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Regime transition in the energy cascade of rotating turbulence
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Transition from a split to a forward kinetic energy cascade system is explored in the context of rotating
turbulence using direct numerical simulations with a three-dimensional isotropic random force uncorrelated
with the velocity field. Our parametric study covers confinement effects in high-aspect-ratio domains and a
broad range of rotation rates. The data presented here add substantially to previous works, which, in contrast,
focused on smaller and shallower domains. Results indicate that for fixed geometrical dimensions the Rossby
number acts as a control parameter, whereas for a fixed Rossby number the product of the domain size along
the rotation axis and the forcing wave number governs the amount of energy that cascades inversely. The regime
transition criterion hence depends on both control parameters.
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I. INTRODUCTION

The energy cascade is the fundamental mechanism in
turbulent flows that describes the energy exchange between
the various scales of motion [1]. A forward cascade from large
to small scales is commonly observed in three-dimensional
(3D) flows, whereas an inverse energy cascade from small
towards large scales is the hallmark of two-dimensional (2D)
flows [2,3]. Predicting the energy cascade direction, therefore,
requires anticipating if, for a given set of control parameters,
the resulting flow field resembles best 3D or 2D flow dynam-
ics. In the absence of analytical predictions, a typical approach
consists of carefully designing numerical experiments, where
the system’s parameters are individually varied to produce a
phase transition diagram. Throughout this study we consider
a large number of forced direct numerical simulations (DNSs)
and analyze the influence of geometric confinement and sys-
tem rotation on the cascade direction in homogeneous rotating
turbulence.

Inertial waves, i.e., plane-wave solutions to the linearized
Navier-Stokes equations, can modulate the energy transfer in
rotating turbulence [4,5]. By considering high rotation rates
and exploiting the fact that rotating turbulence is a multi-
time-scale problem, Waleffe [6] suggested that the nonlinear
dynamics are modified by wave interactions. Resonant wave
interactions can explain the favored energy transfer towards
horizontal modes, whereas nonresonant wave interactions are
considered to damp and inhibit the triadic interactions typical
of homogeneous turbulence [7,8]. This mechanism also per-
sists at lower rotation rates due to homochirical interactions
that transfer energy into the plane orthogonal to the rotation
axis [9]. As a consequence, when rotating homogeneous flows
are forced at wave number κ f , the injected energy can cascade
both to larger (κ < κ f ) and to smaller scales (κ > κ f ); this is
hereafter referred to as a split energy cascade. These findings
help to explain the preferential upscale of energy typically
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found in numerical and experimental investigations of rotating
turbulent flows [8,10–14]. Nevertheless, we must bear in mind
that a large network of triadic interactions as in the Navier-
Stokes equations can evolve differently than a set of isolated
triads, as previously pointed out in Refs. [15] and [16].

Among different theories that elucidate the phenomenon
of rotating turbulence, the work of Galtier [17] is regarded as
an important contribution. Based on wave turbulence theory,
which deals with systems where interactions are governed
by waves, he derived scaling laws for the energy spectrum.
These laws were also shown to follow from phenomenological
arguments for the spectral transfer time—a typical energy
transfer time scale. For infinitely large domains, as required
by wave turbulence theory [18], the weak inertial-wave theory
of Galtier [17] predicts that energy cascades forward and to
small scales. However, a passage from a split to a forward
energy cascade system upon approaching the large-box limit
has not yet been confirmed by DNS.

In the absence of rotation, however, the geometrical di-
mensions of the system itself influence the energy cascade
direction. Using a two-dimensional, two-component (2D2C)
horizontal force, Smith et al. [19] and Celani et al. [20] found
that the ratio L3/� f , where L3 is the vertical domain extension
and � f is the forcing length scale, is a governing control
parameter. They showed that a large L3/� f results in a for-
ward energy cascade, whereas an inverse energy transfer was
triggered and split the energy cascade for L3/� f � 1/2. More
recently, numerical simulations by Benavides and Alexakis
[21] explored transitions in a thin layer of fluid subjected to
free-slip boundary conditions. Transition from a forward to a
split energy cascade was shown to be critical and depend on
the ratio of forcing length scale to wall separation.

Regime transitions in rotating homogeneous turbulence are
therefore affected by geometrical dimensions and rotation
rate. Deusebio et al. [22] studied hyperviscous fluids in rotat-
ing low-aspect-ratio domains subjected to 2D2C forcing and
found that high rotation rates as well as small L3/� f suppress
enstrophy production and induce an inverse energy cascade.
Their data prove, at least for weak rotation rates, that transition
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from a split to a forward cascade is possible by controlling
either the rotation rate or the domain size. For strong rotation,
however, almost the entire injected energy cascaded inversely.
Although transition was not observed, they hypothesized that
it could still take place for sufficiently large L3/� f . This
conjecture, however, remains to be verified by either forcing
smaller flow scales or increasing the domain size [23].

The present work sheds light on the question whether a
transition from a split to a forward cascade system always
exists in forced homogeneous rotating turbulence. We conduct
a systematic parametric study that covers several rotation
rates and an unprecedented range of geometric confinements
by considering strongly elongated domains and large forcing
wave numbers κ f . This new database is complementary to
previous studies, which focused on the confinement-induced
transition in smaller and shallower domains. Through large-
scale forcing, we construct isotropic flow fields that are poste-
riorly subjected to rotation. Differently from previous studies,
we employ a three-dimensional, three-component (3D3C)
forcing scheme that by design provides a constant energy
input independent of the velocity field. We believe this results
in a neater and more general framework where anisotropy
originates solely from rotation.

II. METHODOLOGY AND GOVERNING PARAMETERS

We solve the incompressible Navier-Stokes equations in a
frame rotating at rate �:

∇ · u = 0, (1)

∂u
∂t

+ (2 � + ω) × u = −∇q + ν∇2u + f . (2)

Here, u, ω, and f are the velocity, the vorticity, and an
external force, respectively. The reduced pressure into which
the centrifugal force is incorporated is given by q, and ν

denotes the kinematic viscosity.
Equations (1) and (2) are discretized in space by a dealiased

Fourier pseudospectral method (2/3 rule) in a triply periodic
domain of size 2πL1 × 2πL2 × 2πL3 [24,25]. The rotation
axis is assumed to be aligned with the vertical direction, i.e.,
� = � ê3, and we restrict ourselves to cases where the domain
sizes in the directions perpendicular to the axis of rotation
are equal: L1 = L2 = L⊥ = 1. Accordingly, L‖ replaces L3

to denote the domain size in the direction parallel to the
rotation axis and can be arbitrarily chosen. We use Rogallo’s
integrating factor technique for exact time integration of the
viscous and Coriolis terms and a third-order Runge-Kutta
scheme for the nonlinear terms [26,27].

The external force f injects energy to the system at rate
εI ; see Ref. [28]. The force’s spectrum F (κ ), from which
f in Eq. (2) is assembled, is Gaussian distributed, centered
around a wave number κ f , and has standard deviation c =
0.5: F (κ ) = A exp(−(κ − κ f )2/c). For a given κ f and c, the
prefactor A is uniquely determined from the desired energy
input rate εI . In the absence of rotation, we obtain isotropic
velocity fields and a balance between the energy input rate
and the viscous dissipation, i.e., εI = εν . This forcing scheme
ensures through projection that the force and velocity field are
uncorrelated at every instant in time [28]. As a consequence,

εI is solely determined by the force-force correlation and
is independent of the velocity field. Thus, we can define
a priori true control parameters from which the governing
nondimensional numbers are derived.

The domain size, L‖ and L⊥, the forcing wave number κ f ,
the viscosity ν, the rotation rate �, and the energy input rate
εI can all be freely chosen. Regarding εI , it could be addi-
tionally decomposed into three contributions stemming from
the power injected in each direction. However, because the
forcing is isotropic, it is sufficient to consider the total power
input εI only. These six parameters {κ f , ν, εI ,�,L⊥,L‖}
form the set of true control parameters and are the basis for the
nondimensional similarity numbers. The characteristic length,
velocity and time-scale follow naturally as � f = κ−1

f , u f =
ε

1/3
I κ

−1/3
f , and τ f = κ

−2/3
f ε

−1/3
I , respectively. In addition, a

time scale based on the rotation rate is taken as τ� = 1/(2�).
The Reynolds and Rossby numbers are now unambigu-

ously defined as

Reε = ε
1/3
I κ

−4/3
f

ν
and Roε = κ

2/3
f ε

1/3
I

2�
. (3)

From the problem’s geometry and the forcing wave number,
we define two other nondimensional numbers, i.e., κ f L⊥ and
κ f L‖. Hence, we obtain a set of four independent governing
nondimensional numbers that fully describes our numerical
experiments: Reε, Roε, κ f L⊥, and κ f L‖. As the final goal
is to investigate dimensional and rotational effects on forced
homogeneous rotating turbulence, we fix Reε and allow Roε,
κ f L‖, and κ f L⊥ to vary. We remark that this set is not unique
and other nondimensional groups exist. For instance, Reε

and Roλ could be combined to form the microscale Rossby
number Roλ = Reε

1/2Roλ (ratio of rotation and Kolmogorov

TABLE I. List of direct numerical simulations at Reε ≈ 55. Roε

numbers are given in the footnotes.

Case κ f L⊥ κ f L‖ Ar Np

kf02-a01a 2 2 1 1923

kf04-a01a 4 4 1 3843

kf04-a02b 4 8 2 3842 × 768
kf04-a04b 4 16 4 3842 × 1536
kf04-a08b 4 32 8 3842 × 3072
kf04-a16b 4 64 16 3842 × 6144
kf04-a32b 4 128 32 3842 × 12288

kf08-a01a 8 8 1 7683

kf08-a02b 8 16 2 7682 × 1536
kf08-a04b 8 32 4 7682 × 3072
kf08-a08c 8 64 8 7682 × 6144
kf08-a16b 8 128 16 7682 × 12288

kf16-a01a 16 16 1 15363

kf16-a02b 16 32 2 15362 × 3072
kf16-a04b 16 64 4 15362 × 6144

kf32-a01b 32 32 1 30723

aRoε ≈ 0.31, 0.06.
bRoε ≈ 0.06.
cRoε ≈ 1.25, 0.63, 0.31, 0.27, 0.24, 0.22, 0.19, 0.16, 0.14, 0.11, 0.09,
0.08, 0.06.
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FIG. 1. Three-dimensional spherically averaged energy spec-
trum of the initial condition: kf02-a01 ( ), kf04-a01 ( ),
kf08-a01 ( ), kf16-a01 ( ), kf32-a01 ( ), kf04-a32 ( )
kf08-a16 ( ).

time scale [7]) or κ f L‖ and κ f L⊥ could be related to obtain
the domain’s aspect ratio Ar = L‖/L⊥.

Initial conditions were generated by performing DNS of
nonrotating forced isotropic turbulence. We started from a
zero-velocity field and marched in time until a fully devel-
oped steady state was achieved. After the initial transient,
statistics were sampled over at least 24 τ f , corresponding to
approximately 10 large-eddy turnover times. Following this
procedure, a reference isotropic solution was computed for
every entry in Table I.

The initially imposed Reε ≈ 55 ultimately led to homoge-
neous nonrotating turbulent fields with a characteristic Taylor
microscale Reynolds number Reλ ≈ 68. The spatial resolution
in terms of the Kolmogorov length scale η was kept constant
throughout this study, i.e., κmaxη ≈ 1.5, where κmax is the
largest represented wave number. For the case with the largest
κ f L‖, the integral length scale in the direction of rotation is
about 600 times smaller than the respective domain size.

Figure 1 compares the 3D spherically averaged energy
spectrum E (κ ) for cases with aspect ratio Ar = 1, which
contain “a01” in its name description, and two additional
simulations with Ar = 16 and Ar = 32 (cases kf04-a32
and kf08-a16 in Table I). These data prove the equiva-
lence between initial conditions for DNSs forced at different
wave numbers and those computed with distinct κ f L‖ and
κ f L⊥. We find that the energy spectra perfectly coincide and
that E (κ ) scales best with κ2 at wave numbers κ < κ f , in
agreement with Ref. [29]. The obtained isotropic velocity
fields were used as the initial condition for simulations with
different rotation rates. The statistical variability of the results
for small domains was reduced by ensemble averaging. For
the smallest domain, kf02-a01, we ensemble-averaged 10
independent realizations and cases kf04 with Ar > 1 are aver-
ages of 3 realizations. For all other cases, the data correspond
to a single numerical experiment.

III. RESULTS

First we assess the effects of geometrical dimension and
rotation on the time evolution of the box-averaged kinetic
energy K and viscous dissipation εν . The nondimensional

geometric parameters κ f L⊥ and κ f L‖ are varied for two
fixed rotation rates: weak (Roε = 0.31; Fig. 2) and strong
(Roε = 0.06; Fig. 3). Additionally, for a fixed and large
domain, κ f L⊥ = 8 and κ f L‖ = 64 (case kf08-a08; Fig. 4),
we investigate the Rossby number range 0.06 < Roε < 1.25.
For more details about the simulation parameters, please refer
to Table I.

All cases undergo a transient of roughly 10 τ f from the
onset of rotation (Figs. 2 to 4), which converges towards a
unique solution for sufficiently large κ f L‖. We find that the
results are independent of the transversal domain size for
κ f L⊥ � 4; see Fig. 3, where the lines for different κ f L⊥ and
identical κ f L‖ coincide. Departing from an isotropic state,
where the energy cascade is strictly forward (εν/εI = 1), εν

decreases monotonically until it is lowest at approximately
3 τ f [Figs. 2(b), 3(b) and 4(b)]. For fixed Roε, Figs. 2(b) and
3(b) show that both κ f L⊥ and κ f L‖ have no influence on the
minimum of εν . On the other hand, Fig. 4(b) suggests a direct
proportionality between the minimum value of εν and Roε.

After t ≈ 3 τ f , εν increases towards εI . Nevertheless, the
strong and weak rotation cases lead to a different final state
for εν . While increasing κ f L‖ restores εν = εI for the weak
rotating case [Fig. 2(b)], the imbalance εν < εI , although
lower than 0.075 εI for κ f L‖ = 128, persists up to the fi-
nal time for the strong rotating case [Fig. 3(b)]. Similarly
to Fig. 2(b), increasing Roε reestablishes a forward energy
cascade for a fixed domain size [Fig. 4(b)]. After the initial
transient (t > 10 τ f ), εν follows mostly a slow linear decay
[Fig. 3(b)] or remains nearly constant [Figs. 2(b) and 4(b)].
Consequently, K , which evolves in time as dK/dt = εI − εν ,
grows quasilinearly [Figs. 2(a), 3(a) and 4(a)]. Based on this
idea we define the inverse energy flux εinv = εI − εν from the
imbalance between energy injection rate and viscous dissi-
pation. To estimate εinv, which is equal to the local slope of
K (t ), a linear least-squares fit is applied to 15 τ f < t < 30 τ f

in the time evolution of K [Figs. 2(a), 3(a) and 4(a)]. The
r.m.s. residual between the actual and the fitted data indicates
that the linear regression model is appropriate. For the worst
case, kf04-a08, the r.m.s. residual is 0.65% of the mean
value. Assuming that the linear law is exact and the noise is
essentially Gaussian, one obtains 0.0004 for the standard error
of the slope coefficient. Results for the inverse energy flux are
thus shown in Figs. 5 and 6 in the form of a phase transition
diagram.

In Fig. 5(a), we see that the inverse energy flux εinv

decreases monotonically with κ f L‖ for both Roε ≈ 0.31 and
Roε ≈ 0.06. Moreover, results for the strong rotating case
suggest that increasing κ f L⊥ while retaining κ f L‖ leads to
negligible differences in εinv; see the overlapping circles of
different colors for Roε ≈ 0.06. Transition from a split to a
forward cascade system occurs gradually. For Roε ≈ 0.31 and
κ f L‖ = 64 less than 0.004εI is transferred in the inverse di-
rection, whereas for Roε ≈ 0.06 a split cascade is still present
at κ f L‖ = 128. For a fixed domain size with κ f L⊥ = 8 and
κ f L‖ = 64 [case kf08-a08; Fig. 5(b)], εinv is continuously
suppressed for increasing Roε and transition to a forward
cascade system occurs in the vicinity of Roε = 1.

A question that follows from these results is for which
combination of governing nondimensional parameters regime
transition occurs. From the literature, a possible criterion is

053103-3



T. PESTANA AND S. HICKEL PHYSICAL REVIEW E 99, 053103 (2019)

FIG. 2. Time evolution of box-averaged kinetic energy (a) and energy dissipation rate (b) for Roε ≈ 0.31 (weak rotation). Lines
corresponding to the same κ f L⊥ are grouped by color: κ f L⊥ = 2 ( ), κ f L⊥ = 4 ( ), κ f L⊥ = 8 ( ), and κ f L⊥ = 16 ( ). Lines corresponding
to the same Ar are grouped by type: Ar = 1 ( ), Ar = 8 ( ) (cf. Table I).

Roεκ f L‖ = C, where C is a constant [2,23]. To test this
hypothesis, Fig. 6 presents the data from Fig. 5, but juxtaposed
in a single diagram and scaled accordingly with Roεκ f L‖.
The curves for different Roε values do not line up; hence,
this criterion disagrees with our data. Discussion of a possible
reason is given in the next section.

Now we turn our attention to the influence of κ f L‖ and
κ f L⊥ on the spectral energy flux and energy spectra. Hereafter
we present results for the strong rotating case with Roε ≈ 0.06
only, as differences are more pronounced than in the weak
rotating case. Although we show instantaneous data at t =
30 τ f , the trend described in what follows also holds for other
instants in time. Conservation of energy requires the portion
of the injected energy that is not dissipated to be accumu-
lated. By analyzing the spectral energy flux �(κ ), we find
that the net energy transfer T (κ ) = −d�/dκ is positive for
κ < κ f . In other words, wave numbers in this range gain
energy and we observe an upscale energy transfer. Evidence is
presented in Fig. 7, which also highlights how sensitive �(κ )
is with respect to changes in κ f L‖ and κ f L⊥. In this regard,
Fig. 7(a), where κ f L‖ is constant and κ f L⊥ = {8, 16, 32},

shows that the shape of �(κ ) remains unaltered for different
κ f L⊥ values. On the other hand, varying κ f L‖ from 16 to 64,
while κ f L⊥ is constant, reduces the magnitude of the inverse
energy flux and the range of wave numbers for which an
upscale energy transfer takes place [see Fig. 7(b)]. Therein,
greater values of κ f L‖ are also associated with an enhanced
spectral energy flux for κ > κ f . This is a consequence of the
fixed energy input rate εI , which causes the step in �(κ ) at
κ = κ f to be the same in all cases.

The 3D energy spectra E (κ ) for the same cases are shown
in Fig. 8. Additionally, the energy spectrum of case kf32-a01
with κ f L‖ = κ f L⊥ = 32 from Fig. 1 at the onset of rotation
is included as a reference. Figure 8(a) reinforces that κ f L‖
dictates the degree of energy accumulation, as the curves for
different κ f L⊥ and constant κ f L‖ values overlap. In agree-
ment with results in Fig. 7 for �(κ ), we observe significantly
higher levels of energy for κ < κ f with respect to the isotropic
reference spectrum. These are reduced for increasing κ f L‖
[see Fig. 8(b)].

As for the distribution of energy in terms of κ‖ and κ⊥,
Fig. 9 presents the 2D energy spectrum E (κ⊥, κ‖). Results

FIG. 3. Time evolution of box-averaged kinetic energy (a) and energy dissipation rate (b) for Roε ≈ 0.06 (strong rotation). Lines
corresponding to the same κ f L⊥ are grouped by color: κ f L⊥ = 2 ( ), κ f L⊥ = 4 ( ), κ f L⊥ = 8 ( ), κ f L⊥ = 16 ( ), κ f L⊥ = 32 ( ).
Lines corresponding to the same Ar are grouped by type: Ar = 1 ( ), Ar = 2 ( ), Ar = 4 ( ), Ar = 8 ( ), Ar = 16 ( ), Ar = 32
( ) (cf. Table I).

053103-4



REGIME TRANSITION IN THE ENERGY CASCADE OF … PHYSICAL REVIEW E 99, 053103 (2019)

FIG. 4. Time evolution of box-averaged kinetic energy (a) and energy dissipation rate (b) for κ f L⊥ = 8 and κ f L‖ = 64. Different line
colors correspond to the range 0.06 < Roε < 1.25; see Table I.

are shown exclusively for case kf32-a01 with κ f L⊥ =
κ f L‖ = 32, as it provides the best large-scale resolution. The
energy spectrum is nondimensionalized with 2πκ⊥, in such a
way that contour levels of isotropic spectra appear as circles
centered at the origin. In agreement with previous works,
Fig. 9 confirms that the kinetic energy has the tendency to
accumulate at lower κ‖/κ f . Hence, E (κ⊥, κ‖) is anisotropic
and contour levels display an elliptical shape, with the major
axis aligned with the κ⊥ direction. This is observed even for
high wave numbers and suggests that all scales of motion are
influenced by rotation; indeed, for this case, κ�η = 1.1, where
κ� = (�3/εI )1/2 is the Zeman wave number [14]. At the same
time, the energy input remains isotropic. See the inset for
the imprint of the isotropic forcing scheme, which delineates
the bright area located at κ2

‖ + κ2
⊥ = κ2

f . In addition, we see
higher energy levels in the vicinity of κ‖/κ f = 0.

An anisotropic distribution of energy is predicted by the
weak inertial-wave theory, which suggests that the energy
spectrum has the form E (κ⊥, κ‖) ∼ κ

−5/2
⊥ κ

−1/2
‖ [17]. To test

whether our data present any sign of this scaling law, we show
in Fig. 10 instantaneous one-dimensional energy spectra along
the perpendicular and parallel directions, i.e., E⊥(κ⊥) and
E‖(κ‖) for t = 0, 10τ f , 20τ f , and 30τ f . Figure 10(a) shows

that energy levels increase progressively for κ⊥ < κ f , whereas
for κ⊥ > κ f , the distribution of energy is nearly unaltered.
Also for κ⊥ > κ f , we observe that a narrow wave-number
range develops from the initial state and approaches best a
κ

−5/2
⊥ scaling law. Regarding E‖(κ‖) [Fig. 10(b)], the energy

content for κ‖ > κ f is significantly lower than at the onset of
rotation. This corroborates the idea that rotation lessens the
flow field dependency on the direction parallel to the rotation
axis. As time evolves, the range κ‖ < κ f resembles best a
κ

−1/2
‖ scaling law for all instants in time. We emphasize that

this result is essentially different from predictions of the weak
inertial-wave theory, as the latter estimates E (κ‖) ∼ κ

−1/2
‖ for

κ‖ larger than the forcing wave number.

IV. DISCUSSION

This work investigated through direct numerical simula-
tions the effects of domain size and rotation rate on the energy
cascade direction of rotating turbulence. The data presented
here add substantially to previous work, which, in contrast, fo-
cused on smaller and shallower domains (κ f L‖ and κ f L⊥ < 8
[19,22]). The presented results, therefore, contribute towards
a complete picture of the phase diagram, which unveils the

FIG. 5. Phase transition diagram for weak and strong rotation and varying geometrical dimensions (a) and for constant geometrical
dimension and varying Roε (b). Color scheme in (a) is the same as that in Fig. 3. In (a), the data point for κ f L⊥ = κ f L‖ = 32 (case kf32-a01)
is almost identical to that for case kf04-a08 (κ f L⊥ = 4; κ f L‖ = 32) and is therefore not visible.
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FIG. 6. Phase transition diagram in terms of the combined con-
trol parameter Roεκ f L‖ for all data points in Fig. 5. Colored circles
represent data from Fig. 5(a); squares, data from Fig. 5(b).

transition from inverse to forward through a split energy
cascade in rotating turbulence.

Our results support κ f L‖ as the primary control parameter
provided that Roε is constant and κ f L⊥ > 4. In this scenario,
transversal finite-size effects of κ f L⊥ on the inverse energy
transfer εinv are negligible for our cases with aspect ratio
Ar � 1. For weak rotation with Roε ≈ 0.31, the transition
from a split to a forward cascade was observed at κ f L‖ ≈ 64.

FIG. 7. Spectral energy flux for Roε ≈ 0.06 and cases with
κ f L‖ = 32 (a) and κ f L⊥ = 16 (b). In (a), κ f L⊥ = 8 ( ), κ f L⊥ = 16
( ), and κ f L⊥ = 32 ( ). In (b), κ f L‖ = 16, 32, and 64 ( ). The
arrow denotes the direction of increase.

FIG. 8. Three-dimensional spherically averaged energy spec-
trum for κ f L‖ = 32 (a) and κ f L⊥ = 16 (b) with Roε ≈ 0.06. Line
styles are the same as in Fig. 7, apart from the reference energy
spectrum in Fig. 1 with κ f L⊥ = κ f L‖ = 32 ( ).

For the strong rotating case, however, although strongly sup-
pressed, a portion of the injected energy (εinv ≈ 0.075 εI ) still
cascaded inversely and accumulated at the large scales for
κ f L‖ = 128.

We attribute the fact that εinv does not become exactly 0 for
Roε ≈ 0.31 to two effects. First, the simulations considered

FIG. 9. Two-dimensional energy spectrum for Roε ≈ 0.06 with
κ f L⊥ = κ f L‖ = 32 (case kf32-a01) at t = 30 τ f . Data are nor-
malized by (2πκ⊥) u2

f /κ
3
f and plotted as log10. Inset: Highlight

of the region around the forcing wave number: κ⊥/κ f < 1.5 and
κ‖/κ f < 1.5.
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FIG. 10. One-dimensional energy spectra for Roε ≈ 0.06 and
κ f L⊥ = κ f L‖ = 32 (case kf32-a01) along directions κ⊥ (a) and κ‖
(b). Lines represent the time evolution of the energy spectrum: t = 0
( ), and t = 10τ f , 20τ f and 30τ f ( ). A reference line for the
scaling laws that best agrees with the presented data is also shown
( ).

in this study are limited to Reλ ≈ 68. A higher Reynolds
number could contribute to a stronger forward cascade, pos-
sibly reducing εinv to 0. Second, although effects of the
geometric nondimensional parameter κ f L⊥ are minor, results
hint that larger values of κ f L⊥ could also contribute to a
reduction of εinv. In this manner, an indefinite increase in
κ f L⊥ could potentially change the phase diagram in the
vicinity of εinv/εI = 0, and could cause the regime transition
to be sharp rather than smooth. The recent study by Benavides
and Alexakis [21] has shown that a continuous increase in the
horizontal domain dimensions shifts the transition behavior
for thin-layer turbulence from smooth to critical. We hope that
further studies will help to fill the parameter space for higher
Reynolds numbers and even longer domain sizes.

For Roε ≈ 0.06, we agree with Deusebio et al. [22] and
believe that a continuous increase in κ f L‖ would result in a
transition to a forward energy cascade. Nevertheless, results
for the weak case suggest a slow-paced transition and signifi-

cantly larger values for κ f L‖ might be required. Interestingly,
the transition of εinv in terms of κ f L‖ resembles a logistic
function, similar to what has been found for regime transitions
in thin-layer turbulence [21].

In the search for a criterion for transition between a forward
and a split cascade system, we made an attempt to express
εinv/εI for all parameter points as a function of Roεκ f L‖.
As the different curves do not overlap, we believe that a
criterion for transition should stem from a more general match
of time scales. A criterion such as Roεκ f L‖ = C can be
obtained by requiring the slowest inertial wave frequency
1/τw = 2�/κ f L‖ and the eddy turnover frequency u f κ f at
the forcing scale to be of the same order [2,23]. Alternatively,
we can frame the problem within the idea that rotation alters
the spectral transfer time τs at which energy is transferred
to smaller scales. Thus, it follows that εν ∼ u2

�/τs, with u�

a velocity scale characteristic of eddies of size �, and τs ∼
τ 2

nl/τ3 [17,30,31]. Here, τnl ∼ �/u� is the nonlinear time scale
and τ3 is the relaxation time of triple velocity correlations.
The relaxation time in isotropic turbulence simplifies to τnl to
recover the dissipation law, i.e., εν ∼ u3

�/�.
Now the condition Roεκ f L‖ = C can be obtained by re-

quiring εν = εI and assuming u ∼ u f , τnl ∼ τ f , and τ3 ∼ τw.
So, Roεκ f L‖ = C is equivalent to stating that in the presence
of rotation the nonlinear time scale remains of the order
of τ f and that the relaxation time scale τ3 is given by the
inverse of the slowest inertial-wave frequency, i.e., τ3 ∼ τw. A
generalization of the previous reasoning would be to consider
a τnl obtained from a measured velocity quantity, like the
r.m.s velocity, and the length scale �, possibly as �⊥, as the
triadic interactions are expected to be depleted in the direction
parallel to the rotation axis [32]. The relaxation time τ3 could
be sought as a function of both τ f and τ�. In this manner, more
general criteria like Roε

a(κ f L‖)b = C arise, where a and b are
yet undetermined exponents.

Results for scaling laws of the energy spectrum are here
not conclusive, and there is no clear sign of an inertial range
over several decades. This is plausible since our initial and
isotropic field with Reλ ≈ 68 does not contain a clear inertial
range. In spite of that, the narrow wave-number region after
κ⊥ = κ f develops and approaches best a κ

−5/2
⊥ scaling law.

Our results also show that the κ
−5/2
⊥ and κ

−1/2
‖ scalings appear

in different wave-number ranges, and that the κ−5/2 scaling
prevails in the 3D energy spectrum (see Fig. 8).
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