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Systems far from equilibrium respond to probes in a history-dependent manner. The prediction of the system
response depends on either knowing the details of that history or being able to characterize all the current
system properties. In crystal plasticity, various processing routes contribute to a history dependence that may
manifest itself through complex microstructural deformation features with large strain gradients. However, the
complete spatial strain correlations may provide further predictive information. In this paper, we demonstrate an
explicit example where spatial strain correlations can be used in a statistical manner to infer and classify prior
deformation history at various strain levels. The statistical inference is provided by machine-learning techniques.
As source data, we consider uniaxially compressed crystalline thin films generated by two dimensional discrete
dislocation plasticity simulations, after prior compression at various levels. Crystalline thin films at the nanoscale
demonstrate yield-strength size effects with very noisy mechanical responses that produce a serious challenge
to learning techniques. We discuss the influence of size effects and structural uncertainty to the ability of our

approach to distinguish different plasticity regimes.
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I. INTRODUCTION

The term “far from equilibrium” describes statistical en-
sembles that are not exploring the available microstates in
an ergodic manner. Thus, the system’s response to probes
(e.g., mechanical stress, electric or magnetic fields) is highly
dependent on the particular initial condition and its history.
In metallurgy, far from equilibrium microstructures are easily
created by plastic deformation but their history is typically
hidden (e.g., various processing routes used, such as extru-
sion, forging, etc.). It is common that a sample that had been
processed in various ways, then polished, is further mechan-
ically tested as a part of a component [1-6]. In such cases,
characterizing the mechanical response of the sample requires
either the precise history of the processing routes taken, or the
precise knowledge of the particular state realized and its state
variables. In plasticity, the main observable, the strain tensor
of the freshly deformed sample, is usually not capable of
uniquely and reliably characterizing the mechanical response
[7]. Nevertheless, spatially resolved strain correlations do
reflect the full spatial structure of the microstructure [8—11],
and are formally equivalent [8] to capturing microstructural
strain gradients [12-14]; strain gradients have been shown
to classify plastically deformed microstructures in various
cases [15,16]. In this paper, we present a direct and simple
example where we can statistically infer the prior deformation
history of a crystalline thin film sample through a small-strain
mechanical test by only using spatial strain correlations. We
utilize discrete dislocation dynamics simulations to produce
test samples with well-controlled mechanical processing his-
tories. We demonstrate, using unsupervised machine learning,
that spatial correlations encoded in the strain images of the
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reloaded samples contain adequate information to produce a
full classification of dislocation-driven deformation history at
multiple scales and perform reliable predictions.

It is an axiom of materials science [17] that microstruc-
ture controls properties, and of course microstructure is the
result of processing. In metallurgy, standard metal preparation
techniques involve a variety of processing steps [18] with
associated process-structure-property linkages; consequently,
components of the same net shape and composition, but dif-
ferent prior processing technique(s), may exhibit different me-
chanical properties. In some fields, these processing-structure-
property relationships are empirically well established, and
in some others, only general qualitative knowledge is com-
mon. However, in theory [8] as well as in practice [18], this
type of linkage may be questioned when memory-dependent,
hysteretic phenomena [19] such as friction, plasticity, or/and
fracture are involved, but only partial sample history informa-
tion exists.

Nevertheless, in the context of crystal plasticity, there has
been strong evidence that the formal absence of the complete
sample deformation history information may be remedied to
a large degree by accounting for developed local gradients
in the plastic or elastic distortion [20,21]. These gradients
naturally represent a “truncated truth” of what happened to
the material through its deformation, but remain at least a
set of observables that one may check by direct mechanical
tests and also display a sense of clarity by connecting to
the microstructural feature of strain localization [7]. Strain
gradients in a microstructure can be directly captured through
measures of spatial strain correlations [8]. The fact that spatial
correlations of an observable can capture and classify its
gradient has been the principal reason that spatial correlations
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have been traditionally used as a direct way to assess phase
transitions in statistical mechanics [22], driven by interface
phenomena of appropriately defined order parameters [23].
In phase transitions, the spatial correlations of the order
parameter develop a long-distance expectation value which
can be a direct phase signature. However, crystal plastic-
ity’s complexity may allow for a large variety of possible
spatial correlation features (depending on type of plasticity
activated), and thus, it is natural to avoid a direct—and pos-
sibly constraining—assessment of particular short-distance
features.

Spatial correlation features of crystal plasticity may con-
tain various plastic deformation signatures that may include
dislocation-driven motions and processes, diffusional creep,
mechanical twinning, or grain boundary sliding [24,25]. De-
spite the multitude of origins, the success of strain gradients in
capturing deformation history of plastically deformed materi-
als is based on the main spatial signatures of strain localization
and shear banding [7,26]. Shear bands have been identified
as possible indicators of prior deformation, given that the
creation of slip bands during various small-load mechanical
tests of polished samples shows strong dependence on the
prior deformation history [1,2,4]. However, the presence or
absence of shear banding may not suffice for characteriz-
ing prior processing, and a more complete characterization
of crystal plasticity history should require the classification
of the full spatial correlations of stress and strain tensorial
fields [21].

In this paper, we only focus on crystal plasticity signatures
during uniaxial compression of thin films, obtained through
a two dimensional discrete dislocation dynamics model (2D-
DDD). Given that dislocation movements are the principal
instigators of plastic deformation on materials, this study
captures a large number of experimentally relevant cases and
can provide a transparent application framework [27-30].
The simulated systems begin in a state with no pre-existing
mobile dislocations, but with a set of dislocation sources and
obstacles present (see also Fig. 1). The systems are then run
through a compression and release, with the amplitude of this
compression being the “prior deformation.” After release, the
systems are “polished” (by erasing any pre-existing mem-
ory), and then they are subjected to a second, low-amplitude
compression, the amplitude of which is called the “testing
deformation.” The strain developed during the testing defor-
mation is imaged, and information derived from this imaging
process is the input to a machine-learning (ML) approach,
whose goal is to accurately determine the amplitude of the
prior deformation. Because we use a discrete set of prior de-
formation amplitudes, our ML task is one of classification—
for a given data set obtained from the testing deformation,
the ML setup should be able to say which discrete prior
deformation the sample had undergone. While we measure
the strain developed during the testing deformation directly
through simulation, the process is meant to mimic a readily
accessible, nondestructive experimental technique, namely,
digital image correlation (DIC) [31-38].

For our simulations and chosen tests, we use the exemplary
case of thin Al films (<2 pum) under uniaxial compression.
The films may have undergone prior deformation of 0.1, 1,
or 10% deformation in terms of prior uniaxial compression,
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FIG. 1. Schematic of experimental noninvasive test in modeling
and sequence of sample loading: A schematic of the sequence of
events when loading, unloading, and reloading a sample is shown,
with the corresponding stress and strain graphs vs the time step of
simulation. A sample is obtained from 2D-DDD simulation and it’s
loaded to a specific strain value—"“Prior” loaded stage (stage L).
Then, the sample is unloaded to zero stress and the remaining plastic
strain can be calculated—"Prior” unloaded stage (stage U). Finally,
the sample is reloaded to a testing deformation—"“Test” reloaded
stage (stage T). Even though a sample has been plastically deformed
(stage L), the samples obtained from experiments can be polished,
thus the surface of a sample is not able to provide information about
deformation (sample at stage U can be seen in the figure as having
smooth surface). Such techniques are applicable in experiments
such as digital image correlation, where randomly placed tracking
nanoparticles are detected optically and contribute to correlation
statistics are applied to the sample. Then, as the sample is reloaded,
the permanent deformation can be observed, since there are changes
in the distances between tracked nanoparticles.

before unloading to reach mechanical equilibrium (cf. Fig. 2).
Over the last decade, it has been shown that experimental
[39] and simulation tests [28,29] on such thin-film geometries
display very noisy characteristics that may develop unpre-
dictable features, such as avalanches [40], especially at very
small widths w < 500 um (see for example the deformation
features in Fig. A.l in Appendix A of the Supplemental
Material (SM) [41]). While the overall behavior of the films
may be traceable to the behavior of the film’s mean dislocation
density, in this paper we explore how well we could infer prior
deformation if neither dislocations nor prior deformations
are observable but instead, only the total strain in a small-
strain compressive thin-film test. We believe that our study
can become an exemplary test problem for “black-box” and
physics-agnostic machine-learning methods in data science
and informatics before these methods become applicable to
devices and geometries that undergo mechanical deformation
with elasticity-plasticity.

The remainder of this paper is organized as follows: In
Sec. I we describe our 2D-DDD model and our approach
for quantifying strain correlation patterns. In Sec. III we
discuss the ML approaches we use for processing our data
samples, and present results based on system sizes, reloading
strain, slip systems, and alternate processing techniques. In
Sec. IV we make several remarks and present a summary
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FIG. 2. Schematic of the various loading histories and testing
deformation on samples: A material has an assumed prior defor-
mation history (stage L, red circles). We unload the sample and
obtain the stage U (blue circles). How does the strain field, which
characterizes stage T (green circles), reflect the prior history? The
testing deformation €7 — €y is constant in all T-U cases.

of our work. Appendix A in the SM [41] contains more
details of the numerical simulations, while in Appendix B
in the SM we discuss the loading or unloading results from
a physical consistency perspective. In Appendix C of the
SM, we describe the calculation of the statistical correlations.
In Appendix D of the SM, we discuss principal component
analysis (PCA), a statistical approach that is heavily used
in this work, while in Appendix E of the SM we present a
more complete set of parameters for our results. Finally, in
Appendix F of the SM we show that spatial resolution does not
affect the classification of prior deformation history in crystal
plasticity.

II. MODEL
A. Discrete dislocation dynamics

We use a 2D-DDD model that is a simplified version of
crystal plasticity. It can capture the most important crystal
plasticity mechanisms, namely dislocation gliding, nucle-
ation, and mutual interactions. Even though there are 3D-
DDD models that include more detailed aspects of dislocation
microstructures [15], this 2D model suffices to demonstrate
the feasibility of our approach while increasing statistical
accuracy. We consider a 2D plane stress problem, consider-
ing only infinitely long straight dislocation lines along the
third dimension. While minimal, this model has been used
extensively in the past for thin-film modeling [27-30], and
the choice of parameters in the model (dislocation sources,
obstacles, slip spacing) are based on previous studies of
nanopillar compression, where realistic dislocation densities
were obtained [29].

In this model, plastic flow occurs by the nucleation and
glide of edge dislocations, on single or double slip systems.
Our primary focus will be on double slip system samples (see
Fig. 3), and we will compare the performance with single
slip in Sec. III C. Samples are modeled [29] by a rectangular
profile of width w, height 4, and aspect ratio @ (o« = h/w). We

FIG. 3. The 2D discrete dislocation plasticity model of uniaxial
compression of thin films: Slip planes (lines) span the sample,
equally spaced at d = 10b, but planes close to corners are deactivated
to maintain a smooth loading boundary. Surface and bulk dislocation
sources (red dots) and forest obstacles (blue dots) are spread homo-
geneously across the active slip planes. Initially the sample is stress
and dislocation free.

study sample widths ranging in powers of 2 from w = 0.125
(or wp) to 2 um with @ = 4. 2D-DDD samples are discretized
on a finite element mesh of 320 x 80 square elements, inde-
pendently of the width. The top and bottom edges (x = 0, w)
are traction free, allowing dislocations to exit the sample.
Loading is taken to be ideally displacement controlled, by pre-
scribing the y displacement at the lateral edges (y = 0, /). The
applied strain rate (for both loading and unloading regimes),
h/h = 10* s~!, is held constant across all our simulations,
similar to experimental practice. Plastic deformation of the
crystalline samples is described using the discrete dislocation
framework for small strains [27]. Each dislocation is treated as
a singularity in a linear elastic background solid with Young’s
modulus £ and Poisson ratio v, whose analytic solution is
known at any position. We assume that the Burgers vector
b =0.25 nm.

In the model, slip planes are separated by 105 and oriented
at +30° from the loading direction (Fig. 3). In the single slip
model, planes are also separated by 105 but are oriented in just
one direction (30° from the loading direction). Bulk sources
are randomly distributed over slip planes and locations, and
their strength is selected randomly from a Gaussian distri-
bution with mean value 7,,c = 50 MPa and 10 % standard
deviation. Forest dislocation obstacles with strength s are
also distributed on the samples. Their strength is Gaussian
distributed with mean 300 MPa and 20 % standard deviation
(see Appendix A of the SM [41]).

At the beginning of the calculation, the crystal is stress
free and there are no mobile dislocations. We only consider
glide of dislocations, neglecting the possibility of climb. The
motion of dislocations is determined by the Peach-Koehler
force in the slip direction. Once nucleated, dislocations can
either exit the sample through the traction-free sides, anni-
hilate with a dislocation of opposite sign when their mutual
distance is less than 6b, or become pinned at an obstacle. Our
simple obstacle model is that a dislocation stays pinned until
its Peach-Koehler force exceeds the obstacle-dependent value
Tonsh. If dislocations approach the physical boundary of the
sample then a geometric step is created on the surface along
the slip direction (see Fig. 4). Our simulations are carried
out for material parameters that are reminiscent of aluminum:
E =70 GPa, v = 0.33. The effective Young’s modulus for
plane stress problems is E = E /(1 — v?) = 78.55 GPa. In
the case of double-slip systems, we consider 50 random
realizations of sources and obstacles in each parameter case
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FIG. 4. Strain profiles captured from the 2D-DDD simulation at
stage L and stage T, w = 2 pm, double slip system: The full sample
is shown in both deformed (a) or undeformed (b) coordinates. A
sample is loaded to 10 % strain, unloaded to zero stress, and reloaded
to testing deformation of 0.1 %. (a) Strain profile for stage L at 10 %
strain. Plastic steps are allowed to emerge on the film surface [29].
(b) A strain profile at the stage T, after subtracting the residual plastic
deformation at stage U. Such strain profiles are analogous to typical
DIC experimental strain profiles. The strain maps are unitless.

(loading of 0.1, 1, 10 %) for a total of n = 150 samples. For
single-slip systems, we consider nine random realizations for
each parameter case for a total of n = 27 samples.

The simulation is carried out incrementally, using a time
step that is a factor 20 smaller than the nucleation time #,,c =
10 ns. At the beginning of every time increment, nucleation,
annihilation, pinning at, and release from obstacle sites are
evaluated. After updating the dislocation structure, the new
stress field in the sample is determined, using the finite
element method to solve for the image fields [27].

The test that we wish to imitate would measure the strain
field in the sample after it has been strained and relaxed, as
described above, and then subjected to a subsequent “testing”
deformation. We consider a testing reload regime that is gov-
erned mainly by the degree of invasiveness we introduce to the
data set. All tests have been carried out for prior deformation
(see Sec. I in three different amplitudes (0.1%, 1%, 10%) of
total strain. Figures 1 and 2 show a schematic of the way
we create our data set: “As annealed” samples (see Fig. 1)
are loaded to three different amplitudes (L stages). For each
stage L, we unload (at O applied stress) to obtain U stages.
In stage U, the samples are stress free, but there is some
remaining strain due to plasticity. We then reload the samples
to a specific testing deformation (stage T).

Samples of different widths (w) undergo the same unload-
reload protocol to create our data set. We have the option to
select at which strain the unload process begins, as well as the
testing deformation level we want to introduce. We perform
tests at two different reloading strains (small-reload data set:
0.1% and large-reload data set: 1.0%). Reloading strain is the
strain difference between stages T and U (€7 — €y). Figure 5
shows two typical stress-strain curves like the one shown
schematically in Fig. 1. Stages L (triangles), as well as stages
U (squares) and T (circles) are shown. Note that in Fig. 5(a),
the inset figure shows that the slope of the stress-strain curve,
in the case of 10% stage L amplitude, exceeds the elastic
modulus when the testing load is applied. Dislocation motion
relieves stress and reduces the effective modulus, but obstacles
and boundary conditions (the top and bottom boundaries are
constrained to be straight) impede relaxation and stiffen the
system. The excess modulus arises from the work required
to maintain straight boundaries as the system deforms. For
more information on the unloading-reloading procedures, see
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FIG. 5. w =2 um, small vs large reload stress strain curves:
Samples are loaded to three different deformations levels (stage
L: v). For each level, the sample is then unloaded (to zero ap-
plied stress) creating stage U (M). The predeformed sample is
then reloaded to a testing deformation (stage T: e). Each color
represents a particular class of prior deformed states. (a) Testing
deformation = 0.1 %. The inset figure represents a zoom-in of the
circled unloading-reloading region (stages U/T at 10% strain). The
dashed line represents the ideal elastic response by just considering
the parent material’s elastic modulus. The solid lines correspond to
the unloading and reloading curves. The reloading curves slightly
deviate from the ideal elastic response even in small stresses, due to
the presence of inelastic precipitates and also due to the ideal form
of applied uniaxial loading. (b) Testing deformation = 1 %.

Appendix B of the SM [41]. Figure 5(b) shows a stress strain
curve obtained through reloading to larger testing deforma-
tion, 1%. The main difference is at the reload points, which
show further deformation of the sample, in contrast to samples
reloaded to smaller strain (0.1%). For the small-reload data
set case, the reload strain value is small enough that does not
introduce further plastic deformation.

B. Extracting machine learning input data
from local strain information

By running 2D-DDD simulations, we acquire strain infor-
mation at the L, U, and T stages. In order to remove the prior
memory, we form the quantity T — U = e7(7) — ey (¥), or
€7y, which is the testing deformation in Fig. 2. This process is
similar to polishing a sample, applying speckles, and tracking
their movement as the sample is further deformed, which is
naturally similar to DIC [31-38].

After removing the prior strain, it is not straightforward to
characterize the plastic behavior of the samples without prior
knowledge (i.e., the degree of plasticity incurred from L and
T stages). For example, in Fig. 6, without prior knowledge
we would not know that the samples in (a) and (b) are
loaded to 10% strain while in (c) and (d) the samples are
loaded to 1% strain. The figures appear to be quite different,
and the similarity of their histories is not recognizable by
eye. However, ML’s trained eye is able to detect the initial
deformation history. Indeed, in later sections we will show
how ML algorithms can show that the figures are quantifiably
and fundamentally different. With the help of ML we are able
to find the initial deformation history of various samples, as
long as the testing deformation does not overwrite it.

We compute the strain €7y on a grid of 2000 x 500 points
overlaid on the 320 x 80 finite element mesh, using finite
element interpolation to compute the strain at each point.
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FIG. 6. Variety of strain profiles in 2D-DDD simulations for
smaller and larger testing strain: For the spatial scale of the figures
see Fig. 4. A sample is loaded to a high deformation of strain (which
could be either 1% or 10%) and then unloaded. This predeformed
sample is then reloaded to a testing strain. In (a) and (b) the samples
are loaded to 10% strain, while in (c) and (d) the samples are
loaded to 1% strain. (a) Small testing deformation (0.1%). w =2
pm. Double slip system simulation. (b) Large testing deformation
(1%). w =1 pum. Single slip system simulation (c) Small testing
deformation (0.1%). w =1 pum. Single slip system simulation.
(d) Large testing deformation (1%). w = 2 um. Double slip system
simulation. For description of color map see Fig. 4(b).

At each point we then construct a scalar, the determinant of
the deviatoric total strain, ¢ = 1(e2, + £3) — Exbyy + 263,
where the tensor ¢ is the total strain. The choice of the total
strain was based on making contact with what is easily ac-
cessible in experimental settings; nevertheless, other choices
such as the plastic strain (cf. Appendix E [41], Fig. E9) do
not appear to qualitatively influence the conclusions of this
work. The scalar ¢ can be interpreted as a color to form a
strain profile image, such as those shown in Figs. 4 and 6.
These strain profiles are then put through a correlation al-
gorithm, following the scheme of the Materials Knowledge
System (MKS) [42]. It is worth noting that the choice of the
deviatoric ¢ invariant satisfies local rotation invariance but is
not unique in any way; as we show in Sec. IITF and also in
Appendix E [41] (cf. Fig. E9), our results do not depend on
the particular choices made.

In the general MKS scheme [43], one selects a spa-
tially varying quantity (quantities) which characterizes the
microstructure. The space of all possible values of these quan-
tities is called the local state space H, and a point in this space
is denoted n. Some care with the vocabulary is required, since
physically speaking, these quantities are simply the values of
fields of interest to us, and may or may not correspond to
thermodynamic state variables. In this study, our quantity is
the determinant of the deviatoric total strain invariant.

In the MKS method, one further considers a “microstruc-
ture function,” defined on the product space of the microstruc-
ture state variables H, and physical space x, m(n,x). In
general use, this function may be thought of as a probability
density on these spaces. In our case, where we have a succes-
sion of particular microstructural instances, the microstructure
function corresponding to each instance is a delta function in
n at each point in space.

In order to obtain data suitable for constructing two-point
correlations, it is necessary to bin the state variables. We
make use of the PyMKS software [44] which offers tools to
accomplish this. The most basic n-axis discretization scheme

is the so-called “primitive basis” scheme, in which one selects
some number P of evenly spaced levels, ng, ny, ... np, and, at
a point in space where the state variable has value n, selects
amplitudes w; for these levels such that Zi w;n; = n, with
the additional restriction that only the n;’s which are directly
below and directly above the local value n are nonzero, and
> .w; = 1. The entire system is thus described by a set of
values {w;} in each spatial point x. In our simulations we dis-
cretize the state space into three different bins, corresponding
to three local states ng, n;, and n, at low, intermediate, and
high local strains. Six possible correlations are observed for
(i, j) € Z, where space Z is defined by the values of (i, j) =
(0,0), (0, 1),(0,2), (1, 1),(1,2),(2,2)) for the three local
states. The two-point correlations are

WL 1 = é > mls. Lmls + 1. 1'], (1)

where CI¥1[r|I, I'] is the conditional probability of finding the
local states [ and [’ at a distance and orientation away from
each other defined by the vector r, for the kth sample. S is the
total number of spatial cells in the microstructure and s is a
specific spatial cell. When the two local states are the same,
| = I, the correlation is called an autocorrelation. If the two
local states are not the same, it is a cross correlation.

III. PREPROCESSING, CLUSTERING, AND
CLASSIFICATION FOR STRAIN PROFILES
OF CRYSTALLINE THIN FILMS

In the model, signatures of plastic deformation are con-
centrated in collective features of the two-point correlation
function [see Eq. (1), Sec. IIB). In order to identify and
classify these collective features, a statistical approach needs
to be implemented in a multitude of training samples. Similar
work has been examined in materials science in the past
[43,45-47]. We use principal component analysis (PCA) [48]
as a dimension-reduction scheme to pick out relevant axes in
a high-dimensional space, and then we do classification on
the points projected along these important axes. PCA takes a
cloud of points in a high dimensional space and computes the
orthogonal directions (“principal components™) in that space
in which the cloud has the largest variance. Projecting the
points onto the subspace defined by the principal components
allows the points to be distinguished from one another suc-
cinctly.

The inputs to our ML algorithm are the correlation func-
tions of the MKS local states discussed in Sec. I B. Having
computed the correlation functions, we now wish to see if
ML can extract prior histories from them. Our ML workflow
will (1) convert correlation functions to vectors, (2) find the
significant features of the vectors by PCA, and (3) apply a
clustering algorithm to identify samples with similar histories.

The correlation functions are evaluated at displacements
r = (ry, 1y) in a box around (0,0). The range of the correlation
function can be limited by choosing the size of the box. We
usually use a 40 x 40 square. By assigning integers v to each
r, we can convert the two-dimensional set of points to a list,
and thus convert the correlation function to a high dimensional
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vector:
d;; = (C¥[r|ningl, C¥ralnn;, ..., C¥rglnn D). (2)

Here, ¢ is the total number of points in the box, (i, j) label
the MKS local states from which the correlation function was
computed, and k labels the samples (i.e., the simulation run).
Thus the stage T strain from each simulation run has been
mapped to a point in a high dimensional space. Our goal is
to see if different stage L strains show up as clusters in this
space.

Alternatively, we can remove some of the high-resolution
information, by selecting small 5 x 5, or bigger 20 x 20,
squares on the overlaid interpolated mesh (Sec. II B). In these
squares, we average the strain information, thus “blurring”
the images. By averaging this information, we also limit the
spatial resolution of the images and we can examine longer
range correlations (see Appendix F of the SM [41]) instead of
the 40 x 40 short range correlations.

At the end we have a matrix D in the form n x m, with n
rows, where n is the number of statistical samples. Each row
contains the vector d;; which may or may not be truncated.
The matrix D has m columns, where m is the number of spatial
correlation instances:

CYrimn;] - - - CYry|nin;]
D= : . 3)
C"[ri|mn ] - - - C™[ry|nin;]

The rows of D are the data vectors on which PCA operates,
and the resulting principal components are linear combina-
tions of the basis vectors of this set ([48]; also see Appendix
D of the SM [41]).

A. Clustering and classification

We use the Continuous k-Nearest Neighbors (CkNN) algo-
rithm [49] to classify samples after running PCA on the data
set. The CKNN algorithm is a clustering algorithm, with the
advantage that the number of clusters is not arbitrarily defined
by the user, as in K-Means clustering [50], but is calculated
through a distance based approach. In particular, CkNN rec-
ognizes samples that are close to each other and calculates the
most probable number of clusters for the data set. After the
number of clusters has been found, the algorithm classifies
the samples similar to the K-Means approach. The algorithm
is an unsupervised method that detects natural clusters within
a data set, and our interest in it is the degree to which the
natural clusters correspond to the prior deformation (stage L).
The input to this algorithm must consist of a set of points,
which in our case is the projections of the correlation matrix
on the three principal components. As an output, the algorithm
produces the classified samples, based on the cluster to which
they belong.

The size of the data set (see Sec. Il A), as in most clas-
sification algorithms, imposes a limitation on the algorithm.
The algorithm groups data samples with similar PCA vectors
into one cluster. We find that the algorithm works better for
larger data sets. This introduces a limitation on classification,
especially for single slip systems. The method is successful
if the samples with different prior loading are grouped into
different clusters. Note that the clustering is done in three

FIG. 7. w =1 pum, 3D projection of PCA results for thin films,
double slip system: ng, no autocorrelation. The colors follow the
definition of Fig. 8. Three different clusters are shown like in Fig. E3.
Introducing the third component into the PCA map does not affect
the results.

dimensions using all three principal components, but most of
our plots are two dimensional, which can sometimes hide the
degree of clustering.

In Fig. 7 we show a 3D PCA map for material samples of
w =1 pm. It is obvious that the clustering isn’t affected by
the third dimension, and in this case the information provided
by PC3 is irrelevant to our results.

The results shown in this paper, except for results shown
in Sec. III D, are extracted by applying PCA and the CKNN
algorithm to the whole data set. The same PCA and CkNN
steps are applied to all simulations. The remainder of this
paper discusses how well the clustering algorithm works in
various situations.

B. Distinguishing plasticity regimes for
small testing deformation (0.1%)

We ran a multitude of tests for different w. For large w
(>0.5 pm), our algorithm correctly clusters and classifies
data into three different groups, one for each of the prior
strain values, which was the main objective of our work.
Figure 8(a) shows that clustering is easily observed for w =
2 um, where three distinct clusters appear in the PCA of
the ng, np autocorrelation. It is clear that there is enough
cluster separation to reliably classify plastically deformed
metals into heavily deformed and less deformed categories.
For these larger sized systems the CkNN algorithm has 100%
accuracy, but for smaller sized systems with w < 0.5 wm the
clustering algorithm fails to cluster data points according to
their deformation state. That is evident in Fig. 9(b), where
one can see what a correct clustering and classification would
look like for specimens of w = 0.5 pm. In Fig. 9(a) one can
observe the results after the CkKNN algorithm is applied to
the data set. Other figures in Appendix E.1 of the SM [41]
show how specimens of various sizes are classified using the
CKkNN algorithm. The plastic noise fluctuations in the system,
as well as the finite size of the system, interferes with the

053003-6



SPATIAL STRAIN CORRELATIONS, MACHINE ...

PHYSICAL REVIEW E 99, 053003 (2019)

-3 p) 20

@ 1.0 ‘x ° ‘ =0 0.02 (©) 20 —-0.024900
: o o oo

N N 0.00 -o.
0.5 - -0.024975
4 - 10% >0 —0.02 > ° ~0.025000
01 10 ~0.025025
0.0 "% #ﬂ -10 —0.04 -0.025050
L3 20 ~0.025075

J : : J -20 -0.06
0.26 0.28 0.30 0.32 =20 -10 X
Cl

FIG. 8. w = 2 um, 2D projection of PCA results for thin films, double slip system: ng, ny autocorrelation. (a) Projection of data set on first
two principal components. Red blobs denote samples with 0.1% strain (stage L), blue triangles samples with 1% strain (stage L), and green
squares denote samples with 10% strain (stage L), respectively. (b) First principal component of PCA, shown in sample coordinates (Fig. 3,
Sec. III B). (c) Second principal component of PCA, shown in sample coordinates (Fig. 3, Sec. III B). The color maps are unitless, showing

the intensity of the PCA-transformed correlations.

classification of smaller sized data samples, while for larger
w the samples are classified correctly.

Figures 8(b) and 8(c) show the representation of the first
two principal components of the data matrix D for samples
of w = 2 pum, shown in their natural sample coordinates
(i.e., the PCA vectors have been converted back to the 2D
grid representation of a correlation function; see Sec. III). If
two correlation functions were randomly chosen from the data
set, the difference between them would most likely look like
Fig. 8(b) (with some scaling) mixed with a smaller amount of
Fig. 8(c). Note that the first principal component is roughly
isotropic, while the second is strongly anisotropic. Figures 8
and 9 show the progression of our ML workflow as sample
width decreases. We can observe that the first PCA component
at larger w is relatively isotropic.
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FIG. 9. w = 0.5 um, 2D projection of PCA results for thin films,
double slip system: ng, ny autocorrelations. The colors follow the
definition of Fig. 8. (a) Projection of data set on first two principal
components with a clustering algorithm applied to the data set,
demonstrating a failure in clustering the various deformation levels.
(b) Projection of data set on first two principal components without
a clustering algorithm applied to the data set, justifying (a). (c) First
principal component of PCA, shown in sample coordinates (Fig. 3,
Sec. 1IIB). (d) Second principal component of PCA, shown in
sample coordinates (Fig. 3, Sec. III B). For description of color maps,
see Fig. 8.

While in Fig. 7(b) we notice a concrete isotropy of the
first principal component of the analysis, it gradually becomes
anisotropic as the sample width decreases [Fig. 9(b)]. This
change is correlated with the onset of stochastic fluctuations
at small scales and mechanical annealing [51] that promotes
concrete slip bands even at small testing strains. While both
principal components for w =2 um [Figs. 8(b) and 8(c)]
are smooth, they gradually become less structured as w
decreases [Figs. 9(b) and 9(c)], naturally an effect of stochas-
tic fluctuations at small length scales. For w =2 pum there
is a distinct difference between the first and second principal
components, related to a spatial symmetry breaking. This
distinction disappears as w decreases. For smaller w, due
to the emerging crystal plasticity size effects [29], the data
set is not as distinguishable as we would have wanted with
our clustering technique, because of the noise associated with
strengthening. [Fig. 5(a)].

The area of the correlations with respect to the sample area
can be calculated by Acor = Ny x Ny x (w?/500%) pum?,
where Ny, N, is the number of nodes in x,y directions re-
spectively. For example, for short range (40 x 40) corre-
lations: Acorr = 40 x 40 x (w?/500%) = (4/625) x w? pum?.
Figure 10 shows how A.or can influence the results. Dif-
ferences can be observed in Figs. 10(d)-10(f), only with
respect to the variance of the projected points. The principal
components in Figs. 10(a)- 10(c) have small differences,
mostly in their intensity. We deduce that our results do not
depend on the examined area of correlations, and in order
to reduce computational resources and time, we examine
short (40 x 40) range correlations, from the center of the
sample.

One deficiency of our ML workflow emerged as we ex-
amined the results: as w decreases, the distance between
the PCA-transformed samples also decreases. It is known
that classification algorithms have an inherent limitation:
when the distance between points in one cluster is similar
to the distance separating two clusters, then the algorithm
has difficulty distinguishing the clusters. In particular, Fig. 8
shows that the cluster distances in the PC1 direction are
of order of magnitude 1072-10~!. For w < 0.5 um [see
Fig. 9(a)] the cluster between PCA-transformed samples
is on the order of 1073-10~2, similar to the distance be-
tween the samples itself, and the data samples cannot be
classified correctly. For smaller systems, it is evident that
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FIG. 10. w =1 um, the choice of the correlation domain and how it impacts the PCA maps, double slip system: ng, ny autocorrelation.
For description of color maps and colors of PCA maps, see Fig. 8. Projection of data set on first two principal components. (a) 40 x 40
domain of correlation matrix. Highly smooth in the center and towards the boundaries of the domain. (b) 100 x 100 domain of the correlation
matrix. A highly focused area near the center of the domain is shown, where the phenomena are focused. The smoothness present in (a) is
slowly removed from this domain. (c) 200 x 200 domain of correlation matrix. We have rich phenomenology present towards the center of the
correlation matrix and at the boundaries. (d) PCA maps for 40 x 40 domain. (¢) PCA map for 100 x 100 domain. The variance of the data has
changed and the projections have shifted. The information provided by (b) does not change the cluster formations, but introduces unnecessary
information that has shifted the results along the PC1 and PC2 axes. (f). PCA map for 200 x 200 domain. The variance of the data has changed
even more compared to (e). The distances between the blue and green clusters have increased an order of magnitude compared to (e) and
two orders of magnitude compared to (d). The information provided by (c) does not affect the clusters that are formed from our algorithm.

For description of correlation domains, see Sec. 111 B.
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FIG. 11. w =2 um, strain profiles and 2D projection of PCA
results for thin films, single slip system: ng, ny autocorrelation. The
colors follow the definition of Fig. 8. Projection of data set on first
two principal components. (a) Different strain profiles are seen for a
single slip system of w =2 pm. The top figure is a sample’s strain
profile with stage L at 0.1% strain. The middle figure is a sample’s
strain profile obtained from stage L at 1% strain. Finally, the bottom
figure is a sample’s strain profile from stage L at 10% strain. Strain
localization are formed from the quantity €7 (see Sec. II B). For the
spatial scale of the figures see Fig. 4(b). PCA projection of our results
for samples of w =2 pm. The similarity between strain profiles at
1% and 10% strain does not affect the formation of separate clusters
for samples that were initially loaded at these strains. For description
of color map see Fig. 4(b).

samples with stage L =0.1% or 1% strain (red circles
and blue triangles, respectively) are so close to each other
that the classifier regards them as belonging to the same
cluster.

As mentioned in Sec. I, we were inspired by experimental
techniques. For this reason, we have considered strong sta-
tistical variations in the initial microstructures. Frank-Read
sources (see Sec. Il A) are distributed randomly with a random
nucleation stress. Obstacles (mimicking precipitates) are also
distributed randomly, with a random resistance stress. This
variability causes strong noise and limited spatiotemporal res-
olution (as can be seen for samples of w < 0.5 pum, Appendix
B of the SM [41]). Furthermore, this noise propagates into
PCA maps where the variance for samples loaded to 1% or
10 % strain is very high. However, these variations do not
affect the successful application of the ML workflow, and
this is one of the main findings of this work. Nevertheless, in
order for our work to be comparable to experimental data we
need to limit the resolution of the examined strain profiles as
well (since in experiments, typical image resolution can reach
~1 pm. Our generated profiles originally have the nanoscale
resolution of the 2D-DDD grid. In Appendix F of the SM [41],
we show that through averaging out the slip band information,
and moving to more realistic resolutions (a factor of 10-20
lower), we can still conclude that strain correlations can reveal
the deformation history.
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FIG. 12. Efficiency of ML compared to visual inspection of
results, w = 2 um, double slip system: ng, ny autocorrelation. The
colors follow the definition of Fig. 8. (a) Strain profiles obtained
through our model. The top figure corresponds to strain profiles for
a sample with stage L at 0.1% strain. The middle figure is a sample
strain profile obtained from stage L at 1% strain. Finally, the bottom
figure is a sample strain profile from stage L at 10% strain. All
strain profiles show the strain localizations formed from the quantity
ery (see Sec. IIB). For the spatial scale of the figures see Fig. 4.
(b) PCA map for samples that have similar strain profiles as in (a).
Three distinct clusters are formed. The projection is upon the first
and second principal components. For description of color map see
Fig. 4(b).

C. Distinguishing plasticity regimes for single slip samples

As mentioned in Sec. [T A, we model single and double
slip systems. So far, we have shown how emergent shear
bands can be observed in our simulations for both of these
systems (Fig. 6), as well as PCA results for double slip
(Figs. 8 and 9). PCA results for single slip are consistent with
double slip, as shown in Fig. 11. Specifically, Fig. 11 shows
results of single slip system simulations for w = 2 pum. The
clustering properties for these larger sized systems are similar
to the properties observed for similar systems for double-
slip simulations. A comparison between the results of single
slip and double slip systems for samples of w =2 um can
be made by observing Figs. 12(b) and Fig. 11(b). The PCA
results contain distinctly separated clusters.

Figure 13 compares the principal components for single
and double slip systems.

D. Validation and accuracy of the algorithm

An ML algorithm, in order to be considered successful,
should be validated with “unknown” data sets (testing data)
which have the same features as the data set the algorithm was
designed for (training data). In many cases, testing data sets
are hard to find, so the whole data set is split into two parts (not
necessarily a half and half split), and the ML algorithm can be
trained on part of the data set and its effectiveness tested on
the rest. Other than this subsection, the results shown in the
paper are an application of our ML workflow on the whole
data set (for a given w), and cannot be used to determine the
validity of the classifier.

For validation purposes, we “trained” the algorithm by
computing the PCA transformation from a randomly chosen
half of the w =2 um samples and applying the CkNN
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FIG. 13. w =2 um, comparison of principal components
among double and single slip systems: Components shown corre-
spond to the analysis of Figs. 12(b) and 11(b). (a) First principal
component of double slip system. (b) First principal component of
single slip system. (c) Second principal component of double slip
system. (d) Second principal component of single slip system. For
description of color maps, see Fig. 8.

algorithm. Then we applied the PCA transformation to the
remaining half of the samples and examined whether or not
they were projected into the correct clusters. The results are
shown in Fig. 14. It is evident that the testing data perfectly
matches the training set. Similarly “training” the algorithm to
samples of various sizes (i.e., half of the samples instead of
all the samples) follows the results of Sec. II B. For samples
with w > 1 um the “testing” data set is projected to the three
classified clusters that have formed. In contrast, for smaller
systems, the training data set is misclassified (as happens
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FIG. 14. w = 2 um, 2D projection of PCA results for thin films,
double slip system, validation: ng, no autocorrelation. Red blobs
denote samples with 0.1% strain (stage L), blue triangles samples
with 1% strain (stage L), and green squares denote samples with
10% strain (stage L), respectively. Red stars depict testing samples
of 0.1% strain (stage L), blue stars testing samples of 1% strain
(stage L), and green stars testing samples of 10% strain (stage L).
Validated-split data set. Projection on first two principal components.

053003-9



PAPANIKOLAOU, TZIMAS, REID, AND LANGER

PHYSICAL REVIEW E 99, 053003 (2019)

O
G

1.0 1.0 [ a
0.9 / 0.9
0.8 0.8
2 - /
505 / So.5
goaq 0.4
<0.3 . 0.3
0.2 0.2
0.1 0.1,
M0 I 2 3 e 0 i o g
w w
y |°92(w—.,) @ |°92(w—o)
C,
1.0 = - 1.0 - -
0.9 0.9
028 008
00.7 50.7
©0.6 00.6
So.5 9o.5
0.4 0.4
No.3 c0.3
0.2 Lo.2
0.1} 0.1f4
00 et 2 Y0 i i 5
w w
logfs) logfsr)

FIG. 15. Measures of success for classification of samples, 0.1%
testing strain: ng, ny autocorrelations. (a) Accuracy score for the
samples. Maximum value 1 means that all the samples have been
correctly classified. (b) F; score of our three clusters that are formed.
The line with the squares represents the cluster with samples at
stage L = 10% strain, while the line with the triangles is for the
cluster with samples at stage L = 1% strain. Finally, the line with
the circles is for the cluster with samples at stage L = 0.1% strain.
For smaller sized systems we have observed that most of the samples
are classified as belonging in the “square” cluster, hence the scored
value for that cluster only. Since the algorithm correctly classifies the
samples that were initially loaded to 10% strain, but also classifies
more samples as belonging to that cluster, then the score does not
have the maximum value of 1 but lower. (c) F> score of our three
clusters that have formed. The definition of the colored lines follows
(b). Since for F, score we have increased weight of the recall, the
0.7 maximum value is expected for the square cluster. (d) Fs score
of our three clusters. The color definitions follow (b). Since we
have reduced weight of the precision, for lower sample widths it is
expected to have lower score than F; for the square cluster.

when examining the whole data set) and the testing data set
falls within the misclassified results.

We can quantify the degradation of the clustering process
using some of the tools provided in the scikit-learn metrics
module [52]. In particular, we examine the accuracy score of
the algorithm, as well as the Fg score. Accuracy is the fraction
of samples that were classified correctly. We apply the CkKNN
algorithm and generate clusters. Because we know the prior
strain for each sample, we can immediately check whether
the clusters correspond to the strain levels. Perfect clustering
is when each cluster contains only samples with identical
prior strains. The results are summarized in Fig. 15. For
w > 1 pm the accuracy score is 1 as seen in Fig. 15(a); that
is, all the samples are correctly classified. For smaller samples
w < 0.5 um (or w/wy < 22 as in the figure), we have a 0.33
accuracy score, because only the samples of one cluster are
correctly classified. The accuracy score is not affected by the
wrongly classified samples, and cannot provide a measure for
the correct classification of individual clusters.

To quantify the performance of the classification process,
we also use the Fg score [53,54] which is computed separately
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FIG. 16. Measures of success for classification of samples, 0.1%
testing strain: no, no autocorrelations. The x axis of each graph is
percentage of samples tested for classification. (a) Accuracy score
for samples of w = 2 pm (stars) and w = 1 pm (disks). Maximum
value 1 means that all the samples have been correctly classified.
(b) Averaged F; score across the three clusters that have formed for
samples of w =2 pum (stars) and w = 1 pm (disks). It is obvious
that we have good agreement for the classified samples even when
we test less than 30% of the total number of samples.

for each cluster:

Fa = (1 ZL’ 4
p= 0 B o)

where precision p is the number of correctly classified sam-
ples in the cluster divided by the number of all classified
samples in the same cluster, and recall that r is the number
of correctly classified samples in the cluster divided by the
number of samples that should have been in that cluster.
The B number changes the weight of recall vs precision. For
B > 1 recall is weighted more than precision, while for 8 < 1
precision is weighted more than recall. For g = 1, we have
the F} score, with precision and recall having the same weight
in the equation. Figures 15(b)-15(d) show the Fi, F>, and Fy s
scores for our results.

For samples with w > 1 pum (or w/wy > 23) we have a
value of 1 on all scores and all clusters, but for smaller w
we observe that the line with the squares, which corresponds
to samples with 10 % initial compressive loading, returns
nonzero values, varying as the B value changes. For samples
that are classified in the cluster, we do not obtain the highest
possible result, because the number of correctly classified
samples is smaller than the number of samples in the cluster
(i.e., the precision is small). The line with the circles, which
corresponds to samples with 0.1% initial strain loading, has
a value 0 for w < 0.5 um because no samples have been
classified as belonging to that cluster. The last line, with the
triangles corresponding to samples with 1% initial loading,
has nontrivial values because in some cases there are some
samples that are classified correctly (the recall and precision
are very small). In summation: For the “square” cluster we
have low precision but high recall, since we classify the sam-
ples that actually belong to that cluster correctly, but we also
classify samples from other clusters; for the “triangle cluster”
we have low recall and low precision, since we classify a small
number of samples into that cluster.

We also tested the response of the algorithm with respect
to accuracy and F) score while changing the number of tested
samples. Figure 16 shows the algorithm’s reduced effective-
ness when the number of samples is less than 20% of our
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FIG. 17. Large-reload vs small-reload testing; example of PCA
projection results for thin films of w = 0.5 um: ngy, ny autocorre-
lations. The colors follow the definition of Fig. 8. Strain profiles
are created from the quantity ery (a) Sample with stage L = 10 %
strain is unloaded to zero stress and then reloaded to small testing
deformation (stage T = 0.1 %). (b) Stage T at small testing defor-
mation (0.1%), without a clustering algorithm applied to data set.
Projection on two principal components. Actual representation of the
data set, with some mixing of the samples. The clusters have shifted
closer to one another but not indistinguishable. (c) Sample with
stage L = 10% strain is unloaded to zero stress and then reloaded
to large testing deformation (stage T = 1%). (d) Stage T at large
testing deformation (1%), without a clustering algorithm applied to
data set. Actual representation of the data set. For the higher testing
deformation of 1%, we can see that there is much more mixing of the
samples. Reloading to higher strain values adds plastic memory to
the samples, rendering our process inapplicable for these cases. For
description of color map see Fig. 4(b).

maximum. Figure 16(b) shows the average F; score across the
three clusters instead of the score for each cluster individually.

E. Distinguishing plasticity regimes for
large testing (1%) total strain

The results from our “large reload” data set, with 1%
testing strain, show that delicate handling is required to obtain
the desired cluster separation. 1% testing strain does not
produce the clear separation obtained with 0.1% strain. As
the testing deformation increases so do strain localization
features and shear band sizes. With a shear band spanning
the whole specimen, we expect that the statistical correlations
differ significantly from the statistical correlations of the
“small-reload” data set. That is due to the overall effect of
localization, from a structural correlation viewpoint. High
loads lead to strain localization in the form of shear bands,
which are inhomogeneous and anisotropic, unlike the low
strain plastic response. Our methods pick up the transition
between the two responses. Indeed, even in the case of low
reload strain, the distance between clusters is small and in
smaller systems (Fig. 9) the samples are unclassifiable.

Figure 17 compares the small and large reload testing
regimes. Figures 17(b) and 17(d) show the results of PCA
with a clustering algorithm applied to the data set. From
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FIG. 18. First and second principal component of PCA appli-
cation on thin films of w = 0.5 um shown in sample coordinates:
(a) First principal component, stage T = 1% (b) Second principal
component, stage T = 1%. For description of color maps, see Fig. 8.

Fig. 17(d) we can see that higher testing deformation renders
samples indistinguishable in PCA coordinates. The separation
that was present for the low testing deformation (0.1%) is
missing for higher values. Figures 17(a) and 17(c) show the
strain profiles captured when the sample is reloaded to low
(a) and high (c) testing strains. It is obvious that for higher
testing deformation there is much more mixing of the samples,
thus the classification algorithm fails. Figure 18 shows another
difference between the two testing regimes. For large reload
strain the first principal component (a) is highly anisotropic,
while it becomes nearly isotropic at small reload strains [see
Fig. 9(c)]. This observation extends to other components [e.g.,
second, Figs. 18(b) and 9(d)] and is correlated to the emergent
anisotropy of strain localization. A more comprehensive com-
parison for these regimes can be found in Appendix E.3 of the
SM [41].

F. Dependence of unsupervised learning capacity
on preprocessing aspects

As discussed in Sec. II B, the discretization scheme de-
fines the form and dimensions of the correlation functions
to which we apply a PCA transformation. We can choose to
examine correlations between different local states 4. We can
categorize samples based on their deformation history either
for ng, ng autocorrelations or n;, n; autocorrelations. We find
that cross correlations aren’t helpful for classifying samples
according to their deformation levels. Figure 19 shows results
obtained from various correlation functions: in general, as
w decreases, we observe that distances between each cluster
are also decreasing. In particular, Fig. 19(a) shows that the
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FIG. 19. Autocorrelations vs cross correlations for preprocess-
ing; example of PCA projection maps for w = 2 um: The colors
follow the definition of Fig. 8. w =2 um. (a) ng, ny cross correla-
tions. (b) ny, n; autocorrelations.
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FIG. 20. Effect of strain invariant type for preprocessing; exam-
ples of PCA projection maps: The colors follow the definition of
Fig. 8. (a) ng, ny autocorrelations. w = 2 um. Deviatoric ¢ invari-
ant. (b) ng, ny autocorrelations. w = 2 um. J, invariant. (¢) ny, n;
autocorrelations. w = 1 um. Deviatoric ¢ invariant. (d) n;, n; auto-
correlations. w = 1 um. J; invariant.

distances in each cluster are measured in an order of magni-
tude 10~~10~3 while in Fig. 19(b) the order of magnitude is
102-10~", similar to the one in Fig. 12(b). This difference in
Figs. 19(a) and 19(b) is enough for the clustering algorithm to
find the different deformation levels and classify our data set
with 100% accuracy.

Another choice we can make is the quantity that char-
acterizes the microstructure. Until now, we considered an
isotropic measure of the total deformation strain in the sample.
Our classification scheme produces similar results if we use
the more common second invariant of the strain deformation
tensor, J, = g;x&x;. Figure 20 shows the results for differ-
ent microstructural measure calculations. For larger systems
(w=1,w = 2) the only notable difference is the overall
variance of the data in PCA coordinates.

Finally, we may use the plastic strain determinant as the
microstructural deformation state variable, which effectively
corresponds to examining the unloaded stage T dislocation
ensembles. Instead of computing correlation functions and
clustering on stage T, we can unload the testing strain to
create a new stage S, and look for clustering there. Figure 21
shows that classification still works and there is an observable
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FIG. 21. Total vs Residual or Plastic strain for pre-processing;
examples of PCA projection maps: The colors follow the definition
of Fig. 8. (a) Plastic strain. ng, ny autocorrelations. w =2 pum
(b) Total strain. ng, ny autocorrelations. w = 2 pm.
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FIG. 22. Effect of discretization schemes on preprocessing; ex-
amples of PCA projection maps for w = 1 um: The colors follow
the definition of Fig. 8. ng, ny autocorrelations. (a) Two local states.
(b) Three local states. (c) Four local states. (d) Five local states.

difference of the data variance in PCA coordinates. For more
figures on the differences in preprocessing aspects and the role
of the plastic strain, please see Appendix E in the SM [41].

G. Independence from the choice of discretization
schemes and dimension reduction methods

We find that our protocol is not sensitive to reasonable
Plastic variations of the microstructural binning of the local
strain variable. As a test, we discretize the microstructure into
L =2,3,4, and 5 parts. We are able to distinguish the initial
deformation history of all the samples when calculating the
no, no autocorrelations and the ny, n; autocorrelations. These
results are independent of the discretization scheme (i.e., the
number of local states used). Figure 22 shows the results for
data samples of w = 1 pum, as the number of local states L
increases. Clustering and classification is possible, and the
clustering algorithm has 100% accuracy independently of
the number of local states, but the overall noise of the data
increases with the number of local states.

The noise is due to the use of a fixed number of DDD
simulations for each prior strain level. The signal strength
in each correlation function increases with system size and
the number of dislocations, but decreases as the data are dis-
tributed into more bins L. This effect is more pronounced for
cross correlations because they decrease for short distances
and our correlation function range is truncated. Hence we do
not obtain classifiable results for any cross correlations.

While PCA is one of the most common and useful tools
for dimensionality reduction, some data sets could be so
large that it is impractical. With that in mind, we compared
our PCA results with other common algorithms, such as
incremental principal component analysis (IPCA) and the
truncated singular value decomposition (TSVD). IPCA uses
a different form of processing a data set that allows for partial
computations which in most cases match the results of PCA.
Incremental PCA stores estimates of component variances and
updates the variance ratio of a component incrementally. It is
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FIG. 23. Comparison of different dimensionality reduction methods for w = 2 um: The colors follow the definition of Fig. 8. ny, n;

autocorrelations. (a) PCA. (b) TSVD. (c) IPCA.

faster and uses memory more efficiently than PCA. TSVD,
on the other hand, implements a variant of singular value
decomposition (SVD) that only computes the largest singular
values. Given that PCA works on the basis of the singular
value decomposition, we expect little to no difference with
this method.

No significant differences are seen when applying some
of these variations of PCA to our data sets. The results are
shown in Fig. 23. Note that no additional parameters, other
than the initialization of the different methods, have been
modified; in particular, the same clustering algorithm is used
as with the PCA methods. The TSVD results do not display
any differences from regular PCA, besides slight changes in
data variance and data cluster positions. The IPCA results,
on the other hand, are mirrored from the PCA results in both
the PC1 and PC2 axes (negative values). If we calculated the
absolute values we would see just minor differences in data
variance and cluster positions as in the TSVD results.

IV. REMARKS AND CONCLUSIONS

Our results could be generalized in a number of ways.
Our work is applicable to thin films [28-30], but may also
apply to more general families of materials. First, the material
parameters can change to correspond to composites and/or
polymers and their associated mechanical behavior during
testing. For composites it is important to model and study
ductile fracture while for polymers creep phenomena might
be of interest. Second, an expansion can be made to the exper-
imental protocol. Instead of examining uniaxial compression
of thin films and their spatially resolved strain correlations,
we could have included multicycle loading-unloading tests,
multiaxial compression, or nanoindentation. Third, the data
matrix D [see Eq. (3), Sec. III] can be defined in different
ways. While the protocol would have remained the same
within the algorithm, we could have used geometrically nec-
essary dislocations or local misorientations to calculate spatial
correlations. In this particular case, the required data for
the correlations would have been obtained, for example, by
EBSD. In future studies, we will examine data from theo-
retical solutions and aim to compare them with experimental
data sets for dislocation-density related problems. A natural
next step in our approach is the development of a regression
method which can provide a continuous assessment of cluster-
ing and classification, and naturally provide error bars. Instead
of using only three values of the applied strain at stage L,

we can use a continuous set of values, and apply regression
based methods (e.g. decision trees [55]) to identify features at
each load.

In addition, there are some caveats of the approach that
one has to be careful with: When samples used for ML
have either been reloaded to high strain (1%) or exhibit
large noise due to their nano size (w < 0.5 um), our clas-
sification method does not work. There are many possible
reasons that the algorithm occasionally fails to identify these
samples. For example, in the case of smaller w, short-range
correlations may not be enough to distinguish the defor-
mation history. Moreover, we use a simple ML workflow
that may not distinguish features of the data matrix D (see
Secs. III and IIT A). Advanced ML protocols such as neural
networks [56] or deep learning algorithms [57] could capture
more information than correlation based approaches [58—62].
The occasional failure of our methodology to distinguish
prior deformation could also stem from basic aspects of the
physical phenomenon of crystal plasticity at small scales:
The data show a substantial amount of noise at smaller
widths [28-30] making classification occasionally unsuccess-
ful (see Sec. III B, and Appendix E in the SM [41]), and
at larger reload strain (see Sec. IIIE) the prior deformation
history is overwritten [7] and becomes undetectable by the
algorithm.

In summary, we examined the applicability of spatial cor-
relations to practical and relatively inexpensive experimental
methods for the detection of the degree of prior plastic defor-
mation of thin films, especially when they display significant
plasticity size effects. Our overall conclusion is that ML
algorithms can achieve our objective with varying levels of
success. Through mimicking experimental protocols with two
dimensional discrete dislocation plasticity simulations, we
identified realistic cases (single and double slip thin films
with widths larger than 1 pum) where data clustering and
classification is possible, based on the degree of prior plastic
deformation. When size effects come into play, we found that
clustering and classification becomes gradually more difficult,
since the intrinsic, plasticity-induced crackling noise causes
large variance in smaller systems. In general, for the success
of our methodology for thin films, the physical size of the
samples should exceed 500 nm in the lateral direction (see
Secs. III A and III B), while the data set should consist of
more than 50 samples (see Sec. IIID). Furthermore, we
uncovered a crucial parameter for the applicability of our
methods, namely the testing total strain during reloading.
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The stage T reload strain should be small enough that it does
not overwrite the prior deformation history of the samples;
reload strains less than 0.4% could be applicable for detecting
deformation history. While for a small-reload level of 0.1%
(half of the commonly defined engineering yield stress, found
at at engineering strain 0.2%), our methods are highly suc-
cessful (see Sec. IIIB), they are clearly not successful one
order of magnitude higher, at 1% (see Sec. IIIE). Another
output of our calculations was that smoothing the short-
range correlations and keeping features that refer to larger
distances improved the capacity of our learning apparatus to

reliably recognize material history (see Appendix F in the
SM [41]).
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