eq. (22) leads to

[∂s(δφ) + (δφ) × D(0) − δD] × d(0)
i = 0, (23)

for all i. We thus have that

∂s(δφ) + (δφ) × D(0) − δD = 0. (24)
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Rearranging and expressing quantities in the reference config-
uration material frame gives

∂s(δφ) = δD − (δφ) × D(0) (25)

= (δDi )d
(0)
i + D(0)

i (δdi ) − D(0)
i

(
δφ × d(0)

i

)
(26)

= (δDi )d
(0)
i , (27)

where we used the summation convention for repeated indices
and where we used δD = δDid

(0)
i + D(0)

i δd(0)
i . Integrating

Eq. (27) then one obtains the expression for the infinitesimal
rotation δφ(s):

(δφ)(s) =
∫ s

0
(δDi )d

(0)
i ds′ + �. (28)

Note that the lower limit of the integral makes use of the
boundary condition

(δφ)(0) = �. (29)

A clamped boundary condition at s = 0 means � = 0, how-
ever, for a free end at s = 0 one would have to solve for the
value of �.

Using the classical assumption that EI (1) = EI (2) = μJ
[48,51,61], we next note that the constitutive equation for the
bending moment, Eq. (6), simplifies to

M = EI
∑

i

(δDi )d
(0)
i . (30)

Thus, δφ in Eq. (28) is obtained by integrating the bending
moment along the filament as

(δφ)(s) = 1

EI

∫ s

0
M(s′) ds′ + �. (31)

The perturbation to the tangent vector is given by Eq. (20),
hence, we obtain

δd3(s) = 1

EI

(∫ s

0
M(s′) ds′

)
× d(0)

3 (s) + � × d(0)
3 (s). (32)

Integrating Eq. (32) next gives access to the deformation

δr(s) =
∫ s

0
δd3(s′) ds′ + �r0 (33)

= 1

EI

∫ s

0

(∫ s′

0
M(s′′) ds′′

)
× d(0)

3 (s′) ds′

+� × (r(0)(s) − r(0)(0)) + �r0, (34)

where the perturbation to the position of the s = 0 end point
is denoted �r0; it vanishes if the end point has fixed position,
otherwise, for a free endpoint, �r0 would have to be solved
for.

D. Feedback of the deformation on the kinematics

The swimming kinematics of the filament-body and head
pair are determined by the force and torque balance. For large
values of the filament Young’s modulus, the deformations are
small and the kinematics are given by those of a rigid filament
to leading order. In this section we quantity the impact of the
deformation δr on the kinematics, i.e., calculate the next-order
effect on both U and ω. The perturbation principle behind

FIG. 2. Perturbation principle required to compute the feedback
of the deformation on the kinematics: Once the bacterial cell or arti-
ficial motor starts moving (due to the flagellar motor actuation or to
the rotating magnetic field) the filament experiences a hydrodynamic
load and starts deforming until it reaches a steady state shape, which
for stiff filaments is slightly perturbed from the reference configu-
ration. The hydrodynamic load then needs to be integrated over this
perturbed shape. Thus, implementing the force and torque balances
leads a system involving the perturbed resistance matrices which
are linear functions of the deformation. Once inverted, this gives
access to the perturbation of the rigid-body kinematics (diagram of
the bacterial motor adapted from Wikimedia Commons, Mgaetani,
2015).

the calculation of the feedback of the deformation on the
kinematics is illustrated in Fig. 2. Once the cell or artificial
motor starts moving, the filament starts deforming due to the
hydrodynamic load until it reaches steady state after which it
undergoes rigid body motion. The kinematics will be slightly
different from the rigid-body ones because the hydrodynamic
load is integrated along a slightly perturbed shape along which
force and torque balance is enforced. We first express the force
and torque balance for a general shape of the filament, leading
to a linear system involving the hydrodynamic load integrated
over the shape of the entire filament. Inputting the reference
configuration shape gives the rigid filament kinematics while
perturbing the system leads to a relationship linearly relating
the perturbed kinematics to the perturbed resistance matrices
of the filament, which themselves are linear functions of the
deformation. Once inverted, this procedure gives access to the
perturbation in swimming kinematics.

E. Relevant forces and torques

Using the term “head” to mean either the cell body of
the bacterium or the magnetized head of the artificial motor,
the hydrodynamic force Fh,visc and torque with respect to the
origin Mh,visc on the head translating with velocity U and
rotating with rate ωh are given in a Stokes flow by the linear
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relationship [62]

Fh,visc = αh · U + βh · ωh, (35)

Mh,visc = γh · U + δh · ωh, (36)

where αh, βh, γh, and δh are the resistance matrices for a
spherical head of radius ah. With respect to the center of the
head these are

αh = −6πμah1, βh = 0, (37)

γh = 0, δh = −8πμa3
h1, (38)

where 1 denotes the identity matrix.
If the center of the head is at position rh with respect to

the origin, then the hydrodynamic torque on the head has an
extra term given by rh × Fh,visc. This can be seen by writing
the torque with respect to the origin

∫
S r × (σ · n)dS, where σ

is the viscous stress tensor and n is the normal to the surface
S of the head pointing outwards, as

∫
S (r − rh) × (σ · n) ds +∫

S rh × (σ · n) ds, with the first integral being the torque with
respect to the center of the head rh, and the second integral
simplifying to rh × ∫

S (σ · n) ds = rh × Fh,visc. This adds the
extra terms γ̃h = (ε · rh) · αh and δ̃h = (ε · rh) · βh to γh and

δh, respectively, where the third rank tensor ε is the Levi-

Civita tensor with components εi jk such that (ε · r) · ω = r ×
ω. In the case of a spherical head, these extra terms become
−6πμah(ε · rh) and −8πμa3

h(ε · rh), respectively. We will

later focus on the case of a spherical head whose center lies
on the axis of a helical filament that is rotating and translating
about its axis, in which case the cross products of rh × U and
rh × ωh vanish, and hence also the components of the extra
terms γ̃h, δ̃h along the relevant axis also vanish.

We can write similar expressions for the force and torque
(with respect to the origin) acting on the filament using
Eqs. (16) and (19):

F(0) = Afil · U + Bfil · ωfil, (39)

M(0) + r(0) × F(0) = Cfil · U + Dfil · ωfil, (40)

where Afil, Bfil, n;Cfil, n;Dfil are the resistance matrices of
the filament

Afil = ζ⊥
∫ L

0
[−1 + (1 − ρ)d3d3] ds, (41)

Bfil = ζ⊥
∫ L

0

[
ε · r − (1 − ρ)d3(d3 × r)

]
ds, (42)

Cfil = ζ⊥
∫ L

0

[
ε · r − (1 − ρ)(d3 × r)d3

]
ds = Bᵀ

fil, (43)

Dfil = ζ⊥
∫ L

0
[rr − |r|21 + (1 − ρ)(d3 × r)(d3 × r)] ds

− ζr

∫ L

0
d3d3 ds, (44)

and the third rank tensor ε in Eqs. (42) and (43) is the Levi-

Civita tensor with components εi jk such that (ε · r) · ω = r ×
ω. Notice that A = Aᵀ, D = Dᵀ, B = Cᵀ, as expected for
Stokes flows [62].

FIG. 3. Two applications of the model developed in this paper.
Left: artificial motors driven by a rotating magnetic field have a
magnetized head onto which a flexible elastic filament is clamped
and used for propulsion; the head and filaments translate and rotate
together. Right: flagellar filaments of bacteria actuated by a rotary
motor embedded in the cell; the head and filaments translate together
but they rotate in opposite direction (diagram of the bacterial motor
adapted from Wikimedia Commons, Mgaetani, 2015).

In the case of artificial propellers, the head and filament
rotate at the same rate, so we may define overall resistance
matrices for the head and filament together which are just the
sums of the corresponding matrices

A = Afil + αh, (45)

B = Bfil + βh, (46)

C = Cfil + γh = Bᵀ, (47)

D = Dfil + δh. (48)

In the case of a bacterium, the rotation rate of the head
(i.e., the cell body) is different from that of the filament; in
fact, the head rotates in the opposite direction in order to
satisfy the overall torque balance. The difference in actuation
of the filament in the artificial and biological applications is
summarized in Fig. 3 and we now consider the force and
torque balance for each case separately.

F. Artificial propellers with a filament clamped
on a magnetized head

We first focus on the artificial propeller actuated by a rotat-
ing magnetic field exerting a torque on the magnetized head
on which the filament is clamped (Fig. 3, left). The internal
force acting through the cross section at s = 0, transmitted
from the filament to the head, needs to balance the viscous
hydrodynamic force Fh,visc, resisting the motion of the head.
Although the same is true for the axial torque balance on
the head, care must be taken because the bending moment
M(0), transmitted through the cross section at s = 0 from the
filament to the head is calculated with respect to the center
of the cross section of the filament while viscous moments
on the head and measured by its center. The torque balance
includes therefore the viscous hydrodynamic torque resisting
the motion of the head Mh,visc, the external magnetic moment,
both defined with respect to the origin, as well as the bending
moment with respect to the origin M(0) + r(0) × F(0).

The dynamic equations are therefore written as

F(0) + Fh,visc = 0, (49)

M(0) + r(0) × F(0) + Mh,visc + Mmag = 0. (50)
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Using the results of Sec. II E, we see that the system to be
solved in order to find U,ω in matrix form is(

A B
C D

)(
U
ω

)
= −

(
0

Mmag

)
. (51)

The leading-order kinematics are given by inverting the linear
system (

A(0) B(0)

C(0) D(0)

)(
U(0)

ω(0)

)
= −

(
0

M(0)
mag

)
. (52)

For the first-order perturbation one needs to evaluate the
perturbations to the resistance matrices

δA = ζ⊥(1 − ρ)
∫ L

0

[
d(0)

3 (δd3) + (δd3)d(0)
3

]
ds, (53)

δB = ζ⊥
∫ L

0

[
ε · δr − (1 − ρ)(δd3)

(
d(0)

3 × r(0)
)

− (1 − ρ)d(0)
3 δ(d3 × r)

]
ds, (54)

δC = (δB)ᵀ, (55)

δD = ζ⊥
∫ L

0

{
r(0)(δr) + (δr)r(0) − 2(r(0) · δr)1 (56)

+ (1 − ρ)
[
(δ(d3 × r))

(
d(0)

3 × r(0)
)

+ (
d(0)

3 × r(0)
)
(δ(d3 × r))

]}
ds

− ζr

∫ L

0

[
d(0)

3 (δd3) + (δd3)d(0)
3

]
ds. (57)

The next-order perturbation to the force and torque balance in
Eq. (52) is(
A(0) B(0)

C(0) D(0)

)(
δU
δω

)
=−

(
δA δB
δC δD

)(
U(0)

ω(0)

)
−
(

0
δMmag

)
(58)

=−
(

δA δB
δC δD

)(
A(0) B(0)

C(0) D(0)

)−1( 0
−M(0)

mag

)
−
(

0
δMmag

)
.

(59)

For a more concise notation let us use R to denote the large
resistance matrix and M to denote its inverse, the large
motility matrix

R =
(
A B
C D

)
, M = R−1. (60)

Inverting Eqs. (52) and (59) then leads to(
U(0)

ω(0)

)
= −M(0) ·

(
0

M(0)
mag

)
, (61)(

δU
δω

)
=M(0) · (δR) · M(0) ·

(
0

M(0)
mag

)

− M(0) ·
(

0
δMmag

)
. (62)

For analytically tractable calculations, we focus on long
chiral filaments that have the z axis as their long axis of rota-
tion. As a result, we can assume translation along and rotation
about the z axis, i.e., U = Uez, ω = ωez, and only consider
the axial components of the force and torque balances. For

example, the z component of A · U in Eq. (51) reduces to
just AzzU . In this one-dimensional limit, we will drop the zz
indices for notation convenience and use A to mean Azz, and
similarly for other matrix components.

The leading-order result of Eq. (61) describes a rigid
filament in its reference configuration with both translation
and rotation proportional to the external moment Mmag as

U (0) = −B
Aω(0), (63)

U (0) = B
AD − B2

Mmag, (64)

ω(0) = − A
AD − B2

Mmag, (65)

while for the next-order correction we obtain

δU = [−BD(δA) + (AD + B2)(δB) − AB(δD)]

(AD − B2)2
Mmag,

(66)

δω = [B2(δA) − 2AB(δB) + A2(δD)]

(AD − B2)2
Mmag. (67)

G. Biological locomotion with a filament rotated by a motor

In the case of swimming bacteria (Fig. 3, right), a motor
embedded in the cell wall applies a constant torque Mmot via
the short hook in order to rotate a long filament. The rotation
rate of the filament in the laboratory frame is ωfil while the
head rotates at a different rate denoted by ωh. Both the head
and the filament translate at the same velocity U.

In this case, there are three dynamic balances to consider:
the overall force balance as well as the torque balances on the
filament and the head

F(0) + Fh,visc = 0, (68)

M(0) + r(0) × F(0) + Mmot = 0, (69)

Mh,visc − Mmot = 0. (70)

Substituting in the terms of the resistance matrices we obtain

(Afil + αh) · U + Bfil · ωfil + βh · ωh = 0, (71)

Cfil · U + Dfil · ωfil + Mmot = 0, (72)

γh · U + δh · ωh − Mmot = 0. (73)

Inverting Eq. (73) for ωh and substituting in Eq. (71) leads to(
Afil+αh − βh · δ−1

h · γh

) · U+Bfil · ωfil = −βh · δ−1
h · Mmot.

(74)

The system to be solved can thus be written in matrix form as((
Afil + αh − βh · δ−1

h · γh

)
Bfil

Cfil Dfil

)
·
(

U
ωfil

)

= −
(

βh · δ−1
h Mmot

Mmot

)
, (75)
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which in the special case of a spherical head further
reduces to(

Afil + αh Bfil

Cfil Dfil

)
·
(

U
ωfil

)
= −

(
0

Mmot

)
. (76)

Notice how the system in Eq. (76) is mathematically
similar to that for the artificial motor in Eq. (51) if one
makes the substitution A → A, B → Bfil, C → Cfil, D →
Dfil, and Mmag → Mmot. Making these substitutions in the
projected one-dimensional versions of the artificial motor
equations (64)–(67) allows to obtain the corresponding ones
for a bacterium translating along, and rotating about, the axis
of its long chiral filament. The rigid result is

U (0) = −Bfil

A ω
(0)
fil , (77)(

U (0)

ω
(0)
fil

)
= Mmot

ADfil − B2
fil

(
Bfil

−A

)
, (78)

while the first correction is given by

δU = Mmot(
ADfil − B2

fil

)2

[−BfilDfil(δA)

+ (
ADfil + B2

fil

)
(δBfil ) − ABfil(δDfil )

]
, (79)

δωfil = Mmot
[
B2

fil(δA) − 2ABfil(δBfil ) + A2(δDfil )
]

(
ADfil − B2

fil

)2 · (80)

III. PROPULSION BY ELASTIC HELICAL FILAMENTS

Up to this point in the paper, we have formulated every-
thing in terms of an arbitrary shape of the filament in the
rigid limit. In this section we focus on the case of filaments
with helical geometry, as this is the most common shape in
both cases of interest discussed thus far, and we carry out
the calculations of the expressions we formulated in Sec. II.
As done in Secs. II F and II G, in order to keep the analytical
calculations tractable we will only study translation along, and
rotation about, the z axis of the helical shape, and not the full
three-dimensional (3D) motion. This is an appropriate limit to
consider if the filament is long enough to not wobble [53].

A. Calculating the deformation

1. Reference configuration: Center line geometry

We now compute the steady-state perturbation results
where we assume the actuation from the rotating magnetic
field or bacterial motor is weak enough, or the helix stiff
enough, that the helix deforms only slightly. The reference
configuration is a long, uniform, stress-free rod in the shape
of a helix of uniform pitch P0, radius R0, helix angle α0, such
that tan α0 = (2πR0/P0) and its axis is aligned with the z axis.
We define the chirality index h which takes the value ±1
according to whether the helix is right handed (RH, h = 1)
or left handed (LH, h = −1). In its reference configuration,
the center line of the helix is therefore given by

r0(s) =
[

R0 cos

(
2πs

�0

)
, hR0 sin

(
2πs

�0

)
,

P0s

�0

]
, (81)

FIG. 4. Reference configuration of a helical filament of helix
angle α0, radius R0, n number of turns, and filament radius r. The
total length along the filament is L, assumed to be much larger than
the size of the head ah.

where �0 =
√

P2
0 + 4π2R2

0 is the helix wavelength measured
along the arc length s. This geometry is illustrated in Fig. 4.

Taking the material frame {d(0)
1 , d(0)

2 , d(0)
3 } to coincide with

the Serret-Frenet frame (n, b, t) similarly to Ref. [48], we use
∂sr0(s) = t = d(0)

3 , ∂st = κ0n, and b = t × n = d(0)
2 to obtain

d(0)
3 =

(
− sin α0 sin

(
2πs

�0

)
, h sin α0 cos

(
2πs

�0

)
, cos α0

)
,

(82)

d(0)
1 =

(
− cos

(
2πs

�0

)
,−h sin

(
2πs

�0

)
, 0

)
, (83)

d(0)
2 =

(
h cos α0 sin

(
2πs

�0

)
,− cos α0 cos

(
2πs

�0

)
, h sin α0

)
,

(84)

with

κ0 = sin2 α0/R0 (85)

and, using ∂sb = −τ0n,

τ0 = h sin α0 cos α0/R0. (86)

Identifying the Serret-Frenet equations

∂s

⎛
⎜⎝

d(0)
1

d(0)
2

d(0)
3

⎞
⎟⎠ =

⎛
⎝ 0 τ0 −κ0

−τ0 0 0
κ0 0 0

⎞
⎠
⎛
⎜⎝

d(0)
1

d(0)
2

d(0)
3

⎞
⎟⎠, (87)

with ∂sd
(0)
i = D(0) × d(0)

i , gives the components of the Dar-
boux vector

D(0) =
∑

i

D(0)
i d(0)

i , (88)

D(0)
1 = 0, D(0)

2 = κ0, D(0)
3 = τ0. (89)

The material frame at various positions along the filament is
illustrated in Fig. 5, with the tangent, normal, and binormal
vectors shown in dashed-dotted red, solid green, and dashed
blue, respectively.

2. Hydrodynamic load

Actuated by the magnetic field, once steady state has been
reached, the helix rotates with uniform angular velocity ωfilez
and translates at uniform velocity Uez. While it is deformed
from its reference configuration shape due to the forces and
torques acting on it, it does undergo rigid body motion as its
shape is no longer changing. We consider the frame in which
the helix is stationary. The relative velocity between the helix
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and the fluid is given by

Vrel = Uez + ω × r(s) =
⎛
⎝−ωy(s)

ωx(s)

U

⎞
⎠ ≈

⎡
⎣−ωhR0 sin

(
2πs
�0

)
ωR0 cos

(
2πs
�0

)
U

⎤
⎦, (90)

where we approximated the shape to the reference helical one and used the rigid helix kinematics. This allows us to calculate
the leading-order force density using Eq. (8) and noting that d(0)

3 · V(0)
rel = ω

(0)
fil hR0 sin α0 + U (0) cos α0,

K(s) = ζ⊥

⎡
⎢⎣

ω
(0)
fil hR0 sin

(
2πs
�0

)
−ω

(0)
fil R0 cos

(
2πs
�0

)
−U (0)

⎤
⎥⎦+ ζ⊥(1 − ρ)

[
ω

(0)
fil hR0 sin α0 + U (0) cos α0

]
⎡
⎢⎣

− sin α0 sin
(

2πs
�0

)
h sin α0 cos

(
2πs
�0

)
cos α0

⎤
⎥⎦. (91)

Rearranging gives

K(s) ≈

⎡
⎢⎣

Ax sin
(

2πs
�0

)
−hAx cos

(
2πs
�0

)
Az

⎤
⎥⎦, (92)

where

Ax = ζ⊥
[−(1 − ρ) sin α0 cos α0U

(0) + (cos2 α0 + ρ sin2 α0)ω(0)
fil hR0

]
, (93)

Az = ζ⊥
[−(sin2 α0 + ρ cos2 α0)U (0) + (1 − ρ) sin α0 cos α0ω

(0)
fil hR0

]
. (94)

Integrating the first Kirchhoff equation ∂sF + K = 0 with the boundary condition that F(L) = 0 at the free end gives access
to the distribution of internal force as

F(s) = −
∫ s

L
ds′K(0) =

⎛
⎜⎜⎝

R0
sin α0

Ax
[

cos
(

2πs
�0

)− cos
(

2πL
�0

)]
h R0

sin α0
Ax

[
sin

(
2πs
�0

)− sin
(

2πL
�0

)]
− Az (s − L)

⎞
⎟⎟⎠.

(95)

Similarly, integrating the second Kirchhoff equation ∂sM + d3 × F + Nvisc = 0 with the free-end boundary condition M(L) = 0
allows to compute the bending moment as

M(s) = AxR0

⎡
⎢⎢⎢⎣

h cot α0
(− R0

sin α0

[
cos

(
2πs
�0

)− cos
(

2πL
�0

)]− (s − l ) sin
(

2πL
�0

))
− cot α0

( R0
sin α0

[
sin

(
2πs
�0

)− sin
(

2πL
�0

)]− (s − L) cos
(

2πL
�0

))
h
[
(s − L) − R0

sin α0
sin 2π (s−L)

�0

]

⎤
⎥⎥⎥⎦

+ AzR0

⎡
⎢⎢⎣

h
[ R0

sin α0

(
cos

(
2πs
�0

)− cos
(

2πL
�0

))+ (s − L) sin
(

2πs
�0

)]
[ R0

sin α0

(
sin

(
2πs
�0

)− sin
(

2πL
�0

))− (s − L) cos
(

2πs
�0

)]
0

⎤
⎥⎥⎦

+ ζrω cos α0

⎡
⎢⎢⎣

R0
(

cos
(

2πs
�0

)− cos
(

2πL
�0

))
hR0

(
sin

(
2πs
�0

)− sin
(

2πL
�0

))
(s − L) cos α0

⎤
⎥⎥⎦. (96)

3. Leading-order kinematics

For a stiff elastic filament, the leading-order kinematics are
given by the rigid limit. The z components of the expressions
for the total force and torque give the zz components of the
resistance matrices for a rigid helical filament:

Afil = −ζ⊥L(sin2 α0 + ρ cos2 α0), (97)

Bfil = ζ⊥hR0L(1 − ρ) sin α0 cos α0, (98)

Dfil = −ζ⊥R2
0L(cos2 α0 + ρ sin2 α0) − ζrL cos2 α0. (99)

The zz components of the overall resistance matrices for both
the helical filament and the spherical head are

A = −[ζ⊥L(sin2 α0 + ρ cos2 α0) + 6πμah], (100)

B = ζ⊥hR0L(1 − ρ) sin α0 cos α0, (101)

D = −[ζ⊥R2
0L(cos2 α0 + ρ sin2 α0) + ζrL cos2 α0 + 8πμa3

h

]
.

(102)

a. Unified approach. We now make use of the similarity
in the expressions for the kinematics and their perturbation
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FIG. 5. The material frame of the rigid helix shown at various
positions along the filament. The arrows show the tangent to the
center line (d3, dashed-dotted red), the normal (d1, solid green), and
the binormal (d2, dashed blue).

for the artificial helical motors and the swimming bacterium,
noting that the formulae for the artificial motors can be
changed into those for bacteria by replacing D by Dfil and
Mmag by Mmot. We thus write

U (0) = M

AD∗ − B2
B, (103)

ω(0) = − M

AD∗ − B2
A, (104)

where M is to be substituted by either Mmag or Mmot for
artificial motors and bacteria, respectively, and write

D∗ = − [
ζ⊥R2

0L(cos2 α0 + ρ sin2 α0)

+ ζrL cos2 α0 + 8πμa3
h1
]
, (105)

AD∗ − B2 = ρζ 2
⊥R2

0L2 + 6πμζ⊥R2
0Lah(c2 + ρs2)

+ ζrLc2[ζ⊥L(s2 + ρc2) + 6πμah]

+ 8πμa3
h[ζ⊥L(s2 + ρc2) + 6πμah]1, (106)

where we use the indicator function 1 to take the value 1 for
the case of artificial motors and 0 for bacteria. The coefficients
A and B are defined as in Eqs. (100) and (101).

b. Artificial motors. The leading-order kinematics, given
by Eqs. (103) and (104), are obtained as

U (0) = ζ⊥hR0L(1 − ρ) sin α0 cos α0Mmag

AD − B2
, (107)

ω(0) = [ζ⊥L(sin2 α0 + ρ cos2 α0) + 6πμah]Mmag

AD − B2
, (108)

where the denominator is given explicitly by

AD − B2

= ρζ 2
⊥R2

0L2 + 6πμζ⊥R2
0Lah(cos2 α0 + ρ sin2 α0)

+ 8πμζ⊥La3
h(sin2 α0 + ρ cos2 α0) + 48π2μ2a4

h

+ ζrL cos2 α0[ζ⊥L(sin2 α0 + ρ cos2 α0) + 6πμah].
(109)

We note that the factor sin α0 cos α0 present in the numer-
ator of Eq. (107) gives vanishing speeds for helix angles 0 or
π/2; this is expected by symmetry since chirality is lost in
these two limits. In particular, we note that taking the limit of
the helix angle to zero while keeping the total contour length
L and the number of turns n fixed means that the helical radius
R0 = L sin α0/(2πn) is also shrinking to zero. This limit gives
vanishing speeds since the expression for the denominator
given in Eq. (109) is nonzero due to the presence of the
terms involving the head and the viscous rotational torque
coefficient (ζr).

The leading-order results in the limit of a filament which
is slender (r 
 L) and long compared to the size of the
magnetized head (ah 
 L), and for a nonvanishing helix angle
are

U (0) = h(1 − ρ) sin α0 cos α0Mmag

ρζ⊥R0L
, (110)

ω(0) = (sin2 α0 + ρ cos2 α0)Mmag

ρζ⊥R2
0L

, (111)

with relative errors of order O(r2/L2, ah/L).
c. Bacteria. In the case of a swimming bacterium, the

leading-order kinematics, given by Eqs. (103) and (104), are(
U (0)

ω
(0)
fil

)
= Mmot

ADfil − B2
fil

×
(

ζ⊥hR0L(1 − ρ) sin α0 cos α0

ζ⊥L(sin2 α0 + ρ cos2 α0) + 6πμah

)
, (112)

where the denominator is given by

ADfil − B2
fil

= ρζ 2
⊥R2

0L2 + 6πμζ⊥R2
0Lah(cos2 α0 + ρ sin2 α0)

+ ζrL cos2 α0[ζ⊥L(sin2 α0 + ρ cos2 α0) + 6πμah].

(113)

Here also the speed vanishes in the limiting cases of he-
lix angles 0 or π/2 as expected. When the cell body is
small compared to the length of the slender flagellar filament
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ah 
 L in the case of a nonvanishing helix angle we can
further simplify Eq. (112) as

U (0) = hMmot

ζ⊥R0L

(1 − ρ) sin α0 cos α0

ρ
, (114)

ω
(0)
fil = Mmot

ζ⊥R2
0L

(sin2 α0 + ρ cos2 α0)

ρ
(115)

with relative errors of order O(r2/L2, ah/L).

4. Deformation for clamped helix

The full details of the deformation of the helix are shown in
Appendix A. Under the assumption that EI (1) = EI (2) = μJ ,

we obtain at location s/R0 � 1

EIδr(s) ≈ cos2 α0

sin α0
(AxR0)

⎛
⎜⎜⎝

(
s3

6 − L s2

2

)
cos

(
2πL
�0

)+ R0
sin α0

s2

2 sin
(

2πL
�0

)+ O
(
R2

0s
)

h
(

s3

6 − L s2

2

)
sin

(
2πL
�0

)− h R0
sin α0

s2

2 cos
(

2πL
�0

)+ O
(
R2

0s
)

0

⎞
⎟⎟⎠

+ cos α0(AzR0)

⎛
⎜⎜⎝

− R0
sin α0

s2

2 sin
(

2πL
�0

)+ O
(
R2

0s
)

h R0
sin α0

[
s2

2 cos
(

2πL
�0

)+ Ls
]+ O

(
R2

0s
)

0

⎞
⎟⎟⎠+ sin α0(AxR0)

⎛
⎜⎜⎝

− R0
sin α0

(
s2

2 − Ls
)

sin
(

2πs
�0

)+ O
(
R2

0s
)

−h R0
sin α0

(
s2

2 − Ls
)

cos
(

2πs
�0

)+ O
(
R2

0s
)

0

⎞
⎟⎟⎠

− R0

⎛
⎝0

0
1

⎞
⎠{( s2

2
− Ls

)[
(AxR0) cot α0 cos

2π (s − L)

�0
+ (AzR0)

]
+ O

(
R2

0s
)}

+ ζrω
(0)
fil R0 cos α0

⎛
⎜⎜⎝

−h cos α0
[

s2

2

(
sin

(
2πL
�0

)+ sin
(

2πs
�0

))− Ls sin
(

2πs
�0

)]+ O(R0s)

cos α0
[

s2

2

(
cos

(
2πL
�0

)+ cos
(

2πs
�0

))− Ls cos
(

2πs
�0

)]+ O(R0s)

−hR0s sin 2π (s−L)
�0

+ O
(
R2

0

)
⎞
⎟⎟⎠. (116)

The z component of the deformation in Eq. (116) giv-
ing the extension or compression is in agreement with the
results obtained in Ref. [48]. In addition, the nonzero x, y
components of the deformation lead to bending of the he-
lical axis. Such bending of the axis was observed in the
numerical results of Ref. [46], but its origin remained un-
clear. We now discuss and interpret these two aspects of the
deformation.

5. Compression or extension?

The total amount of extension or compression is given by
the z component of the deformation evaluated at s = L:

δz(L) = ζ⊥R2
0

EI

[− U (0) + (
ω

(0)
fil hR0 cot α0

)]
×
[

L2

2
−
(

R0

sin α0

)
L sin

(
2πL

�0

)

+
(

R0

sin α0

)2(
1 − cos

(
2πL

�0

))]
, (117)

= ζ⊥R2
0L2

2EI

[− U (0) + (
ω

(0)
fil hR0

)
cot α0

][
1+ O

(
R0

L

)]
.

(118)

This recovers exactly the result of Ref. [48] which inves-
tigated the compression or extension of a clamped helical
filament subject to a uniform translating flow or a rotating
flow. The contribution from the axial flow is the motion of
the microswimmer propelling with a positive axial velocity

U (0) > 0, which is equivalent to the swimmer being fixed
and subject to a flow −U (0)ez. This leads to compression,
regardless of the helix handedness, as expected from intuition.
In contrast, the part due to the rotational flow predicts that
a helix rotating in the positive sense about the z axis (ω0 >

0) will be extended if it is right handed (RH, h > 0) and
compressed if left handed (LH, h < 0).

In the cases we are investigating, the kinematics are set
by the force and torque balances and U (0) and ω

(0)
fil are not

independent. Instead, both are proportional to the actuating
torque, as per Eqs. (103) and (104). A helix actuated by
a positive torque, M > 0, will rotate in the positive sense
(ω(0)

fil > 0) regardless of its handedness, but will translate with
a positive velocity along the z axis if RH and negative if LH.
The effect of the translation is then that a RH helix (h > 0)
actuated with a positive magnetic torque will have a positive
velocity U (0) > 0, and hence be compressed, whereas a LH
helix will move in the opposite direction U (0) < 0, and will
thus be extended. In contrast, the effect of rotation is the
opposite to that of translation. Helices of both handedness will
rotate in the positive sense, and a RH helix is extended as it
is experiencing a rotating flow in the direction that “uncoils”
it, whereas a LH helix is compressed. As a result, translation
and rotation have opposite effects in terms of extension or
compression.

Substituting Eqs. (103) and (104) in Eq. (118) gives

δz(L) = hζ⊥R3
0L2M(ρζ⊥L + 6πμah) cot α0

2EI (AD∗ − B2)
G, (119)
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where

G = 1 − 2

(
R0

L sin α0

)
sin

(
2πL

�0

)
+ 2

(
R0

L sin α0

)2(
1 − cos

(
2πL

�0

))
, (120)

and (AD∗ − B2) in the denominator is given in Eq. (106). Under the long and slender approximations and for small head, this
simplifies to

δz(L) = hMR0L cot α0

2EI
· (121)

As a result, the effect of rotation dominates and a RH helix (h > 0) is always extended whereas a LH helix is compressed.

6. Bending of the helix axis

Far from the clamped end, i.e., for s ∼ L � R0, the deformation is given by

EIδr(s) ≈ cos2 α0

sin α0
(AxR0)

⎛
⎜⎜⎜⎝
(

s3

6 − L s2

2

)
cos

(
2πL
�0

)
h
(

s3

6 − L s2

2

)
sin

(
2πL
�0

)
0

⎞
⎟⎟⎟⎠, (122)

with relative errors of order O(R0/L, r/L). We can see from Eq. (122) that the helix axis bends parallel to the direction
(cos ( 2πL

�0
), h sin ( 2πL

�0
), 0), i.e., the xy projection of the position vector of the free end point r0(s = L) in the reference

configuration. In order to physically interpret this result, we evaluate the forces and torques acting at the clamped end of the
filament:

F(0) =
∫ L

0
K(s) ds =

⎛
⎜⎜⎜⎝

R0
sin α0

Ax
(
1 − cos

(
2πL
�0

))
−h R0

sin α0
Ax sin

(
2πL
�0

)
AzL

⎞
⎟⎟⎟⎠ (123)

and

M(0) + r(0) × F(0) = −h(AxR0) cot α0

⎡
⎢⎢⎢⎣
( R0

sin α0

[
1 − cos

(
2πL
�0

)]− L sin
(

2πL
�0

))
h
(− R0

sin α0
sin

(
2πL
�0

)+ L cos
(

2πL
�0

))
L tan α0

⎤
⎥⎥⎥⎦+ (AzR0)

⎡
⎢⎢⎢⎣

h
[ R0

sin α0

(
1 − cos

(
2πL
�0

))]
[− R0

sin α0
sin

(
2πL
�0

)]
0

⎤
⎥⎥⎥⎦.

(124)

Hence, for R0/L 
 1,

M(0) + r(0) × F(0)

= (AxR0)L cot α0

⎡
⎢⎢⎣
⎛
⎜⎜⎝

h sin
(

2πL
�0

)
− cos

(
2πL
�0

)
−h tan α0

⎞
⎟⎟⎠+ O

(
R0

L

)⎤⎥⎥⎦. (125)

We can now explain the bending of the axis of the helix us-
ing an “effective” rod analogy, as has been used in a variety of
settings [50,63–65]. Consider an effective rod around which
the helix is wound, following the shape of the helix axis. This
is a straight rod clamped at the origin and parallel with the z
axis in its reference configuration, so that the material frame
of the effective rod is

(
d̃(0)

1 , d̃(0)
2 , d̃(0)

3

) = (ex, ey, ez ). (126)

A bending torque M̃ = Md̃(0)
1 , with M = (AxR0) cot α0L, ex-

erted at the clamped end of the rod will lead to a perturbation

to the Darboux vector of the rod with only nonzero component

δD1 = M
EI

. (127)

The resulting infinitesimal rotation is given by

δφ =
∫ s

0

M
EI

d̃(0)
1 ds′ = Ms

EI
d̃(0)

1 . (128)

Calculating the perturbations to the material frame of the rod
as

δd̃i = δφ × d̃(0)
i = Ms

EI
d̃(0)

1 × d̃(0)
i , (129)

we find

δd̃1 = 0, δd̃2 = Ms

EI
d̃(0)

3 , δd̃3 = −Ms

EI
d̃(0)

2 . (130)

The perturbed tangent vector is given by

d̃3 = d̃(0)
3 + δd̃3 = −M

EI
sd̃(0)

2 + d̃(0)
3 , (131)
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FIG. 6. Bending of the helix due to its translation and rotation.
The effective rod in the reference configuration is shown in the blue
dashed line while the bent helix is shown in the red solid line.

which gives the deformed shape as

r̃(s) =
∫ s

0
d̃3 = −M

EI

s2

2
d̃(0)

2 + sd̃(0)
3 . (132)

This has the same quadratic bending away from the z axis as
the helix axis in Eq. (122) and captures the bending of the axis
in the direction perpendicular to the bending torque exerted at
its clamped end and also the quadratic terms in Eq. (122) for
s such that (R0 
 s 
 L). This bending of the helix axis is
illustrated in Fig. 6.

B. Feedback of the deformation on the kinematics

1. Scalings

Having computed the deformation of the helical filament,
we now proceed to investigate its feedback on the locomotion
kinematics. Since we assumed that the helix was long enough
so as not to wobble, we may take the velocity and rotation
rate to be axial. We also assume that the perturbed velocity
and rotation rate are along the long axis. Although there are
nonaxial deformations due to the bending of the axis, they
average out to zero upon a complete rotation of the swimmer.

In order to find the expected order of magnitudes for
the perturbed quantities, we consider the following scaling
arguments. From Eqs. (93) and (94) we obtain the scalings
Ax, Az ∼ ζ⊥U (0) ∼ ζ⊥ω

(0)
fil R0. The leading-order kinematics in

Eq. (103) give U (0) ∼ hM/ζ⊥R0L, where M stands for Mmag

or Mmot for artificial motors and bacteria, respectively. The
small rotations of the material frame due to its deformation
defined by Eq. (20) scale as δφ ∼ P , where P is a small
dimensionless number

P ∼ viscous

elastic
∼ AxR0L2

EI
∼ M

EI/L
· (133)

Such scaling can be seen in Eq. (A1) of Appendix A for
example. Thus, we have δd3 ∼ P and the deformation scales
as δr ∼ PL. We note that the bending of the axis is quantified
by an angle β between the end of the bent axis and the z axis,
where tan β ∼ |δrxy proj|/L cos α0, hence, β ∼ P . The effect of
the bending of the axis to the kinematics will therefore be an
O(P ) velocity component perpendicular to the z axis that, due
to rotation of the swimmer, will average to 0 at O(P ), and
similarly for ω

(0)
fil . It is thus appropriate to project the force

and torque balances along the z axis and assume that δU and
δω are aligned with the z axis. As δd3 ∼ P , from Eqs. (66),
(67), (79), and (80) we therefore expect δU and δω to be of
order O(P ).

2. Perturbing the resistance matrices

The leading-order kinematics in P are given in Sec. III A 3. In this section we perform an asymptotic analysis for the next-
order kinematics, i.e., the feedback of the deformation on the kinematics. We start by calculating the projections along the z axis
of the perturbations to the resistance matrices

δAzz = 2ζ⊥(1 − ρ) cos α0

∫ L

0
(δd3)z ds, (134)

δBzz = ζ⊥(1 − ρ)

{
hR0 sin α0

∫ L

0
(δd3)z ds − cos α0

∫ L

0
[δ(d3 × r)]z ds

}
, (135)

δCzz = δBzz, (136)

δDzz = 2ζ⊥

{
cos α0

∫ L

0
s(δr)z ds −

∫ L

0
(r · δr) ds − (1 − ρ)hR0 sin α0

∫ L

0
[δ(d3 × r)]z ds

}
− 2ζr cos α0

∫ L

0
(δd3)z ds. (137)

We may write these results as linear combinations of four integrals Ji (1 � i � 4):

δAzz = 2ζ⊥(1 − ρ) cos α0J1, (138)

δBzz = ζ⊥(1 − ρ){hR0 sin α0J1 − cos α0J2}, (139)
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δCzz = δBzz, (140)

δDzz = 2ζ⊥{cos α0J3 − J4 − (1 − ρ)hR0 sin α0J2} − 2ζr cos α0J1, (141)

where the four integrals are given by

J1 =
∫ L

0
(δd3)z ds, (142)

J2 =
∫ L

0
[δ(d3 × r)]z ds = ez ·

∫ L

0

[
δd3 × r(0) + d(0)

3 × δr
]

ds, (143)

J3 =
∫ L

0
s(δr)z ds, (144)

J4 =
∫ L

0
(r(0) · δr) ds, (145)

which depend on the deformation integrated along the entire length of the helix. The details of this long calculation are given
in Appendices B and C where the cases of either clamped or free s = 0 ends are addressed, as well as the effects of the viscous
rotational torque.

In the case of a clamped end at s = 0 (�,�r0 = 0), the perturbations to the resistance matrices projected along the z axis are

δAclamped
zz = ζ⊥(1 − ρ) cos α0

1

EI

[
R2

0L2 + O
(
R3

0L
)]

[Ax cot α0 + Az], (146)

δBclamped
zz = ζ⊥(1 − ρ){hR0 sin α0J1 − cos α0J2}

= ζ⊥(1 − ρ)
hR3

0L2

2EI

{
Ax cos α0

[
1 −

(
cot2 α0 − cos

(
2L

R0/ sin α0

))]

+ Az sin α0

[
1 − cot2 α0

(
3

2
+ cos

(
2L

R0/ sin α0

))] }
+ O

(
R4

0LAx,z

EI

)
, (147)

δCclamped
zz = δBclamped

zz , (148)

δDclamped
zz = 2ζ⊥[cos α0J3 − J4 − (1 − ρ)hR0 sin α0J2]

= 2ζ⊥
R4

0L2

EI

{
cos α0

sin2 α0
Az

[
1 + cos

(
2L

R0/ sin α0

)]
− (1 − ρ) sin α0

[
0.5Ax

(
cot2 α0 − cos

(
2L

R0/ sin α0

))

+ Az cot α0

(
3

2
+ cos

(
2L

R0/ sin α0

)) ] }
+ O

(
R5

0LAx,z

EI

)
. (149)

Notably, the viscous rotational torque Nvisc does not contribute to any of the perturbations of the resistance matrices.

3. Unified approach

We once again invoke the unified approach of Sec. III A 3. The leading-order kinematics are given by Eqs. (103) and (104)
and the perturbation to the swimming velocity is given by

δU = M

(AD∗ − B2)2
[−BD∗(δA) + (AD∗ + B2)(δB) − AB(δD)], (150)

where M stands for either Mmag or Mmot for artificial motors and bacteria, respectively, and where A, B, and D∗ are given by
Eqs. (100), (101), and (105), respectively. The denominator AD∗ − B2 is given by Eq. (106). After substituting in the values of
the resistance matrices, the quantities Ax, Az become

Ax = hR0ζ⊥M

AD∗ − B2
[ρζ⊥L + (cos2 α0 + ρ sin2 α0)6πμah], (151)

Az = hR0ζ⊥M

AD∗ − B2
6πμah(1 − ρ) sin α0 cos α0, (152)

Ax cot α0 + Az = hR0ζ⊥M

AD∗ − B2
[ρζ⊥L + 6πμah] cot α0. (153)
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Considering only the clamped contribution, the perturbations to the resistance matrices in Eqs. (146)–(149) which are linear in
Ax and Az can be calculated (with details shown in Appendix D). The perturbation δU is finally obtained as

δU = R2
0L2ζ 2

⊥M2

EI (AD∗ − B2)3
(1 − ρ)R2

0Q, (154)

where AD∗ − B2 is given by Eq. (106) and

Q =ζ⊥L(1 − ρ)c3
[
ζ⊥R2

0L(c2 + ρs2) + ζrLc2 + 8πμa3
h1
]
[ρζ⊥L + 6πμah]

+ 1

2

⎛
⎜⎜⎜⎝

[ρ + 2(1 − ρ)2s2c2]ζ 2
⊥R2

0L2

+6πμζ⊥R2
0Lah(c2 + ρs2)

+ζrLc2[ζ⊥L(s2 + ρc2) + 6πμah]

+8πμa3
h1[ζ⊥L(s2 + ρc2) + 6πμah]

⎞
⎟⎟⎟⎠
(

[ρζ⊥L + (c2 + ρs2)6πμah]c[1 − (cot2 α0 − cos(4πn))]

+6πμah(1 − ρ)s2c
[
1 − cot2 α0

(
3
2 + cos(4πn)

)] )

− 2ζ⊥LR2
0(1 − ρ)sc[ζ⊥L(s2 + ρc2) + 6πμah]

⎛
⎜⎝ − c2

s 6πμah[1 + cos(4πn)]

+0.5[ρζ⊥L + (c2 + ρs2)6πμah]s(cot2 α0 − cos(4πn))

+6πμah(1 − ρ)sc2
(

3
2 + cos(4πn)

)
⎞
⎟⎠, (155)

with relative errors of order O(R0/L) and where we have used
the shorthand notation s ≡ sin α0 and c ≡ cos α0. The total
velocity Utot is simply Utot = U (0) + δU . The details of the
calculation are given in Appendix D.

We now proceed by considering the applications of this
unified approach to artificial motors and bacteria separately.

4. Artificial motors

A stiff helical microswimmer. Typical profiles of the dimen-
sionless velocities U (0)/Û in the reference configuration and
Utot/Û after the deformation (left) and the perturbation δU/Û
due to the deformation (right) are shown in Fig. 7 as a function
of the reference helix angle α0 (the choice of speed scale Û is
given below). These results are obtained using Eqs. (103) and
(150), respectively, using the full expressions for the resis-

tance matrices (within the limit R0/L 
 1), for a RH artificial
bacterial flagellum with the choice P ≡ MmagL/EI = 0.035.
For the nondimensionalization we use the length scale L,
timescale T = μL3/Mmag, and force scale μL2/T = Mmag/L
(or, equivalently, mass scale μLT = μ2L4/Mmag), so that
the scale for the speed is Û = Mmag/μL2. We use values for
the geometrical parameters similar in order of magnitude to
those of the rigid “artificial bacterial flagellum” of Ref. [22]
with the choice n = 8 for the number of turns so that we can
satisfy the requirement that R0/L 
 1. As such, our model
microswimmer has ah = 2 μm, r = 50 nm, � = 5 μm,
n = 8, L = 40 μm, Mmag = 4.3 × 10−17 Nm and is moving
in water with dynamic viscosity μ = 10−3 Pas. As a result,
the scale for speed Û takes the value of 27 μm s−1. We set

FIG. 7. Left: dimensionless speeds in the reference configuration U (0)/Û and after the deformation Utot/Û as a function of the reference
helix angle α0 obtained from Eq. (103). Right: perturbation in velocity δU/Û as a function of α0 from Eq. (150). In all cases, we use
the full expressions for the resistance matrices (within the limit R0/L 
 1) for a RH artificial bacterial flagellum with P = 0.0350. The
microswimmer has the parameters ah = 2 μm, r = 50 nm, � = 5 μm, n = 8, L = 40 μm, Mmag = 4.3 × 10−17 Nm, and E = 1010 Pa and
is moving in water with dynamic viscosity μ = 10−3 Pas. The sign of the perturbation δÛ transitions at an angle α0 ≈ 0.60 rad (34.4◦). The
nondimensionalization uses the velocity scale Û = Mmag/μL2, that takes the value of 27 μm s−1.
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the Young’s modulus to be E = 1010 Pa, as an indicative
example of a stiff helical microswimmer, according to the
“equivalent” Young’s modulus of nanowire filaments of
existing microswimmer designs [23]. This value is also
relevant for ZnO nanohelices [66].

Importantly, the perturbation in velocity δU changes sign
at an angle α∗

0 ≈ 0.60 rad (34.4◦), being negative for smaller
values of α0 and positive for larger ones. Note that inside the
resistance matrices used in Eq. (150) we have kept all terms
involving ah and ζr , and have not imposed the ratio ah/L to be
small.

Approximation. We proceed by further approximating the
expression for Q in Eq. (155), assuming that both the helical
radius and the head are negligible in size compared to the total
contour length of the helix, such that R0 and ah satisfy the
limits

R0/L, ah/L, a3
h/R2

0L, a4
h/R2

0L2 
 1. (156)

The resulting expression for δU in Eq. (154) simplifies to

δU = ζ 5
⊥M2

magR6
0L5ρ(1 − ρ)

EI (AD − B2)3
�(α0), (157)

where AD − B2 is given by Eq. (109) and

�(α0) = cos α0

[
−ρ cos(2α0)

2 sin2 α0

+ [0.5ρ + (1 − ρ) sin2 α0] cos(4πn)

]
. (158)

When reducing the ratios R0/L and ah/L, for nonvanishing
helix angles for which the ratio R0/L is kept small, the
profile of δU vs α0 that we obtain from the full expression
of Eq. (150) converges to the theoretical approximation of
Eq. (157). Indeed, if we keep all parameter values as above
and only decrease the size of the head, the angle α∗

0 at which
δU vanishes converges to 33.1◦, which is well approximated
by the root of �(α0) in Eq. (158) equal to 32.8◦.

For nonvanishing α0, R0,

δU = M2
mag

ζ⊥EIL

(1 − ρ)

ρ2
�(α0), (159)

with a relative error of order of magnitude O(R0/L,

ah/L, a3
h/R3

0L, a4
h/R2

0L2), so that the corrected velocity is

Utot =U (0) + δU = hMmag

ζ⊥R0L

(1 − ρ)

ρ

×
[

sin α0 cos α0 + εh

ρ
�(α0)

]
, (160)

with the dimensionless parameter ε defined as

ε = Mmag

EI/R0
= P R0

L
, (161)

where P is the parameter defined in Sec. III B 1. We therefore
see that a stiff elastic helix has a quadratic perturbation in
Mmag to the classical linear relation between U and Mmag

for a rigid helix. This is of course valid for a weak enough
actuation, or a stiff enough helix, that ε is kept small.

In our numerical results, ζ⊥ and ρ are given by Eqs. (9)
and (10). For the purpose of simplicity and to allow physical

interpretation, we can further assume an integer number of
turns for the helix and take the approximate value ρ = 0.5 for
the ratio of drag coefficients, so that the expressions for δU
and the corrected velocity Utot further simplify to

δU = M2
mag

ζ⊥EIL

cos α0

2 sin2 α0
(2 sin4 α0 + 3 sin2 α0 − 1), (162)

Utot = hMmag

ζ⊥R0L

[
sin α0 cos α0

+ εh
cos α0

2 sin2 α0
(2 sin4 α0 + 3 sin2 α0 − 1)

]
. (163)

Feedback to the speed of propulsion. We may now in-
vestigate whether the small amount of elasticity speeds up
or slows down a stiff elastic helical filament compared to
its rigid kinematics, which is governed by the sign of δU .
We first note that the sign of U (0) is opposite for right-
handed (RH) and left-handed (LH) helices, as shown by the
presence of the chirality index h in its expression. In contrast,
the expression for δU in Eqs. (154) and (155) does not
involve the value of h. Thus, if all other geometrical param-
eters are kept constant, the magnitude of the speed for a stiff
helix, |U (0) + δU |, will be increased or decreased according
to the handedness of the helix. In addition, as discussed
above, the sign of δU changes at a critical angle α∗

0 (with
a value which depends on the geometry). The case of our
typical stiff helical swimmer above had α∗

0 = 34.4◦. For a
microswimmer with a smaller head but otherwise the same ge-
ometrical parameters, we obtained instead α∗

0 = 33.1◦. Thus,
the perturbation to the speed changes sign according to a
subtle interplay between the handedness and the reference
helix angle.

We can interpret the change in the sign of δU by approxi-
mating the new, steady-state, perturbed shape by an effective
helix over which the extension or compression has been
uniformly distributed. As illustrated in the top panel of Fig. 8,
the extension (or compression) of a RH (or LH) helix can
be interpreted as a decrease (or increase) in the helix angle.
This provides us with an intuitive reasoning for the sign of the
perturbation to the speed.

Consider the rigid speed profile as a function of the refer-
ence helix angle. As illustrated in the bottom panel of Fig. 8, if
we start at an angle greater than the optimum, a RH helix that
extends will reduce its effective helix angle, thereby moving
toward the maximum of the speed profile and as a result will
speed up. In contrast, a LH helix with a reference helix angle
greater than the optimum will move away from the optimum,
as its effective helix angle increases due to the compression.
If we start at an angle less than the optimum, a RH helix that
extends will reduce its effective helix angle, thereby moving
away from the maximum of the speed profile, and will thus
slow down. In contrast, a LH helix with a reference helix
angle less than the optimum will move toward the maximum
and speed up, as its effective helix angle increases due to
the compression. We think that the quantitative discrepancy
between the angle for which δU vanishes and the optimum
value of the uniform rigid helix velocity profile is likely due
to the nonuniformity of the extension or compression along
the filament and the bending of the helix axis.
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FIG. 8. Understanding the feedback of the deformation on the
speed of a stiff, elastic helix. Top panel: the extension (resp. com-
pression) of a right- (resp. left-) handed helix leads to decrease (resp.
increase) in the helix angle. Bottom panel: if the value of the original
helix angle is greater than the optimal angle maximizing the speed
profile of a rigid helix as a function of the helix angle, then the shift
in the effective helix angle due to extension (or compression) will
give rise to an increase (resp. a decrease) in the speed for a RH (resp.
LH) helix. Similarly, if the value of the original helix angle is less
than the optimal angle maximizing the speed profile, then the shift
in the effective helix angle due to extension (resp. compression) will
give rise to a decrease (resp. increase) in the speed for a RH (resp.
LH) helix.

5. Bacteria

Swimming bacteria will have, in principle, a contribution
in their speed from the values of �,�r0 [in Eq. (34)] as the
end of the flagellar filament connected to the hook. This is due
to the flexibility of the hook at the base of the flagellum. In
fact, for some single-flagellated bacteria such as V. alginolyti-
cus, the buckling of the hook after the transition from a back-

ward to a forward swimming period is a mechanism to change
the angle between the cell body and the flagellar filament axis
[67]. Our study focuses, however, on the swimming along
straight lines and hence for our purposes we will neglect buck-
ling of the hook and will assume that both � and �r0 are zero.

In the case of bacteria, we can make use of Eqs. (154) and
(155), where the indicator function now takes the value 0 and
thus the terms multiplied by it are removed. Typical profiles
of the dimensionless velocities in the reference configuration
U (0)/Û and after the deformation Utot/Û are shown in Fig. 9
(left) as a function of the reference helix angle α0 for a RH
bacterial flagellar filament with P ≡ MmotL/EI = 0.19 and
using the full expressions for the resistance matrices (within
the limit R0/L 
 1) [Eqs. (112)]. We also plot in Fig. 9 (right)
the perturbation in swimming speed due to the deformation
δU/Û as a function of α0. Here, the nondimensionalization
used the velocity scale Û = Mmot/μL2. The parameter val-
ues are chosen as the typical values for Salmonella bacte-
ria given in Refs. [68,69] (and references therein), so that
we have ah = 1 μm, r = 11.5 nm, � = 2.3 μm, n = 6, L =
13.8 μm, Mmot = 2 × 10−18 Nm and take the viscosity to be
that of water, μ = 10−3 Pas. The scale for speed Û takes as a
result the value of 10.5 μm s−1. Further, we take the Young’s
modulus to be E = 1.04 × 1010 Pa as in Ref. [70] so that the
bending stiffness is EI = 1.43 × 10−22 Nm2. We obtain as a
result that the perturbation in swimming speed δÛ transitions
in sign at the angle α0 ≈ 0.69 rad (39.5◦), being negative for
smaller values of α0 and positive for larger ones.

Importantly, the reported values for the elasticity of flag-
ellar filaments in the literature show large variations, which
naturally leads to a wide range of values for the bending
stiffness EI [48]. Trachtenberg and Hammel reported values
of the Young’s modulus ranging from E = 1.04 × 1010 Pa
to E = 1.77 × 1011 Pa for a variety of filament types [70],
which correspond to bending stiffness of EI = 10−22 Nm2

and 2 × 10−21 Nm2, and with the parameter values above,
the dimensionless number P would range from P = 0.19
to 0.011. Other reported values of the filament elasticity

FIG. 9. Left: dimensionless speeds in the reference configuration U (0)/Û and after the deformation Utot/Û as a function of the reference
helix angle α0 obtained from Eq. (112). Right: perturbation in velocity δU/Û as a function of α0 from Eq. (79). In all cases, we use the full
expressions for the resistance matrices (within the limit R0/L 
 1), for a RH bacterial flagellar filament with P ≡ MmotL/EI = 0.19. The
bacterium has parameters ah = 1 μm = 10−6 m, r = 11.5 nm = 1.15 × 10−8 m, � = 2.3 μm, n = 6, L = 13.8 μm, Mmot = 2 × 10−18 Nm,
and Young’s modulus E = 1.04 × 1010 Pa so that its bending stiffness is EI = 1.43 × 10−22 Nm2 and is moving in water with dynamic
viscosity μ = 10−3 Pa s. The sign of the perturbation δÛ transitions at an angle α0 ≈ 0.69 rad (39.5◦). The nondimensionalization uses the
velocity scale Û = Mmot/μL2, that takes the value of 1.05 × 10−5 ms−1 = 10.5 μm s−1.
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include (2 − 4) × 10−24 Nm2 for the bending stiffness EI of
Salmonella typhimurium filaments [71] and 1010 N/m2 for
the shear modulus of S. typhimurium flagellar filament which
gives the value μSJ = 10−22 Nm2 for the twist modulus of
a filament of radius of 10 nm [43]. Takano et al. estimated
EI = 10−24 Nm2 for Vibrio alginolyticus [46] whereas Kim
and Powers estimated EI = 10−24 Nm2 for S. typhimurium
[48] by reinterpreting the data of Hoshikawa and Kamiya [43].

Our analysis mainly focuses on the asymptotics and feed-
back of the deformation to the kinematics and, to first order,
the perturbation δU scales linearly with 1/EI . In particular,
we note that within the “stiff” filament regime and first-order
analysis presented here, the value of the reference angle α0 for
which the sign of δU changes is independent of the Young’s
modulus of the filament.

The resulting expression for δU in Eq. (154) simplifies to

δU = ζ 5
⊥M2

motR
6
0L5ρ(1 − ρ)

EI
(
ADfil − B2

fil

)3 �(α0), (164)

where ADfil − B2
fil and �(α0) are given by Eqs. (113) and

(158), respectively. For nonvanishing α0, R0, in the limit of
small cell body and helical radius compared to the length of
the flagellar filament, the expression for δU reduces to

δU = M2
mot

ζ⊥EIL

(1 − ρ)

ρ2
�(α0), (165)

with a relative error of order of magnitude
O(R0/L, ah/L, a3

h/R3
0L, a4

h/R2
0L2), similarly to the result for

artificial motors in Eq. (162). Thus, similar conclusions can
be drawn as for the case of artificial motors.

IV. DISCUSSION

In this paper, motivated by the locomotion of bacteria and
artificial microswimmers, we have developed the mathemati-
cal framework to study the steady-state motion of individual,
stiff elastic filaments attached on a rigid body and propelling
in a viscous fluid. The richness of this fluid-structure interac-
tion problem comes from the hydrodynamic loads that induce
deformation and whose integrated effect along the whole
deformed shape leads to perturbed swimming kinematics.

Our analytical approach consisted in first integrating the
hydrodynamic load along the initial reference configuration
geometry and obtaining the induced deformation via the linear
constitutive equation for the bending moment given by the
classical Kirchhoff equations. For a helical geometry, the axis
bends and the helix is extended or compressed if it is right
or left handed, respectively. Our mathematical expressions
describe the full three-dimensional deformation and an effec-
tive rod analogy provides an explanation for the bending of
the helix axis whose origin was previously unclear. Imposing
the force and torque balance along the new, deformed shape
linearly relates the velocity perturbation to the deformation
integrated along the entire length of the filament. As a result,
the propulsion speed acquires a quadratic correction in the
actuation.

Our analytical expression for the correction to the speed
for stiff elastic helical filaments changes sign according to a
subtle interplay between the handedness and reference helix
angle. Approximating the steady-state, perturbed shape as an
“effective” uniform helix, the extension (or compression) of
a right- (or left-) handed helix can be rationalized as due to a
decrease (or increase) in the helix angle. This interpretation
provides us with an intuitive reasoning for the sign of the
speed perturbation. If the value of the original helix angle in
the reference configuration is greater than the optimal angle
maximizing the speed profile of a rigid helix as a function of
the helix angle, then the shift in the effective helix angle due
to extension (or compression) will give rise to increased (or
decreased) speeds depending on the handedness of the helix.

We note that our mathematical formulation allows to tackle
any slender filament shape, and need not be limited to helices.
Furthermore, one could include in it a model for the activity
of the filament. A natural extension of this type would address
magnetized tails such as the recently manufactured hydrogels
with embedded magnetic nanoparticles which not only guide
self-folding during fabrication [72], but could also display
an interesting nonlinear relationship between the external
actuation and the propulsion speed.
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APPENDIX A: CALCULATION OF THE DEFORMATION FOR HELICAL FILAMENTS

The small rotations of the material frame due to its deformation [defined by Eq. (20)] are calculated as the integral of the
bending moment [given in Eq. (96)], in accordance to Eq. (31):

EI (δφ)(s) = AxR0

⎡
⎢⎢⎢⎣

−h cot α0
[( R0

sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos
(

2πL
�0

)+ (s2/2 − Ls) sin
(

2πL
�0

)]
cot α0

[( R0
sin α0

)2(
cos

(
2πs
�0

)− 1
)+ R0

sin α0
s sin

(
2πL
�0

)+ (s2/2 − Ls) cos
(

2πL
�0

)]
h
[
(s2/2 − Ls) + ( R0

sin α0

)2(
cos 2π (s−L)

�0
− cos

(
2πL
�0

))]

⎤
⎥⎥⎥⎦

+AzR0

⎡
⎢⎢⎣

h
[
2
( R0

sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos
(

2πL
�0

)− R0
sin α0

[
(s − L) cos

(
2πs
�0

)+ L
]]

−2
( R0

sin α0

)2(
cos

(
2πs
�0

)− 1
)− R0

sin α0
s sin

(
2πL
�0

)− R0
sin α0

(s − L) sin
(

2πs
�0

)
0

⎤
⎥⎥⎦
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+ ζrω cos α0

⎡
⎢⎢⎣

R0
[ R0

sin α0
sin

(
2πs
�0

)− s cos
(

2πL
�0

)]
hR0

[− R0
sin α0

(
cos

(
2πs
�0

)− 1
)− s sin

(
2πL
�0

)]
(s2/2 − Ls) cos α0

⎤
⎥⎥⎦. (A1)

The perturbation to the tangent vector is given by Eq. (20) as δd3 = δφ × d(0)
3 , which gives

EIδd3 = cos α0(AxR0)

⎡
⎢⎢⎣

cot α0
[( R0

sin α0

)2(
cos

(
2πs
�0

)− 1
)+ R0

sin α0
s sin

(
2πL
�0

)+ (s2/2 − Ls) cos
(

2πL
�0

)]
h cot α0

[( R0
sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos
(

2πL
�0

)+ (s2/2 − Ls) sin
(

2πL
�0

)]
0

⎤
⎥⎥⎦

+ cos α0(AzR0)

⎡
⎢⎢⎣

−2
( R0

sin α0

)2(
cos

(
2πs
�0

)− 1
)− R0

sin α0
s sin

(
2πL
�0

)− R0
sin α0

(s − L) sin
(

2πs
�0

)
−h

[
2
( R0

sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos
(

2πL
�0

)− R0
sin α0

[
(s − L) cos

(
2πs
�0

)+ L
]]

0

⎤
⎥⎥⎦

+ sin α0(AxR0)

⎡
⎢⎢⎣

−{(s2/2 − Ls) cos
(

2πs
�0

)+ ( R0
sin α0

)2[
cos

(
2πs
�0

)
cos 2π (s−L)

�0
− cos

(
2πs
�0

)
cos

(
2πL
�0

)]}
h
{
(s2/2 − Ls) sin

(
2πs
�0

)+ ( R0
sin α0

)2[
sin

(
2πs
�0

)
cos 2π (s−L)

�0
− sin

(
2πs
�0

)
cos

(
2πL
�0

)]}
0

⎤
⎥⎥⎦

+ sin α0

⎛
⎜⎝

0

0

1

⎞
⎟⎠
⎡
⎣−(AxR0) cot α0

[( R0
sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos 2π (s−L)
�0

− (s2/2 − Ls) sin 2π (s−L)
�0

]
+(AzR0)

[
2
( R0

sin α0

)2
sin

(
2πs
�0

)− R0
sin α0

s cos 2π (s−L)
�0

− R0
sin α0

[
s − L + L cos

(
2πs
�0

)]]
⎤
⎦

+ ζrω sin α0 cos α0

⎡
⎢⎢⎣

h
[
R0 cot α0

(− R0
sin α0

(
cos

(
2πs
�0

)− 1
)− s sin

(
2πL
�0

))− cos α0(s2/2 − Ls) cos
(

2πs
�0

)]
[−R0 cot α0

( R0
sin α0

sin
(

2πs
�0

)− s cos
(

2πL
�0

))− cos α0(s2/2 − Ls) sin
(

2πs
�0

)]
hR0

[ R0
sin α0

sin
(

2πs
�0

)− s cos 2π (s−L)
�0

]
⎤
⎥⎥⎦. (A2)

The deformation of the helix is given by Eq. (33), as the integral of the perturbation to the tangent vector.
Integrating the expression for δd3(s) in Eq. (A2) gives

EIδr(s) = EI
∫ s

0
δd3(s′) ds′ (A3)

= cos2 α0

sin α0
(AxR0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[(
s3

6 − L s2

2

)
cos

(
2πL
�0

)+ 0.5
( R0

sin α0

)
s2 sin

(
2πL
�0

)− ( R0
sin α0

)2
s + ( R0

sin α0

)3
sin

(
2πs
�0

)]
..................................................................

h
[(

s3

6 − L s2

2

)
sin

(
2πL
�0

)− 0.5
( R0

sin α0

)
s2 cos

(
2πL
�0

)− ( R0
sin α0

)3(
cos

(
2πs
�0

)− 1
)]

..................................................................

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

+ cos α0(AzR0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

[− 0.5
( R0

sin α0

)
s2 sin

(
2πL
�0

)+ ( R0
sin α0

)2[
2s + (s − L) cos

(
2πs
�0

)+ L
]− 3

( R0
sin α0

)3
sin

(
2πs
�0

)]
..................................................................

h
[( R0

sin α0

)(
0.5s2 cos

(
2πL
�0

)+ Ls
)+ ( R0

sin α0

)2
(s − L) sin

(
2πs
�0

)+ 3
( R0

sin α0

)3(
cos

(
2πs
�0

)− 1
)]

..................................................................

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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+ sin α0(AxR0)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−{ R0
sin α0

(
s2

2 − Ls
)

sin
(

2πs
�0

)+ ( R0
sin α0

)2[
(s − L) cos

(
2πs
�0

)+ L + 1
2 s cos

(
2πL
�0

)]
+( R0

sin α0

)3[ 1
4

(
sin

(
2s−L
�/2π

)+ sin
(

2πL
�0

))− sin
(

2πs
�0

)(
1 + cos

(
2πL
�0

))]}
.............................................................

h
{[− R0

sin α0
( s2

2 − Ls) cos
(

2πs
�0

)+ ( R0
sin α0

)3(
cos

(
2πs
�0

)− 1
)+ ( R0

sin α0

)2
(s − L) sin

(
2πs
�0

)]
+ 1

2
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sin α0

)2
s sin

(
2πL
�0
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4

( R0
sin α0

)3(
cos

(
2s−L
�/2π

)− cos
(

2πL
�0

))
+( R0

sin α0

)3(
cos

(
2πs
�0

)− 1
)

cos
(

2πL
�0

)}
.............................................................

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+ sin α0

⎛
⎜⎝

0

0

1

⎞
⎟⎠
⎧⎪⎪⎪⎨
⎪⎪⎪⎩

(AxR0) cot α0

⎡
⎢⎢⎢⎣

− R0
sin α0

(
s2

2 − Ls
)

cos 2π (s−L)
�0

+( R0
sin α0

)2[
s sin 2π (s−L)

�0
+ (s − L) sin 2π (s−L)

�0
− L sin

(
2πL
�0

)]
+( R0

sin α0

)3[
cos

(
2πs
�0

)− 1 + 2
(

cos 2π (s−L)
�0

− cos
(

2πL
�0

))]

⎤
⎥⎥⎥⎦

− (AzR0)

⎡
⎢⎢⎢⎣

R0
sin α0

( s2

2 − Ls)

+( R0
sin α0

)2[
L sin

(
2πs
�0

)+ s sin 2π (s−L)
�0

]
+( R0
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)3[
cos 2π (s−L)

�0
− cos

(
2πL
�0

)+ 2
(

cos
(

2πs
�0

)− 1
)]

⎤
⎥⎥⎥⎦
⎫⎪⎪⎪⎬
⎪⎪⎪⎭

+ ζrωR0 cos α0

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

−h cos α0
{
(s2/2) sin

(
2πL
�0

)+ (
1
2 s2 − Ls

)
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(
2πs
�0

)+ ( R0
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)
(s − L)

(
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(
2πs
�0

)− 1
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..................................................................

+ cos α0
{

s2

2 cos
(

2πL
�0

)+ (
1
2 s2 − Ls

)
cos

(
2πs
�0

)− ( R0
sin α0

)
(s − L) sin

(
2πs
�0

)}
..................................................................

−hR0
{
s sin 2π (s−L)

�0
+ ( R0

sin α0

)[
cos

(
2πs
�0

)− 1 + cos 2π (s−L)
�0

− cos
(

2πL
�0

)]}

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (A4)

APPENDIX B: CLAMPED s = 0 END-POINT CONTRIBUTION

In this Appendix, we calculate the leading-order estimates of the quantities Jclamp
1 − Jclamp

4 for our helical geometry, clamped
at one end.

1. Calculation of Jclamp
1 − Jclamp

4

We first calculate the contributions to Jclamp
1 − Jclamp

4 , without the terms due to the viscous rotational torque, as those will be
calculated separately in the next subsection. Straightforward integrations give

Jclamp
1 =

∫ L

0
(δd3)z ds = 1

2EI

[
R2

0L2 + O
(
R3

0L
)]

[Ax cot α0 + Az], (B1)

Jclamp
3 =

∫ L

0
s(δr)z ds = 5

24EI
Az
[
R2

0L4 + O
(
R3

0L3
)]

. (B2)

We can rewrite Jclamp
4 and Jclamp

2 as

Jclamp
4 =

∫ L

0
(r · δr) ds = R0

∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds + cos α0J3, (B3)

Jclamp
2 =

∫ L

0
[δ(d3 × r)]z ds = −h sin α0

∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds

+ hR0

∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds. (B4)
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We thus need to calculate the two integrals I1 = ∫ L
0 [cos (2πs/�0)δx + h sin (2πs/�0)δy] ds and I2 =∫ L

0 [sin (2πs/�0)(δd3)x − h cos (2πs/�0)(δd3)y] ds. Straightforward integrations lead to

I2 =
∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds

= 1

2EI

R2
0L2

sin α0

[
Ax

(
cos2 α0

sin α0
− sin α0 cos

(
2L

R0/ sin α0

))
+ Az cos α0

]
+ O(R3

0LAx,z/EI ). (B5)

Using integration by parts, we obtain

I1 =
∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds

= R0

sin α0

{
sin

(
2πL

�0

)
δx|L − h cos

(
2πL

�0

)
δy|L −

∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds

}
. (B6)

The boundary terms are

sin

(
2πL

�0

)
δx|L − h cos

(
2πL

�0

)
δy|L = 1

EI

R2
0L2

sin α0

[
1

2
Ax

(
cos2 α0

sin α0
− sin α0 cos

(
2L

R0/ sin α0

))

− Az cos α0

(
1

2
+ cos

(
2πL

�0

))]
[1 + O(R0/L)]. (B7)

Thus,

I1 =
∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds

= −R3
0L2

EI

cos α0

sin2 α0
Az

[
1 + cos

(
2πL

�0

)]
+ O

(
R4

0LAx,z/EI
)
, (B8)

and

Jclamp
4 = 5

24EI
Az cos α0

[
R2

0L4 + O
(
R3

0L3
)]

, (B9)

Jclamp
2 = h

R3
0L2

EI

[
1

2
Ax

(
cot2 α0 − cos

(
2L

R0/ sin α0

))
+ Az cot α0

(
3

2
+ cos

(
2L

R0/ sin α0

))]
+ O

(
R4

0LAx,z/EI
)
. (B10)

Putting it all together we obtain

Jclamp
1 = 1

2EI

[
R2

0L2 + O
(
R3

0L
)]

[Ax cot α0 + Az], (B11)

Jclamp
2 = h

R3
0L2

EI

[
1

2
Ax

(
cot2 α0 − cos

(
2L

R0/ sin α0

))
+ Az cot α0

(
3

2
+ cos

(
2L

R0/ sin α0

))]
+ O

(
R4

0LAx,z/EI
)
, (B12)

Jclamp
3 = 5

24EI
Az
[
R2

0L4 + O
(
R3

0L3
)]

, (B13)

Jclamp
4 = 5

24EI
Az cos α0

[
R2

0L4 + O
(
R3

0L3
)]

, (B14)

with the terms arising from the viscous rotational torque to be calculated in the next subsection.

2. Contribution from the viscous rotational torque

In this section we calculate the contributions J rot
1 − J rot

4 arising from the viscous rotational torque to Jclamp
1 − Jclamp

4 :

J rot
1 =

∫ L

0
(δd3)z ds ≡ 0, (B15)

J rot
4 =

∫ L

0
(r · δr) ds (B16)

= R0

∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds + cos α0J rot

3 , (B17)
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where

J rot
3 =

∫ L

0
s(δr)z ds

= −hζrωR2
0 cos α0

EI

∫ L

0

{
s2 sin

2π (s − L)

�0
+
(

R0

sin α0

)
s

[
cos

(
2πs

�0

)
− 1 + cos

2π (s − L)

�0
− cos

(
2πL

�0

)]}
ds (B18)

= hζrωR3
0 cot α0

EI

{
L2

2

(
3 + cos

(
2πL

�0

))
− L

(
R0

sin α0

)
sin

(
2πL

�0

)
+ 2

(
R0

sin α0

)2(
cos

(
2πL

�0

)
− 1

)}
(B19)

and ∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds = 0. (B20)

The calculation to obtain the result of Eq. (B20) is the following:∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds

= hζrωR0 cos2 α0

∫ L

0

[
− cos

(
2πs

�0

){
s2

2
sin

(
2πL

�0

)
+
(

s2

2
− Ls

)
sin

(
2πs

�0

)
+
(

R0

sin α0

)
(s − L)

(
cos

(
2πs

�0

)
− 1

)}

+ sin

(
2πs

�0

){
s2

2
cos

(
2πL

�0

)
+
(

s2

2
− Ls

)
cos

(
2πs

�0

)
−
(

R0

sin α0

)
(s − L) sin

(
2πs

�0

)}]
ds

= hζrωR0 cos2 α0

∫ L

0

[
s2

2
sin

2π (s − L)

�0
−
(

R0

sin α0

)
(s − L)

(
1 − cos

(
2πs

�0

))]
ds

= hζrωR0 cos2 α0

{
− 1

2

[
L2 + 2

(
R0

sin α0

)2[
cos

(
2πL

�0

)
− 1

]]
−
[
−L2

2
+
(

R0

sin α0

)2(
1 − cos

(
2πL

�0

))]}

= 0. (B21)

Hence,

J rot
4 = cos α0J rot

3 . (B22)

Integrating by parts gives∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds = R0

sin α0

{
sin

(
2πL

�0

)
δx|L − h cos

(
2πL

�0

)
δy|L

−
∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds

}
. (B23)

Hence, ∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds = sin

(
2πL

�0

)
δx|L − h cos

(
2πL

�0

)
δy|L

= 0, (B24)

with the last equality arising by substitution of the formulas for δx|L, δy|L terms arising from the viscous rotational torque:

J rot
2 =

∫ L

0
[δ(d3 × r)]z ds

= −h sin α0

∫ L

0

[
cos

(
2πs

�0

)
δx + h sin

(
2πs

�0

)
δy

]
ds + hR0

∫ L

0

[
sin

(
2πs

�0

)
(δd3)x − h cos

(
2πs

�0

)
(δd3)y

]
ds

= 0. (B25)

In summary, J rot
1 = 0, J rot

2 = 0, and J rot
4 = cos α0J rot

3 , with

J rot
3 = hζrωR3

0 cot α0

EI

{
L2

2

(
3 + cos

(
2πL

�0

))
− L

(
R0

sin α0

)
sin

(
2πL

�0

)
+ 2

(
R0

sin α0

)2(
cos

(
2πL

�0

)
− 1

)}
. (B26)
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These values of the contributions to the J1 − J4 integrals, J rot
1 = 0, J rot

2 = 0, J rot
4 = cos α0J rot

3 , mean that the viscous rotational
torque does not contribute to the perturbations to the resistance matrices

δArot = 2ζ⊥(1 − ρ) cos α0J rot
1 = 0, (B27)

δBrot = ζ⊥(1 − ρ)
{
hR0 sin α0J rot

1 − cos α0J rot
2

} = 0, (B28)

δCrot = δBrot = 0, (B29)

δDrot = 2ζ⊥
{
cos α0J rot

3 − J rot
4 − (1 − ρ)hR0 sin α0J rot

2

}− 2ζr cos α0J rot
1 = 0. (B30)

We summarize the resulting J1 − J4 for the clamped case (�,�r0 = 0), including the terms arising from the viscous rotational
torque:

Jclamp
1 = 1

2EI

[
R2

0L2 + O
(
R3

0L
)][

Ax cot α0 + Az
]
, (B31)

Jclamp
2 = h

R3
0L2

EI

[
1

2
Ax

(
cot2 α0 − cos

(
2L

R0/ sin α0

))
+ Az cot α0

(
3

2
+ cos

(
2L

R0/ sin α0

))]
+ O

(
R4

0LAx,z/EI
)
, (B32)

Jclamp
3 = 5

24EI
Az
[
R2

0L4 + O
(
R3

0L3
)]+ hζrωR3

0 cot α0

EI

[
L2

2

(
3 + cos

(
2πL

�0

))

− L

(
R0

sin α0

)
sin

(
2πL

�0

)
+ 2

(
R0

sin α0

)2(
cos

(
2πL

�0

)
− 1

)]
, (B33)

Jclamp
4 = 5

24EI
Az cos α0

[
R2

0L4 + O
(
R3

0L3
)]+ hζrωR3

0 cos2 α0

EI sin α0

[
L2

2

(
3 + cos

(
2πL

�0

))
− L

(
R0

sin α0

)
sin

(
2πL

�0

)

+ 2

(
R0

sin α0

)2(
cos

(
2πL

�0

)
− 1

)]
. (B34)

The resulting perturbations to the resistance matrices (projected along the z axis) are

δAclamp = ζ⊥(1 − ρ) cos α0
1

EI

[
R2

0L2 + O
(
R3

0L
)]

[Ax cot α0 + Az], (B35)

δBclamp = ζ⊥(1 − ρ)
{

hR0 sin α0Jclamp
1 − cos α0Jclamp

2

}

= ζ⊥(1 − ρ)
hR3

0L2

2EI

{
Ax cos α0

[
1 −

(
cot2 α0 − cos

(
2L

R0/ sin α0

))]

+ Az sin α0

[
1 − cot2 α0

(
3

2
+ cos

(
2L

R0/ sin α0

))]}
+ O

(
R4

0LAx,z

EI

)
, (B36)

δCclamp = δBclamp, (B37)

δDclamp = 2ζ⊥
{

cos α0Jclamp
3 − Jclamp

4 − (1 − ρ)hR0 sin α0Jclamp
2

}
= 2ζ⊥

R4
0L2

EI

{
cos α0

sin2 α0
Az

[
1 + cos

(
2L

R0/ sin α0

)]
− (1 − ρ) sin α0

[
0.5Ax

(
cot2 α0 − cos

(
2L

R0/ sin α0

))

+ Az cot α0

(
3

2
+ cos

(
2L

R0/ sin α0

))]}
+ O

(
R5

0LAx,z

EI

)
, (B38)

where we note again that the viscous rotational torque Nvisc does not contribute to any of the perturbations of the resistance
matrices.

APPENDIX C: FREE s = 0 END-POINT CONTRIBUTION

In this Appendix we calculate the contributions of �,�r0 to the perturbations to the resistance matrices. We first find
the contributions to J free

1 − J free
4 from �,�r0 for the case of free s = 0 end point, i.e., with �,�r0 �= 0. The calculation is

as follows:

J free
1 =

∫ L

0
ez · (� × d(0)

3

)
ds = −� · [ez × (r(0)(s) − r(0)(0))] = −� ·

⎛
⎜⎜⎝

−hR0 sin
(

2πL
�0

)
R0
(

cos
(

2πL
�0

)− 1
)

0

⎞
⎟⎟⎠, (C1)
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J free
2 = ez ·

∫ L

0

[(
� × d(0)

3 (s)
)× r(0)(s) + d(0)

3 (s) × (� × (r(0)(s) − r(0)(0))) + �r0
]

ds

= ez ·
∫ L

0

{[
d(0)

3 (� · r(0)(s)) − r(0)(s)
(
d(0)

3 · �
)]− d(0)

3 · [r(0)(0) � − � r(0)(0)] + d(0)
3 × �r0

}
ds

= ez · {� ·
∫ L

0

[
r(0)(s) d(0)

3 (s) − d(0)
3 (s)r(0)(s)

]
ds − �

[
r(0)(0) · (r(0)(L) − r(0)(0)

)]
+r(0)(0)

[
� · (r(0)(L) − r(0)(0)

)]+ [
r(0)(L) − r(0)(0)

]× �r0
}

= � ·
∫ L

0

[
r(0)(s) (ez · d(0)

3 (s)) − d(0)
3 (s)(ez · r(0)(s))

]
ds (C2)

− (ez · �)
[
r(0)(0) · (r(0)(L) − r(0)(0))

]+ (ez · r(0)(0))[� · (r(0)(L) − r(0)(0))] + ez · ([r(0)(L) − r(0)(0)] × �r0)

= cos α0� ·
∫ L

0

[
r(0)(s) − s d(0)

3 (s)
]

ds − (ez · �)R2
0

[
cos

(
2πL

�0

)
− 1

]
+ �r0(ez × [r(0)(L) − r(0)(0)])

= � ·

⎛
⎜⎜⎝

cos α0
[
2R0

R0
sin α0

sin
(

2πL
�0

)− LR0 cos
(

2πL
�0

)]
cos α0

{−2R0
R0

sin α0

[
cos

(
2πL
�0

)− 1
]− hLR0 sin

(
2πL
�0

)}
−R2

0

[
cos

(
2πL
�0

)− 1
]

⎞
⎟⎟⎠+ �r0 ·

⎛
⎜⎜⎝

−hR0 sin
(

2πL
�0

)
R0
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎠, (C3)

J free
3 = ez ·

∫ L

0
s[� × (r(0)(s) − r(0)(0)) + �r0] ds

= ez ·
{
� ×

∫ L

0
s(r(0)(s) − r(0)(0)) ds

}
+ ez · �r0

L2

2

= −� ·
{

ez ×
∫ L

0
s
(
r(0)(s) − r(0)(0)

)
ds

}
+ ez · �r0

L2

2

= −� ·

⎛
⎜⎜⎝

−hR0
[( R0

sin α0

)2
sin

(
2πL
�0

)− ( R0
sin α0

)
L cos

(
2πL
�0

)]
R0
[ R0

sin α0
L sin

(
2πL
�0

)+ ( R0
sin α0

)2(
cos

(
2πL
�0

)− 1
)− L2

2

]
0

⎞
⎟⎟⎠+ ez · �r0

L2

2
, (C4)

J free
4 =

∫ L

0
r(0)(s) · [� × (

r(0)(s) − r(0)(0)
)+ �r0

]
ds =

(∫ L

0
r(0)(s) ds

)
· [�r0 − � × r(0)(0)]

=
(∫ L

0
r(0)(s)ds

)
· �r0 − � ·

(
r(0)(0) ×

∫ L

0
r(0)(s) ds

)

=

⎛
⎜⎜⎝

R0
R0

sin α0
sin

(
2πL
�0

)
−R0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)

cos α0
L2

2

⎞
⎟⎟⎠ · �r0 − R0� ·

⎛
⎜⎜⎝

0

− cos α0
L2

2

−R0
R0

sin α0

(
cos

(
2πL
�0

)− 1
)
⎞
⎟⎟⎠

=

⎛
⎜⎜⎝

R0
R0

sin α0
sin

(
2πL
�0

)
−R0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)

cos α0
L2

2

⎞
⎟⎟⎠ · �r0 + R0� ·

⎛
⎜⎜⎝

0

cos α0
L2

2

R0
R0

sin α0

(
cos

(
2πL
�0

)− 1
)
⎞
⎟⎟⎠. (C5)

With the contributions J free
1 − J free

4 of �,�r0 to J1 − J4 calculated, we now proceed to find the contribution of �,�r0 to the
perturbations to the resistance matrices:

δAfree = 2ζ⊥(1 − ρ) cos α0R0� ·

⎛
⎜⎜⎝

h sin
(

2πL
�0

)
−( cos

(
2πL
�0

)− 1
)

0

⎞
⎟⎟⎠, (C6)

δBfree

ζ⊥(1 − ρ)
= {

hR0 sin α0J free
1 − cos α0J free

2

}
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= � ·

⎛
⎜⎜⎝

R2
0 sin α0 sin

(
2πL
�0

)− cos2 α0
[
2R0

R0
sin α0

sin
(

2πL
�0

)− LR0 cos
(

2πL
�0

)]
−h sin α0R2

0

(
cos

(
2πL
�0

)− 1
)− cos2 α0

{− 2R0
R0

sin α0

[
cos

(
2πL
�0

)− 1
]− hLR0 sin

(
2πL
�0

)}
cos α0R2

0

[
cos

(
2πL
�0

)− 1
]

⎞
⎟⎟⎠

− cos α0�r0 ·

⎛
⎜⎜⎝

−hR0 sin
(

2πL
�0

)
R0
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎠

= � ·

⎛
⎜⎜⎝

LR0 cos2 α0 cos
(

2πL
�0

)
hLR0 cos2 α0 sin

(
2πL
�0

)
cos α0R2

0

[
cos

(
2πL
�0

)− 1
]
⎞
⎟⎟⎠− R0 cos α0�r0 ·

⎛
⎜⎜⎝

−h sin
(

2πL
�0

)
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎠, (C7)

δCfree = δBfree, (C8)

δDfree

2ζ⊥
= cos α0J free

3 − J free
4 − (1 − ρ)hR0 sin α0J free

2

= cos α0

⎡
⎢⎢⎣� ·

⎛
⎜⎜⎝

hR0
[( R0

sin α0

)2
sin

(
2πL
�0

)− ( R0
sin α0

)
L cos

(
2πL
�0

)]
−R0

[ R0
sin α0

L sin
(

2πL
�0

)+ ( R0
sin α0

)2(
cos

(
2πL
�0

)− 1
)− L2

2

]
0

⎞
⎟⎟⎠+ L2

2
�r0 · ez

⎤
⎥⎥⎦

−

⎡
⎢⎢⎣� ·

⎛
⎜⎜⎝

0

cos α0R0
L2

2

R2
0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)
⎞
⎟⎟⎠+ �r0 ·

⎛
⎜⎜⎝

R0
R0

sin α0
sin

(
2πL
�0

)
−R0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)

cos α0
L2

2

⎞
⎟⎟⎠
⎤
⎥⎥⎦

− (1 − ρ)hR0 sin α0

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎡
⎢⎢⎣� ·

⎛
⎜⎜⎝

cos α0
[
2R0

R0
sin α0

sin
(

2πL
�0

)− LR0 cos
(

2πL
�0

)]
cos α0

{− 2R0
R0

sin α0

[
cos

(
2πL
�0

)− 1
]− hLR0 sin

(
2πL
�0

)}
−R2

0

[
cos

(
2πL
�0

)− 1
]

⎞
⎟⎟⎠

+�r0 ·

⎛
⎜⎜⎜⎝

−hR0 sin
(

2πL
�0

)
R0
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎟⎠

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= � ·

⎛
⎜⎜⎝

cos
(

2πL
�0

)
h sin

(
2πL
�0

)
cos

(
2πL
�0

)
⎞
⎟⎟⎠h

R2
0L cos α0 + O(R3

0)

sin α0
[−1 + (1 − ρ) sin2 α0] + O

(
R2

0|�r0|
)

= hR2
0L cos α0

sin α0

⎡
⎢⎢⎣� ·

⎛
⎜⎜⎝

cos
(

2πL
�0

)
h sin

(
2πL
�0

)
cos

(
2πL
�0

)
⎞
⎟⎟⎠[− 1 + (1 − ρ) sin2 α0

]+ O

(
R0

L
,
|�r0|

L

)⎤⎥⎥⎦. (C9)

In summary, we have

J free
1 = � ·

⎛
⎜⎜⎝

hR0 sin
(

2πs
�0

)
−R0

(
cos

(
2πs
�0

)− 1
)

0

⎞
⎟⎟⎠, (C10)

J free
2 = � ·

⎛
⎜⎜⎝

cos α0
[
2R0

R0
sin α0

sin
(

2πL
�0

)− LR0 cos
(

2πL
�0

)]
cos α0

{− 2R0
R0

sin α0

[
cos

(
2πL
�0

)− 1
]− hLR0 sin

(
2πL
�0

)}
−R2

0

[
cos

(
2πL
�0

)− 1
]

⎞
⎟⎟⎠+ �r0 ·

⎛
⎜⎜⎝

−hR0 sin
(

2πL
�0

)
R0
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎠, (C11)
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J free
3 = � ·

⎛
⎜⎜⎝

hR0
[( R0

sin α0

)2
sin

(
2πL
�0

)− ( R0
sin α0

)
L cos

(
2πL
�0

)]
−R0

[ R0
sin α0

L sin
(

2πL
�0

)+ ( R0
sin α0

)2(
cos

(
2πL
�0

)− 1
)− L2

2

]
0

⎞
⎟⎟⎠+ L2

2
�r0 · ez, (C12)

J free
4 = � ·

⎛
⎜⎜⎝

0

cos α0R0
L2

2

R2
0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)
⎞
⎟⎟⎠+ �r0 ·

⎛
⎜⎜⎝

R0
R0

sin α0
sin

(
2πL
�0

)
−R0

R0
sin α0

(
cos

(
2πL
�0

)− 1
)

cos α0
L2

2

⎞
⎟⎟⎠, (C13)

and the resulting contributions to the perturbations of the resistance matrices from �,�r0 are

δAfree = 2ζ⊥(1 − ρ) cos α0R0� ·

⎛
⎜⎜⎝

h sin
(

2πL
�0

)
−( cos

(
2πL
�0

)− 1
)

0

⎞
⎟⎟⎠, (C14)

δBfree = ζ⊥(1 − ρ)� ·

⎛
⎜⎜⎝

LR0 cos2 α0 cos
(

2πL
�0

)
hLR0 cos2 α0 sin

(
2πL
�0

)
cos α0R2

0

[
cos

(
2πL
�0

)− 1
]
⎞
⎟⎟⎠− ζ⊥R0(1 − ρ) cos α0�r0 ·

⎛
⎜⎜⎝

−h sin
(

2πL
�0

)
[

cos
(

2πL
�0

)− 1
]

0

⎞
⎟⎟⎠, (C15)

δCfree = δBfree, (C16)

δDfree = 2hζ⊥R2
0L cos α0

sin α0

⎡
⎢⎢⎣� ·

⎛
⎜⎜⎝

cos
(

2πL
�0

)
h sin

(
2πL
�0

)
cos

(
2πL
�0

)
⎞
⎟⎟⎠[−1 + (1 − ρ) sin2 α0] + O

(
R0

L
,
|�r0|

L

)⎤⎥⎥⎦. (C17)

APPENDIX D: FEEDBACK TO THE KINEMATICS

We note that throughout this Appendix, we will use the shorthand notation s = sin α0 and c = cos α0. Using the rigid, leading-
order kinematics of Eqs. (103) and (104) and Eqs. (93) and (94), we can express Ax and Az as

Ax = −ζ⊥M

AD − B2
[(1 − ρ)scB + (c2 + ρs2)hR0A] = hR0ζ⊥M

AD − B2
{ρζ⊥L + (c2 + ρs2)6πμah}, (D1)

Az = −ζ⊥M

AD − B2
[(s2 + ρc2)B + (1 − ρ)schR0A] = hR0ζ⊥M

AD − B2
6πμah(1 − ρ)sc, (D2)

Ax cot α0 + Az = −ζ⊥M

AD − B2
[B + cot α0hR0A] = hR0ζ⊥M

AD − B2
[ζ⊥Lρ + 6πμah] cot α0. (D3)

Substituting into Eqs. (146)–(149) (and using the simplified notation δA instead of δAclamped
zz , etc.) we obtain

δA = hR3
0L2ζ 2

⊥M

EI (AD − B2)
[ρζ⊥L + 6πμah](1 − ρ)

c2

s
, (D4)

δB = R4
0L2ζ 2

⊥M

EI (AD − B2)
(1 − ρ)

1

2

{
{ρζ⊥L + (c2 + ρs2)6πμah}c[1 − (cot2 α0 − cos(4πn))]

+ 6πμah(1 − ρ)s2c

[
1 − cot2 α0

(
3

2
+ cos (4πn)

)]}
, (D5)

δD = hR5
0L2ζ 2

⊥M

EI
(
AD − B2

)2(1 − ρ)

{
6πμah

c2

s
[1 + cos (4πn)] − s

[
0.5

{
ρζ⊥L + (c2 + ρs2)6πμah

}(
cot2 α0 − cos (4πn)

)

+ 6πμah(1 − ρ)c2

(
3

2
+ cos (4πn)

) ] }
, (D6)

and substituting into Eq. (150) gives the result of Eqs. (154) and (155).
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