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Effects of the Atwood number on the Richtmyer-Meshkov instability in elastic-plastic media
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The Richtmyer-Meshkov instability of small perturbed single-mode interfaces between an elastic-plastic solid
and an inviscid liquid is investigated by theoretical analysis and numerical simulation in this work. A modified
model including the Atwood number effect is proposed to describe the long-term behaviors of small perturbations
at the solid-liquid interface. In contrast to an effective theoretical model at the solid-vacuum interface, this model
is appropriate at different Atwood numbers. Owing to the effect of elastic-plastic characteristics and the density
ratio, the evolution of the spike amplitude exhibits nonlinear mechanical behavior. As the absolute value of the
Atwood number decreases, the maximum spike amplitude also decreases. To validate this model, an Eulerian
finite-difference multicomponent code is adopted to study the time evolution of the spike amplitude at different
Atwood numbers. The model coefficients are obtained by analyzing the relevant characteristic statistics collected
from the numerical results. Under different initial conditions such as Atwood number and shock strength, the
applicability of this modified model is verified by comparing the numerical results with the model profile. The
consistency in results signifies that the modified model is not only suitable for specific shock intensity and
Atwood number, but also adaptable within a certain range.
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I. INTRODUCTION

The Richtmyer-Meshkov (RM) instability describes the
hydrodynamic phenomenon of an arbitrarily perturbed inter-
face separating two materials with different properties when
impulsively accelerated by a shock wave [1–6]. RM instability
is often thought of as an impulsive or shock-induced version
of the continuously driven Rayleigh-Taylor (RT) instability
[7]. RT is induced when there is a mismatch between the den-
sity gradient and pressure (∇ρ · ∇p < 0) [7]. RM instability
occurs whether the incident shock wave propagates from a
light to a heavy medium (∇ρ · ∇p < 0) or from a heavy to
a light fluid (∇ρ · ∇p > 0). In the case that an incident shock
wave propagates from a heavy to a light fluid, phase reversal
precedes the growth [5,7].

In the RM instability in an elastic-plastic medium, baro-
clinic effects are considered as the interpretation of the oc-
currence and development. The evolution of the tiny initial
perturbations can be divided into several different conditions:
linear growing stage, nonlinear growing stage and ejecta
transition [8–11]. In the field of atomic physics and space sci-
ence, experiments are designed to study the equation of state,
transport properties, and implementation of the ejecta source
at high-energy density matter [3,8,12]. When investigating the
hydrodynamic instability in these experiments, it is found that
the elastic-plastic media may remain in solid state during the
shock loading process because the involved pressure is below
the melting limit. The elastic-plastic constitutive properties of
the solid must be considered when investigating the evolution
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of the interface between the solid and other media [13–16].
Exploring the role that the material property of the solid plays
in the perturbation growth is essential to understanding the
mechanism of the elastic-plastic RM instability. However, the
measured characteristic statistics in RM instability can also
be used as an indirect tool for evaluating the dynamic yield
strength based on the theoretical model [17–21]. The elastic-
plastic RM instability can be studied from the viewpoint of the
fluid dynamics perspective, plasma physics, astrophysics, and
solid mechanics [22,23]. Consequently, studying the elastic-
plastic RM instability is meaningful in both academic research
and application development. Considering that the relevant
experiments are difficult and costly, numerical simulation
approaches are adopted to study the RM instability in this
work.

When a shock wave travels from a metal to a vacuum
region, the shock wave first releases to zero pressure at the per-
turbation and reflects back to the metal as a rarefaction wave
[8]. The shock wave interacts with the interface and causes
the compression, inversion, and tension in perturbations [8].
Generally, the high-density substance propagates into the low-
density substance to form spike structures and the low-density
substance propagates into the high-density substance to form
bubble structures. The initial conditions of the perturbations
and physical parameters of the elastic-plastic medium both
have significant influences on the interface evolution. Usu-
ally, kη0 is used to characterize the initial condition of the
single-mode perturbations, where k is the wave number of the
perturbation and η0 is the initial amplitude. With the growth
of kη0, the behavior of the interface at different stages can be
qualitatively described as no spike growth, spike growth, and
arrest, forming blunted RM tips and spike breakup resulting
in ejecta transition [8,24]. The elastic-plastic medium has

2470-0045/2019/99(5)/053102(10) 053102-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.053102&domain=pdf&date_stamp=2019-05-06
https://doi.org/10.1103/PhysRevE.99.053102


CHEN, LI, ZHANG, AND TIAN PHYSICAL REVIEW E 99, 053102 (2019)

unique properties that differ from fluid. If the yield stress Y
of the elastic-plastic medium is quite small, the spike growth
evolves similarly to that in a classical case in an ideal fluid.
If there exists nonignorable yield stress in the solid medium,
the amplitude of the spike will reach a maximum after a
period of growth in the case of small perturbations. For the
reason that the plasticity theory is intrinsically nonlinear, it
was difficult to describe the interface evolution quantitatively
[4,22,25,26]. Piriz et al. first discussed the long-term behavior
of a light-heavy vacuum-solid interface [9,11]. They proposed
an analytical model for the maximum spike amplitude of a
small perturbed interface as a function of the initial perturba-
tion conditions and physical parameters:

ηspike
m − η0 = C

ρη̇2
0

kY
, (1)

where ρ is the density of the solid, η̇0 is the initial velocity, and
C is a coefficient, the value of which is 0.29 in a light-heavy
vacuum-solid interface [12,22,24]. Dimonte et al. studied
the maximum spike amplitude in a heavy-light solid-vacuum
interface. They modified the model by replacing the initial
velocity by the maximum spike growth rate. The coefficient at
this case is 0.24 and it is explained that the lower coefficient
can be attributed to the phase-reversal process [24]. The ana-
lytical model for long-term behavior of the spike amplitude is
the theoretical basis for evaluating the dynamic yield strength
of solids [24].

The Atwood number, which is defined as A =
(ρ2 − ρ1)/(ρ2 + ρ1), represents the density ratio of materials
on the two sides of the interface. Current research on
elastic-plastic RM instability mainly focuses on the
solid-vacuum interface, i.e., |A| = 1 [23,27–29]. Meanwhile,
the solid-liquid interfaces exist extensively in practical
applications. Building an Atwood number dependent
model for perturbation growth can contribute to a better
understanding of elastic-plastic RM instability and to optimal
designs in weapon physics [30]. In the classic fluidic RM
instability, Zhang and Guo have already studied all spikes
and bubbles at any density ratio closely following a universal
curve in terms of scaled dimensionless variables [30]. In
the elastic-plastic Rayleigh-Taylor instability, Piriz et al.
adequately illustrated the perturbation growth at solid-liquid
interfaces of different densities [31–38]. At the Cu-Al
interface, it is found that the influence of yield stress and
initial perturbations on the interface evolution is similar
to that at solid-vacuum interface [39]. Solids undergoing
large deformations in contact with fluids occur in several
engineering contexts including implosion and penetration
[39]. During the implosion, the pusher remains in a solid
state, conserving strength properties, while the absorber is
melted, remaining in a liquid state [27,31]. In the experiments
on magnetically imploded liners, the metal shell can be
partially or totally melted depending on the intensity and
time history of the electrical current [15,27]. In these
views, a solid-liquid interface is a common configuration in
engineering applications. The investigation of the perturbation
growth at solid-liquid interfaces of different densities is
necessary and practical in engineering. However, relevant
research on the Atwood number effects in the elastic-plastic
RM instability is not sufficient. This work is aimed at

FIG. 1. Schematic of the solid-liquid interface.

proposing a modified model of the perturbation growth at a
solid-liquid interface at different Atwood numbers.

In this paper, the RM instability of the small perturbed
single-mode interfaces between an elastic-plastic solid and an
inviscid liquid is systematically examined at different Atwood
numbers. By theoretically analyzing the stress condition of the
interface, the motion equation for the interface is built based
on Newton’s second law. Then, the maximum spike amplitude
model with two undetermined model coefficients is proposed.
A numerical simulation is adopted to verify the model and
obtain the model coefficients. Further, the applicability of this
modified model is verified by comparing the numerical results
with the model profile under different initial conditions such
as Atwood number and shock speed. The consistency of the
theoretical prediction and numerical results is satisfactory.
Therefore, this model can be used to describe the Atwood
number dependent spike growth in the RM instability for
small perturbations.

II. MODIFIED MODEL OF PERTURBATION GROWTH
AT DIFFERENT ATWOOD NUMBERS

The elastic-plastic RM instability at the solid-liquid inter-
face is considered theoretically in this section. An analytical
model is proposed to describe the evolution of small perturba-
tions at different Atwood numbers. The theoretical analysis is
based on the work of Piriz et al. [10,12,27,34,35] investigating
the RM instability in elastic-plastic media at the solid-vacuum
interface (A = 1). The effect of density ratio is introduced by
an Atwood function, which can make the model appropriate
for solid-liquid interface at different Atwood numbers.

A schematic of the interface is shown in Fig. 1. A medium
with elastic-plastic properties is located in the semispace
y < 0 and the inviscid liquid is located in the semispace y > 0.
The upper area is the solid material that the shock wave has
already traveled through while the middle area represents the
undisturbed solid. At the interface of the solid and liquid,
there is a small sinusoidal perturbation characterized by the
wavelength λ, the initial amplitude η0, and the perturbation
wave number k (k = 2π/λ). In the case of small perturbations,
the wave number and initial amplitude should satisfy the
relationship kη0 � 1. The effect of the interaction between
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the shock wave and the solid-liquid interface generates a rota-
tional velocity field inside the shock compressed material. Be-
fore the solid material melts, the effect of the rotation velocity
field in liquid on solid media is relative weak. Transmitted and
reflected shocks have traveled sufficiently far, compared to the
wavelength of the perturbations. Baroclinic effects contribute
to the early-time, or small-amplitude linear growth of the
instability before nonlinear developments of the perturbation.
Therefore, the shock wave reflections are ignored in the limit
of small perturbations and weak shock [12,40,41]. The details
of the interaction between the shock wave and the solid-liquid
interface are ignored. At t = 0, the shock wave has already
traveled through the interface and propagates into the liquid
semispace. In the weak shock limit, the impulsive model of
Richtmyer denotes that the velocity of interface is kη0�uA in
the linear regime [2], where �u denotes the interface velocity
jump and A is the Atwood number. This linear perturbation
growth rate kη0�uA at fluid interfaces is considered as the
initial velocity of the elastic-plastic RM instability at t = 0.
After the shock wave propagates far into the undisturbed area,
the particle velocity decays exponentially as eky(y < 0) with
the distance from the interface. Therefore, the velocity field
can be approximated in the following form corresponding to
an ideal inviscid fluid:

η̇ = vy = ξ̇ (t )eky sin kx, (2)

where ξ̇ (t ) is the instantaneous normal velocity at the inter-
face. Therefore, the amplitude is written as

η = ξ (t )eky sin kx, (3)

A Prandtl-Reuss rule with the von Mises yield stress crite-
rion [42,43] is used to get a convenient expression for the de-
viatoric part Si j of the stress tensor σi j = −pδi j + Si j , where p
is the thermodynamic pressure and δi j is the Kronecker tensor
[12].

Ṡi j + 2GSi j
SmnDmn

SmnSmn

= 2GDi j, Si jDi j > 0 and Si jSi j = 2

3
Y 2, plastic,

Ṡi j = 2GDi j, Si jDi j < 0 and Si jSi j <
2

3
Y 2, elastic,

(4)

where G is the solid shear modulus and Y is the solid yield
stress. The elastic limit of the solid material is ξp. After
the shock wave travels through the interface, the stresses
produced by the interaction between the shock wave and
perturbations cause the deformation of the solid material.
The perturbations compress, invert, and then grow in tension
into the liquid region forming the spike structure. In this
procedure, the deformation of solid material gradually grows
larger than the elastic limit. The later evolution of the spike
takes place within the plastic state. According to previous
work of Piriz et al., the normal component Syy of the deviatoric
part of the stress tensor is written as [12,34]

Syy =
{

2kGξeky sin kx, ξ � ξp
1√
3
Y sin kx, ξ � ξp

. (5)

Taking a voxel in the interface into consideration, the cross-
sectional area of the voxel is D. The motion of interface is
associated with the voxel. When the shock travels through
the solid-vacuum interface, it is assumed that only the fluid
within a distance a = l

k participates in the motion in the linear
regime. In the same shock intensity, the length of the voxel is
assumed to be inversely proportional to the total density of the
materials. Considering that the development of the interface
can be seen as the process of shock-accelerating media, the
value of a is assumed to be inversely proportional to the total
density of the materials. Therefore, we can get that

a = l

k

ρs

ρ1 + ρ2
, (6)

where ρs is the density of the solid; ρ1 and ρ2 are the densities
of the material on each side of the interface. For the reason
that it cannot be determined whether the shock wave travels
from solid to liquid or from liquid to solid in this section, ρs is
used instead of ρ1 or ρ2. l is a dimensionless parameter related
to length. In the linear stage, the evolution of the interface is
approximately symmetrical.

In the evolution of the interface, the voxel is subjected to
thermodynamic pressure and solid stress. In the case of a small
perturbation, the external force that is applied on the voxel in
the normal direction can be written as

Fy = (
Fp1 + Fp2

) − SyyD, (7)

where p1 and p2 are the thermodynamic pressures on each
side of the interface; Fp1 and Fp2 are forces caused by the
thermodynamic pressure. D is the cross-sectional area. Under
the pressure balance assumptions, thermodynamic pressure
satisfies the relationship P1 = P2 and Fp1 + Fp2 = 0. Based on
the force analysis, the motion equation of the voxel can be
obtained based on Newton’s second law:

(ρ1aD + ρ2aD)η̈ = −SyyD. (8)

This equation can be further written as

(ρ1a + ρ2a)ξ̈ =
{−2kGξ, ξ � ξp

− 1√
3
Y 1

eky , ξ � ξp
. (9)

The maximum amplitude of the spike can be obtained in
three steps: the elastic state, the transient time when the solid
material transforms from the elastic state to the plastic state,
and the plastic state. In the elastic state, the deformation of the
solid is below the elastic limit ξp. The motion equation can be
reduced to the following form:

ξ̈1(t ) + 2kGξ1(t )

(ρ1 + ρ2)a
= 0. (10)

During the process when the shock wave travels through
the interface (t = 0), it is assumed that there is no deformation
near the interface and so the elastic-plastic property can be
ignored. Therefore, the initial growth rate of the interface
agrees with the linear growth rate of the impulsive model for
the fluidic RM instability [2]. At t > 0, the growth rate of
the spike amplitude decreases because of the elastic-plastic
property and then the interface evolution exhibits nonlin-
ear mechanical behavior. The initial conditions can then be
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written as ξ1(0) = 0, ξ̇1(0) = u0 = kη0�uA. Under these cir-
cumstances, we can get the solution of ξ1(t ) as

ξ1(t ) =
√

a(ρ1 + ρ2)

2kG
u0 sin

[√
2kG

a(ρ1 + ρ2)
t

]
, (11)

ξ̇1(t ) = u0 cos

[√
2kG

a(ρ1 + ρ2)
t

]
. (12)

To simplify the expressions, we introduce a parameter τ

given by

τ =
√

a(ρ1 + ρ2)

2kG
, (13)

so that the expressions for ξ1(t ) and ξ̇1(t ) can be reduced to
the following forms:

ξ1(t ) = τu0 sin

(
t

τ

)
, ξ̇1(t ) = u0 cos

(
t

τ

)
. (14)

The transient time when the solid material transforms from
the elastic state to the plastic state is needed to determine the
initial conditions in the plastic state. According to the contin-
uum hypothesis, the elastic limit ξp satisfies the relationship

−2kGξp = − 1√
3

Y e−ky. (15)

In the case of small perturbation, the value of −ky is rel-
atively small. To simplify the subsequent part of the solution
process, it is assumed that the value of e−ky is proportional
to the value of e−kyp (the scale factor being m), and yp is
associated with the length of the spike. Similar to the research
method in the previous work of Piriz et al. [33–35], the
average motion of a region is affected by the instability which
extends up to a distance of the order of k−1 from the interface.
The onset of the plastic flow is not expected to be felt until
plastic flow has affected the entire region with the thickness
of the order k−1. In order to simplify the solution process, we
decide not to give a precise account of the motion equation.
Therefore it is reasonable to approximately give the value
of its average behavior over the region of thickness k−1 and
evaluate the equation at yp = k−1 in the solid-vacuum case.
When considering the effects of density ratio, the expression
of yp is similar to that of a:

yp = n

k

ρs

ρ1 + ρ2
. (16)

Similar to l , n is also a dimensionless parameter related to
length. In the subsequent analysis, e−ky is simply recorded as
b, so that the elastic limit is ξp = Y b/2

√
3kG. By using the

solution of ξ1(t ), the transient time tp when the solid material
transforms from the elastic state to the plastic state can be
calculated as

tp = τ arcsin

(
bY

2
√

3kGu0τ

)
. (17)

In the plastic state, the spike amplitude grows larger than
the elastic limit. The motion equation in this state can be

written as

ξ̈2(t ) + Y b√
3a(ρ1 + ρ2)

= 0. (18)

If it is assumed that the deformation and deformation rate
are continuous when the solid material transforms from the
elastic state to the plastic state, the initial conditions in this
state are

ξ1(tp) = ξ2(tp) = ξp, (19)

ξ̇1(tp) = ξ̇2(tp) = u0 cos

[
arcsin

(
Y b

2
√

3kGu0τ

)]

= u0

√
1 − Y 2b2

12k2G2u2
0τ

2
. (20)

By integrating the motion equation in the plastic state from
t = tp, the evolution of ξ2(t ) is obtained as follows:

ξ̇2(t ) − ξ̇2(tp) = − Y b√
3a(ρ1 + ρ2)

(t − tp), (21)

ξ2(t ) − ξ2(tp) = − Y b

2
√

3a(ρ1 + ρ2)
(t − tp)2 + ξ̇2(tp)(t − tp).

(22)

If the amplitude of the spike reaches its maximum value
at t = tm, the first-order time derivative of the spike length is
zero at that time; i.e., ξ̇max(tm) = 0. Furthermore, the follow-
ing equation can be obtained.

ξmax − ξ2(tp) =
√

3

2

a

b

1

Y
(ρ1 + ρ2)

(
u2

0 − Y 2b2

12k2G2τ 2

)
. (23)

By rearranging the above equations, we can get

ξmax = Y

4
√

3kG
b +

√
3

2

a

b

(ρ1 + ρ2)u2
0

Y

= Y

4
√

3kG
b +

√
3

2

a

b
(ρ2 − ρ1)A

(kη0�u)2

Y
. (24)

Therefore, the expression of kηmax can be obtained as
follows:

kηmax = Y

4
√

3G
+

√
3

2

ka

b2
(ρ2 − ρ1)A

(kη0�u)2

Y
. (25)

Given the relationship between ρ1, ρ2, ρs and the Atwood
number,

ρs

ρ1 + ρ2
= 1 + |A|

2
, (26)

combined with the expressions for a and b, the expression for
kηmax can be rewritten as

kηmax = Y

4
√

3G
+

√
3

2
lρsn

2

(
1 + m

1 + |A|
2

)2

A2 (kη0�u)2

Y
.

(27)
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By merging the dimensionless numbers and introducing
parameters α and β, the final expression for kηmax is

kηmax = Y

4
√

3G
+ α(β|A| + β + 2)2ρsA

2 (kη0�u)2

Y
. (28)

The following auxiliary function f (A) dependent on the
Atwood numbers is introduced to represent the effect of
density ratio on the spike growth.

f (A) = α(β|A| + β + 2)2A2, (29)

kηmax = Y

4
√

3G
+ f (A)

ρs(kη0�u)2

Y
. (30)

In the next section, numerical simulations are conducted
to study the variation of the spike maximum amplitudes under
different Atwood numbers, and then estimate the values of the
parameters α and β.

III. NUMERICAL VALIDATION OF
THE MODIFIED MODEL

A. Numerical framework

An Eulerian finite-difference multicomponent code is
adopted in this work. In the Eulerian frame of Cartesian
coordinates, the conservation equations for mass, momentum,
energy, deformation gradient tensor, and volume fraction are,
respectively, as follows:

∂ρ

dt
+ ∂ρui

∂xi
= 0,

∂ρui

∂t
+ ∂ (ρuiu j − σi j )

∂x j
= 0,

∂ρE

∂t
+ ∂ (ρEuj − σi jui )

∂x j
= 0,

∂ge
i j

∂t
+ ∂uk

e
ik

∂x j
= uk

(
∂ge

ik

∂x j
− ∂ge

i j

∂xk

)
+ Lp

ikge
k j,

∂α

∂t
+ uk

∂α

∂xk
= 0, (31)

where ρ, ui, E , σi j, α are density, xi coordinate velocity, total
energy, Cauchy stress, and volume fraction, respectively gi j

is the inverse deformation tensor defined as gi j = ∂Xi/∂x j . X
and x are coordinates in the Lagrangian and Eulerian frames
of reference. In the deformation gradient tensor equation, the
tensor Lp

ik reflects the influence of the plastic effect on the
elastic deformations and can be modeled in the following
form:

Lp
ik = 1

τrel
ge

imσ ′
mn(ge)−1

nk ,

1

τrel
= 1

2μ(ρ/ρ0)τ0

⎡
⎣H

(
σ ′

i jσ
′
i j − 2

3σ 2
Y

)
μ2

⎤
⎦. (32)

Here σ ′
i j = σi j − σkkδi j/3 is the deviatoric Cauchy stress,

τ is the relaxation time, and μ is the shear modulus of solid
materials. H (· · · ) is the Heaviside function and is used to de-
termine whether the solid material is in the plastic state. When

TABLE I. Simulation parameters of copper and liquid

Copper Liquid

ρ (kg/m3) 8900 1–3000
c0 (m/s) 3940 1480
s 1.49 2.56
γ 2.02 0.4934
Y (MPa) 500
G (GPa) 39.38

the yield criterion σ ′
i jσ

′
i j − 2/3σ 2

Y > 0 is satisfied, the plastic
effect should be considered. A diffuse interface model based
on the volume fraction was introduced to solve the problem
of multimedia mixing. The whole flow field is regarded as the
mixing region. Mixing density ρ, Cauchy stress σ , pressure p,
internal energy εh, and elastic energy εe can be well defined
by the volume fraction. The mixing model based on volume
fraction is shown in the following.

ρ = α1ρ1 + α2ρ2, σ = α1σ1 + α2σ2,

ρεh = α1ε
h
1 + α2ε

h
2, ρεe = α1ε

e
1 + α2ε

e
2,

p = (ρεh − B)/A, (33)

where the subscripts 1 and 2 represent material 1 and material
2, respectively. A and B are corresponding coefficients related
to the equation of state. In this paper, the time scheme is a
third-order Runge-Kutta method and the differential scheme
used in space is the fifth-order accurate weighted essentially
non-oscillatory (WENO5) scheme.

Under a shock wave, the Mie-Gruneisen equation of state
is adopted to characterize both the solid and the liquid
[13,22,44]. In the simulation, the solid material is set to be
copper while the liquid is set to be water. The Atwood number
is adjusted by changing the density of the liquid. Then the
evolution of small perturbation of the interface undergoing
the elastic-plastic RM instability at different Atwood numbers
is investigated. To avoid influences caused by the thermody-
namic parameters, the density of the liquid varies while the
thermodynamic parameters of the liquid remain consistent
with water in the different numerical cases. The simulation
parameters of copper and liquid are listed in Table I.

B. Verification of the simulation program

To verify the correctness of the simulation code, the nu-
merical results are compared with the conclusions in the
literature [24]. As shown in Fig. 2, the initial conditions
are in accordance with the configurations in Ref. [24]. A
shock is produced in copper by means of setting up a Rie-
mann problem. The shock moves toward a perturbed interface
within solid. Shock speed is 7640 m/s. Two-dimensional (2D)
single-mode perturbations (kη0 = 0.125) are located at the
interface of the copper and the gas. The density of the copper
is 8900 kg/m3 and the density of the gas is 1 kg/m3. In the
simulation of this part, we use one wavelength λ ≡ 2π/k =
4.3 cm with 100 zones/λ for numerical convergence. The size
of the computational domain is 4.3 cm × 8.6 cm and it is
paved with Nx × Ny = 100 × 900 cells. For the reason that the
variations of elastic-plastic flow in the Y coordinate is mainly
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FIG. 2. The initial flow field accordance with that in Ref. [24].

discussed in this manuscript, we only refine the grids in the Y
direction in order to reduce the computing time. Meanwhile,
we have checked that the numerical results are convergent at
this mesh quantity. The boundary conditions at the left and
right sides are periodic. For the accuracy of the verification
process, the initial simulation condition is set to be the same
as that in the literature [24]. After the shock wave travels
through the interface, the velocity acquired by the interface
is used as background velocity. Then, the initial velocity of all
regions will be changed by reducing the estimated interface
velocity. In this way, the mean position of the interface will
approximately remain in the computational domain with the
development of the interface [23]. The position of the mixing
zone is differentiated by volume fraction thresholds. Some
characteristic statistics such as spike amplitude and bubble
amplitude are collected.

By comparing the numerical results with those in the
literature, it is found that the profile of the width of the mixing
zone as a function of time is almost the same as that in the
literature. Meanwhile, the maximum length of the spike and
bubble are close to the reference solution and the amplitude
evolution of the spike and bubble are consistent (Fig. 3). That
is, the numerical results for the linear perturbation growth of
the RM instability are trustworthy. Therefore, it is reasonable
to use this code to further research the evolution of the
interface undergoing elastic-plastic RM instability at small
perturbations.

C. Numerical results at different Atwood numbers

Given that the correctness of the simulation code has been
verified, we can adopt this code to investigate the evolution
of the small perturbed interface at different Atwood numbers.
The relevant characteristic statistics are collected and com-
pared with the model results of Eq. (28). The undetermined
model coefficients α and β are estimated by using the numer-
ical results at different Atwood numbers. In addition to the

FIG. 3. Simulated evolution of the width of the mixing zone,
spike amplitude, and bubble amplitude compared with that in
Ref. [24].

density of the liquid substance, other simulation parameters
remain invariable during the numerical process. For different
numerical cases, the densities of the materials on both sides
of the interface and the corresponding Atwood numbers are
listed in Table II. The setting of the initial flow field is almost
the same as that of Sec. III B, except that the substance in the
low-density region changes from gas to liquid of different den-
sities. The 2D single-mode perturbations (kη0 = 0.125) are
located at the interface of copper and liquid. The wavelength
of the perturbation is also 4.3 cm. The density of the solid is
8900 kg/m3 and the density of the liquid varies in the range
of 1 kg/m3–3000 kg/m3. The variation of liquid density is
determined through numerical tests. When the density of the
liquid is larger than 3000 kg/m3, the perturbation growth is
relatively slow and the changes of the maximum spike length
are small at different Atwood numbers. In this section, the
most important characteristic statistic is the spike’s maximum
amplitude. The liquid is considered inviscid in the numerical
process.

TABLE II. Densities and Atwood numbers at different numerical
cases.

Postshock
Case ρ1 (kg/m3) ρ2 (kg/m3) Atwood Atwood

1 8900 100 −0.978 −0.976
2 8900 300 −0.935 −0.929
3 8900 500 −0.894 −0.884
4 8900 700 −0.854 −0.842
5 8900 1000 −0.798 −0.782
6 8900 1500 −0.712 −0.691
7 8900 2000 −0.633 −0.609
8 8900 2500 −0.561 −0.536
9 8900 3000 −0.496 −0.469
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FIG. 4. The interface evolution (A = −0.884) at different stages (volume fraction contours): (a) initial conditions; (b) compression;
(c) inversion; (d) tension; (e),(f) long-term behavior.

The results of case 3 are analyzed as an example. The
volume fraction contours at different dimensionless times are
shown in Fig. 4. The numerical time is scaled by the function
τ = kη̇0t , where τ is the dimensionless time. Similar to the
results obtained in the literature [12,23], the growth of small-
amplitude perturbations can be divided into three stages.
First, the elastic-plastic medium is quickly processed into the
plastic state by the loading shock wave. The spike amplitude
increases linearly in this state. Then, during the spike grow-
ing process, deformation begins to occur in the undeformed
material away from the interface. The undeformed region will
first enter the elastic state and then change to the plastic state
with the growth of the spike. With the expansion of the elastic
deformation region, the increasing elastic stress will result in
the slowing down of the growth rate of the spikes. In this

stage, the elastic properties dominate the above mechanical
behavior. The solid adjacent to the interface transitions into
an elastic state. The growth rate of the spike nonlinearly
decreases to zero. Finally, the interface tends to stabilize. The
amplitude of the spike oscillates around an elastic limit related
to the material properties of the solid. As shown in the volume
fraction contours, the length of the mixing zone tends to a
fixed value after the interface is fully developed.

At different postshock Atwood numbers, the profile of
the spike amplitude as a function of dimensionless time is
shown in Fig. 5. The linear or weak nonlinear growth of
perturbations in the early stage is closely associated with
the physical evolution, but the slow change of the mixing
zone in the long-term behavior is due to the diffusion of
the numerical scheme. In this work, the maximum spike
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FIG. 5. The profile of the spike amplitude as a function of
dimensionless time at different postshock Atwood numbers.

length is recorded at the end of the weak nonlinear growth
of perturbations, excluding the diffusion stage. The closer
the value of the Atwood number gets to 1, the greater the
difference in substance densities. As can be seen in Fig. 5, as
the Atwood number approaches −1, the linear growth profile
of the spike amplitude becomes steep and the maximum spike
amplitude also becomes larger, apparently. After the shock
travels through the interface, the evolution of the interface can
be regarded as a process in which the substance behind the
interface accelerates the substance in front of the interface.
Therefore, when discussing the effects of Atwood numbers on
the spike amplitude, it is assumed that the length of the region
moved with the interface is inversely proportional to the total
density in the case of the same shock intensity. Moreover, with
increasing density of the accelerated liquid, the acceleration
will decrease, leading to a decrease in the maximum spike
amplitude.

D. Estimation of coefficients and validation
of the modified model

By comparing the characteristic statistics collected from
the simulation with the modified model, the undetermined
model coefficients α and β can be estimated. Firstly, by
using the maximum spike amplitude at the solid gas interface
(A = −1), we can get the constraint between α and β. Thus,
the number of the undetermined model coefficients reduces
to 1. Furthermore, the value of the coefficient can be esti-
mated by using the relevant characteristic statistics at different
Atwood numbers, and it is found to be α = 0.0034, β =

FIG. 6. Comparisons between model profile and numerical re-
sults at different Atwood numbers,

3.0374. By combining with Eqs. (29) and (30), an Atwood
number dependent function can be confirmed by the model
coefficients and then the model profile of the maximum spike
amplitude can be obtained. As shown in Fig. 6, it can be
concluded that the consistency of the model profile and nu-
merical results is satisfactory. When A = −1, we can get the
value of the Atwood dependent function f (A = −1) = 0.222,
which compares favorably to those from the literature (0.29 in
Ref. [12], 0.24 in Ref. [24], 0.22 in Ref. [23]). The model then
reduces to

kηmax = Y

4
√

3G
+ f (−1)

ρs(kη0�u)2

Y

= Y

4
√

3G
+ 0.222

ρs(kη0�u)2

Y
. (34)

To verify the applicability of the modified model, the char-
acteristic statistics are collected at different initial conditions
and then compared with the model results. This validation
process is implemented by comparing the numerical results
with those obtained by the model under different initial condi-
tions. As listed in Table III, the initial conditions are adjusted
by changing the Atwood numbers and shock speed. Seen
in Fig. 7, the blue (solid) line is the model profile of the
maximum spike amplitude at the same shock speed as that
in Sec. III C while the red (dash dot) line is the model profile
when the shock speed is 7000 m/s. The numerical results of
the verification cases show good agreement with the model
profile. It can be concluded that the modified model is not

TABLE III. Numerical parameters at different verification cases.

Postshock
Case ρ1 (kg/m3) ρ2 (kg/m3) Atwood Shock speed (m/s) Atwood

1 8900 1200 −0.762 7640 −0.744
2 8900 8500 −0.023 7640 −0.022
3 8900 500 −0.894 7000 −0.881
4 8900 1000 −0.798 7000 −0.777
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FIG. 7. Model validation under different initial conditions,

only suitable for specific shock intensity and Atwood number,
but it also has adaptability in the limit of small perturbations
and weak shock conditions.

IV. CONCLUSION

In this work, the effect of Atwood number on the RM in-
stability of the small perturbed interfaces between an elastic-
plastic solid and an inviscid liquid is systematically examined.
When a shock wave travels through these interfaces, the de-
velopment of hydrodynamic instabilities in the elastic-plastic
solid is induced by the baroclinic effects and governed by the
elastic-plastic constitutive properties of the solid. In the case
of small perturbations and weak shock limit, the initial pertur-
bations will stop growing when the spike amplitude reaches a
maximum value. This phenomenon is mainly attributed to the
yield strength of the solid but the maximum spike amplitude
is also affected by the density ratios of the media, which is
represented by Atwood number. By assuming that the elastic-
plastic property can be ignored when the shock wave travels
through the interface, the initial growth rate of the interface is
considered the same as the linear growth rate of the impulsive

model for the fluidic RM instability. After the shock wave
travels through the interface, the evolution of the interface
can be regarded as a process in which the medium behind
the interface accelerates the medium in front of the interface.
Thus, the growth rate of initial perturbations will slow down
if the absolute value of the Atwood number gets close to 1.
Eventually, the spike amplitude reaches a maximum value and
remains oscillating due to the elastic property of the solid.

Based on the previous work by Piriz et al., the proposed
analytical model at the solid-gas interface is modified to
describe the long-time behavior of spike amplitude at different
Atwood numbers. The model has two undetermined coeffi-
cients, which can be obtained by numerical simulation. Nu-
merical simulation is based on a 2D Eulerian finite-difference
multicomponent code. In the numerical results, the linear
growth profile of the spike amplitude becomes steep and
the maximum spike amplitude grows larger as the Atwood
number approaches −1, which is consistent with the theoret-
ical analysis. The constraint between the two undetermined
coefficients can be obtained at the case A = −1. Therefore,
the number of the undetermined model coefficients reduces to
1. By analyzing the relevant characteristic statistics, the last
undetermined model coefficient is obtained and the model is
completed. Moreover, the applicability of this modified model
is verified by comparing the numerical results with the model
profile under different initial conditions. The theoretical and
numerical results show good agreement; this indicates that
this modified model can be used to describe the long-time
Atwood number dependent behavior of spike growth in RM
instability at small perturbations.
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