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Mean force and fluctuations on a wall immersed in a sheared granular flow
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In a sheared and confined granular flow, the mean force and the force fluctuations on a rigid wall are studied
by means of numerical simulations based on the discrete element method. An original periodic immersed-wall
system is designed to investigate a wide range of confinement pressure and shearing velocity imposed at the top
of the flow, considering different obstacle heights. The mean pressure on the wall relative to the confinement
pressure is found to be a monotonic function of the boundary macroscopic inertial number which encapsulates
the confinement pressure, the shearing velocity, and the thickness of the sheared layer above the wall. The
one-to-one relation is slightly affected by the length of the granular system. The force fluctuations on the wall
are quantified through the analysis of both the distributions of grain-wall contact forces and the autocorrelation of
force time series. The distributions narrow as the boundary macroscopic inertial number decreases, moving from
asymmetric log-normal shape to nearly Gaussian-type shape. That evolution of the grain-wall force distributions
is accompanied at the lowest inertial numbers by the occurrence of a system memory in terms of the force
transmitted to the wall, provided that the system length is not too large. Moreover, the distributions of grain-wall
contact forces are unchanged when the inertial number is increased above a critical value. All those results allow
to clearly identify the transitions from quasistatic to dense inertial, and from dense inertial to collisional, granular
flow regimes.
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I. INTRODUCTION

Many industrial processes and geophysical problems in-
volve granular matter at rest or in movement. More specifi-
cally, the force exerted on solid objects subjected to flowing
granular matter is an important topic that has attracted increas-
ing attention over the recent years. The time-averaged force
on objects of different sizes and shapes was studied in various
configurations (see, for instance, [1–5]). The drag force on
immersed solid objects in dense free-surface granular flows
was first investigated by the experimental work of Wieghardt
[1]. In his pioneering experiments, Wieghardt found that the
drag force was only weakly influenced by the flow velocity
and observed that a quasistatic pile of grains formed upstream
the solid object. Those findings were confirmed later under
low to intermediate shear rates in different configurations,
including annular shear flows [2], free-fall chute flows [3],
immersed rods rotating along an axis perpendicular to its main
axis [4], etc. All those studies showed that, whenever the
obstacle is in contact with a quasistatic bulk of grains, the
drag force linearly depends on both the confinement pressure
and the object size rather than on the flow velocity. This
picture becomes, however, no longer valid once the granular
flows become fast, more dilute, and collisional, as shown for
instance in [6,7]. In this situation, it was found that the mean
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force acting on the obstacle evolved with the square of the
relative grains-object velocity.

The question of the force fluctuations on objects immersed
in granular flows is still poorly investigated. Most studies
dedicated to force fluctuations in granular materials concerned
quasistatic or slowly sheared systems, in Couette-type geome-
tries (see [8–10]). Only a small number of papers addressed
the problem of force fluctuations for rapid granular flows. The
experiments were based on the discharge of silos equipped
with a force sensor, at a boundary wall, whose size was
the typical size of the grains [11,12]. The measurements of
contact force distributions in quasistatic or slowly sheared
systems were initially computed with the help of carbon paper
placed at a system boundary [13], but the use of photoelastic
disks in laboratory experiments, as well as numerical model-
ing, opened the path to measuring the contact forces inside
the granular bulk. Some cross comparisons were performed
in [14–17], showing that, at least in the static case, the
grain-grain contact force distributions from the bulk were
identical to the grain-wall contact force distributions. A robust
finding was established for the shape of the contact force f
distributions for values greater than the mean f : they decrease
exponentially up to the highest values of f (see, for instance,
[11,18,19]). This behavior is sensitive to the shear velocity (or
the deviatoric stress tensor in static cases), as the inertia tends
to broaden the distributions (see [9,11,16]). For the lowest
forces ( f < f ), different behaviors depending mostly on the
sample history are observed from vanishing to very high prob-
abilities near f = 0. Some empirical or theoretical models
were proposed to fit the entire range of observed distribu-
tion shapes for quasistatic systems [13,20,21]. A few studies
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tackled the distributions of forces that were integrated through
a spatial dimension for slow to intermediate flow rates. It
means that the data sets were systematically recorded on sur-
faces that were greater than the grain size. The configurations
tested were the Couette geometry [9,20,22] and a rotating
immersed rod [23]. A remarkable trend emerged from all
those studies: while increasing the spatial scale considered,
the exponential force distributions narrow and finally move
toward Gaussian-type distributions. The latter result is espe-
cially pronounced for very slow flows, whereas intermediate
shear rates result in exponential to log-normal shapes.

Most of the past studies on granular force fluctuations
addressed a narrow range of boundary conditions in terms of
shearing velocities imparted to the granular sample. As such,
the transitions between the different flow regimes (quasistatic,
dense inertial, collisional) and their links to force fluctuations
still remain poorly investigated. The overarching aim of this
study is to bridge this gap. We propose to investigate the force
exerted on a wall-like obstacle immersed in a sheared granular
flow by means of numerical modeling. The originality of this
work is the wide range of flow regimes investigated, from
nearly quasistatic through dense inertial to collisional flows.
In order to control the flowing conditions and to focus on
the grain-wall interactions, an innovative planar system is
designed. While the spherical grains are trapped across the
direction perpendicular to the mean flow between two rough
walls, a periodic boundary condition is used along the mean
flow (shearing) direction. The obstacle is a wall which is
fully immersed in the granular bulk and orthogonal to the
shearing direction. Note that one initial motivation of this
study was to mimic the problem of gravity-driven free-surface
granular flows passing over a rigid wall [24–26]. First, the
modeled system (boundary conditions, relevant macroscopic
parameters), as well as the numerical simulations based on the
discrete element method, are described in Sec. II. Then, the
mean (time-averaged) dynamics is analyzed by investigating
the velocity fields inside the system, the scaling of the mean
force experienced by the wall, and the spatial maps of the
local rheology (Sec. III). The force fluctuations on the im-
mersed wall are quantified through both the autocorrelation of
mesoscopic force signals associated with the system memory
(Sec. IV A), and the distributions of force time series at macro-
scopic and mesoscopic spatial scales (Sec. IV B). The effect of
the system length relative to its height is discussed in Sec. V.
Section VI ends the paper with an extended discussion on the
main results and perspectives, including potential applications
of this research to the problem of civil engineering structures
exposed to natural granular flows.

II. DEM SIMULATION OF A GRANULAR FLOW
OVER AN IMMERSED WALL

A. Macroscopic boundary conditions

A planar sample of spheres is confined between two walls
at the top and the bottom, and by a periodic boundary con-
dition linking the right and the left borders of the system, as
depicted by the vertical dashed lines in Fig. 1. In this study,
a three-dimensional numerical code [27] is used considering
spherical grains for which the kinematics into the z direction

FIG. 1. Geometry and boundary conditions of the periodic
sheared system simulated by DEM. The granular sample is trapped
between two horizontal walls and a periodic boundary condition in
the horizontal x direction (thick dashed lines). The top wall applies
the shear displacement U and the confinement pressure P (see text
for details), and force measurements are done onto the sidewall of
height h, immersed into the granular sample.

[normal to the plane (x, y) in Fig. 1] remains at zero. The bot-
tom wall is fixed, rough, and its length is equal to the system
length L. A constant macroscopic pressure P is applied to the
system. It is controlled by the vertical position of the rough top
wall, continuously computed by the discrete-element method
(DEM) algorithm and applying a vertical force on the sample.
The periodicity of the system also concerns the top wall which
has a constant horizontal velocity U shearing the sample. The
top wall remains perfectly horizontal by preventing its rotation
in the (x, y) plane (see Fig. 1). The roughness of the top and
bottom walls is made of aligned spheres. A thin, rigid, and
smooth vertical wall of finite height h, namely the obstacle, is
immersed into the spheres’ assembly. The spheres are initially
deposited under gravity to form a rectangular dense packing of
height H greater than the obstacle height h. Then, the gravity
is set off, the confinement pressure applied at the top, and
the shearing starts for a period of 10 s over which the data
are collected. Only the data arising from the latest 9 s are
exploited because the first second is the typical observed time
needed for the system to reach a permanent regime.

Although the system is gravity free, the following dimen-
sionless macroscopic parameters are defined for convenience
and used to run the numerical simulations over a broad range
of both confinement pressure P and shear velocity U :

NP = 1

�ρpgH
P, (1)

NU = 1√
gd

U . (2)

The particle density was taken equal to ρP = 2500 kg m−3

and the gravity acceleration is g = 9.81 m s−2. The mean
grain diameter d was taken equal to 1 mm and H/d was kept
constant H/d = 30. A slight polydispersity was introduced
by picking randomly the grain diameters between 0.85d and
1.15d , in order to avoid crystallization effects on the one side
(no polydispersity) and migration or segregation processes
on the other side (too high polydispersity). An arbitrary
constant macroscopic volume fraction � = 0.6 is considered
here, which roughly corresponds to the random close pack-
ing of a three-dimensional assembly of spheres. We recall
here that the numerical simulations presented in this study
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use spherical particles whose centers stay, by construction,
on a planar surface [plane (x, y) on Fig. 1]. The choice of
defining such dimensionless numbers NP and NU based on g
is purely arbitrary, has no influence on the results presented
in the following, and was essentially motivated by advancing
knowledge on the problem of the mean force and force
fluctuations exerted by free-surface gravity-driven granular
flows on rigid walls, as already discussed in the Introduction.
Moreover, it followed the choice already made in a previous
study on a different system, namely, the granular lid-driven
cavity, but for which very similar measurements and analysis
were made [28]. Considering those definitions thus allows a
direct comparison between the two systems (see discussion in
Sec. VI B).

A boundary macroscopic inertial number IM can be defined
from the typical time associated with the top confinement
pressure tP = d

√
ρ/P and the typical time equal to the inverse

of the macroscopic shear rate tU = H/U :

IM = tP
tU

= d
√

ρ/P

H/U
= d

√
�ρP

H

U√
P

, (3)

where ρ = �ρP holds for the bulk density of the granular
sample. It is worthy to stress here that the dimensionless
number IM defined above accounts for the variation of both P
and U but that H and � are considered as constant and equal
to the initial values before shearing the granular sample [H =
0.03 m and � � 0.6 for a three-dimensional (3D) assembly
of spheres]. Actually, the numerical system studied here is by
construction volume free and therefore some slight variation
of the volume fraction is possible. The mean volume fraction
of the granular sample which was actually measured in the
DEM simulations will be discussed in the concluding section
of the paper (see Sec. VI A).

In this study, the dimensionless numbers NP and NU were
varied from 0.01 to 100 and from 1 to 20, respectively. This
allowed us to investigate a wide range of both P (from about
4.4 to 4.4 × 104 N m−2) and U (from about 10−2 to 2 m s−1),
resulting in inertial numbers IM that ranged typically from
1.2 × 10−3 to 0.6 (considering the constant values discussed
above for H, d, ρP, and �). Simulations with different ob-
stacle heights (h ∈ {5d, 10d, 15d, 20d}) were performed in
order to analyze the potential influence of this parameter on
the time-averaged dynamics. The length of the periodic cell
relative to the initial height of the sample L/H is a parameter
that may also influence the system dynamics. Most of the
simulations presented in this study were done with L/H = 5.
The slight sensitivity of the results to doubling L/H (from 5
to 10) will be discussed in Sec. V.

B. Micromechanical parameters

The discrete element method (DEM), the contact laws,
and the associated parameters used in this paper are the
same as described in [28,29]. The general DEM algorithm is
described in [30]. A viscoelastic contact law is used for the
normal component of the interparticle forces (see [31]), while
a classical Coulomb friction threshold drives the tangential
component in the same fashion as in [32]. The following set
of equations describes the micromechanical model used in this

study, for the grain-grain and the grain-wall interactions:

Fn = max(0, knδn + cnδ̇n)n,

dFs = (ksδ̇sdt )s, (4)

|Fs| � μ|Fn|,

where n and s are the unity vectors along the contact normal
and shear directions, respectively, kn and ks are the normal
and tangential contact stiffnesses, δn is the normal penetration
depth, δ̇s is the tangential displacement increment, μ is the
local friction coefficient, cn is the normal viscosity coeffi-
cient, and dt is the time step. The four physical parameters
kn, ks, cn, and μ are chosen to fit the behavior of glass beads.
The contact stiffness is reduced to decrease the total time of
calculation, but the limit of rigid grains was systematically
respected (see details in [28,29]). The coefficient cn is set
in the same manner as in [29] with a restitution coefficient
e = 0.5, and μ was taken equal to 0.5.

III. MEAN DYNAMICS

This section investigates the time-averaged dynamics of the
system: the streamlines within the granular sample and the
vertical velocity profiles along the sample length (Sec. III B),
the mean force F on the obstacle, the latter being the wall on
the right side of the system, which faces the shearing velocity
at the top (Sec. III A), and the local rheology within the
granular sample (Sec. III C). In the rest of the paper, all time-
averaged values are calculated over 9 s, excluding the first sec-
ond of simulations in order to avoid any nonpermanent state.

A. Bulk kinematics

The time-averaged velocity streamlines within the granular
sample are displayed in Fig. 2, considering three different
values of the macroscopic inertial number IM and one value
of the obstacle height h = 20d . The norm vg of the local grain
velocity, scaled by the top wall shearing velocity U , is dis-
played on the color scale. For all simulations, the flow velocity
fits the top and bottom boundary conditions, ranging from
zero near the bottom to U in the vicinity of the top wall. At low
inertial numbers (IM � 1.2 × 10−3) the flow velocity shows a
symmetric pattern along the system length. Near both corners
at the bottom of the system, very low flow rates take place
in front of the obstacle, thus producing streamlines that are
rather chaotic (due to the likely intermittent flows taking place
here). The latter are the markers of nearly triangular dead
zones, forming near the obstacles (the wall of interest on the
right side and its duplicate for periodic conditions on the left
side: see Fig. 1) and whose heights gradually decrease while
moving farther from the obstacle. In a central region (50d �
x/d � 100d), the streamlines are horizontal and parallel with
each other, revealing that the flow experiences a quasihorizon-
tal shear without any significant vertical displacement. Back
to past studies on free-surface gravity-driven granular flows
passing over a rigid wall [24–26], that homogeneous region
found in our simulated system here mimics the incoming flow,
coexisting with a similar, nearly triangular, dead zone formed
upstream the obstacle (the wall on the right side).
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FIG. 2. Time-averaged streamlines for an obstacle height of h =
20d (thin vertical bars on each border of the system), for three
different values of IM : IM = 1.2 × 10−3 (a), IM = 6.1 × 10−2 (b), and
IM = 0.3043 (c). The color scale represents the norm of the local
grain velocity scaled by the top wall shearing velocity vg/U .

The response of the velocity streamlines to the increase of
IM is tricky. Figure 2(a) exhibits a symmetric pattern at the
lowest IM but not for higher IM in Figs. 2(b) and 2(c). As
the obstacle is also duplicated through the periodic boundary
condition along x, a vortex of height h starts forming behind
the wall on the left side of the system. This phenomenon is
caused by the grains flowing through the periodic boundary
condition and coming into the system, from the top of the
vertical left sidewall, with high velocities. The shape of this
vortex varies with the macroscopic boundary conditions. In
particular, the vortex length increases with IM , disturbing
progressively the picture of the central region where shear is
quasihorizontal. The latter region becomes narrower when in-
creasing IM , and may totally disappear at the highest IM . This
peculiar feature of the periodic immersed-wall system studied
here is further investigated in the following by focusing on the
vertical velocity in the granular bulk.

Figure 3 depicts the vertical component Vy of the grain
velocity along the system length, averaged over time and
height, and scaled by the top wall shearing velocity U . This
measurement is presented for seven values of inertial num-
bers, from quasistatic to collisional flow regimes.

For IM � 1.2 × 10−2, all profiles collapse, revealing that
the global (scaled) grain velocity is not influenced by the
macroscopic conditions in the quasistatic regime. Near the
(left side) incoming flow region (x/L < 0.3), Vy is negative
with a high slope gradient, induced by the grains that con-
tinuously fill the bottom of the system. Between x/L = 0.3
and 0.85, Vy/U is nearly close to zero. Only a very small
positive slope gradient is detected. This region, which we
call a plateau, characterizes the homogeneous sheared zone
described just above. Finally, from x/L = 0.85, the increase
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FIG. 3. Profile of the vertical component of the grain velocity Vy,
averaged over both time and granular sample height H , scaled by the
top wall shearing velocity U . The profile is plotted for h = 20d and
seven values of IM from 1.2 × 10−3 to 0.6.

of the slope gradient marks the presence of the dead zone
formed upstream of the obstacle (on the right side) overtopped
by the grains. The presence of a plateau in the center of the
curves shown in Fig. 3 demonstrates that the system length
should be large enough to guarantee that the flowing direction
of the granular assembly is orthogonal to the obstacle. Thus,
the force exerted on the obstacle of interest (on the right side)
should not be influenced by its periodic duplicate (on the left
side).

As shown in Figs. 2(b) and 2(c), the vortex formed in
the left side of the system produces vertical movements of
the granular flow that are inhomogeneous through the system
height for simulations done at IM � 6.1 × 10−2. Therefore,
the averaging over height done in Fig. 3 to obtain the Vy/U
profile for the corresponding inertial numbers cannot be inter-
preted quantitatively. On a more qualitative note, the plateau
is still observed up to IM = 9.1 × 10−2 but the two curves
obtained for the largest IM (IM � 0.3) are highly disturbed by
the vortex, thus preventing the occurrence of the plateau in the
collisional regime. It will be shown in Sec. V that doubling
L/H does not change this observation. It is not possible to
produce a plateau for L/H = 10 at high inertial numbers.
The influence zone downstream of the duplicate obstacle is
too large so that it disturbs the granular kinematics in the
whole volume of the system up to the obstacle of interest.
However, it will be shown in the following of the paper that an
analysis of the time-averaged force and the force fluctuations
both experienced by the obstacle on the right side can be
done continuously, over the whole range of IM covered by this
study. In particular, a robust scaling for the mean total force
exerted on the obstacle is established in the next section.

B. Mean force on the obstacle

The key feature of the flow dynamics observed in the
immersed-wall system investigated here is the following:
some grains initially settled in the granular sample of height
H are trapped upstream the obstacle (the right sidewall) of
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FIG. 4. Time-averaged force on the obstacle F scaled by Phd as
a function of I∗

M , the inertial number corresponding to the height of
grains overtopping the obstacle. Four obstacle heights are presented:
h ∈ {5d, 10d, 15d, 20d}. The solid line shows the prediction of
Eq. (6) with r1 = 1.4, r2 = 3.3, and I∗0

M = 0.3. Inset: same data with
linear x-axis scale.

height h smaller than H , thus forming a dead zone, while other
grains are able to flow over the obstacle (see details of the flow
kinematics studied in Sec. III A). Based on the height H − h
of the sheared granular layer passing over the obstacle, a new
macroscopic inertial number I∗

M can be defined as follows:

I∗
M = d

√
ρ/P

(H − h)/U
= d

√
�ρP

U

(H − h)
√

P
. (5)

In the above definition, the dead zone is assumed to cover
the entire height of the wall. The grains passing over the wall
are sheared over the vertical distance between the top wall
(at height H) and the top of the dead zone of null velocity
(at height h). Introducing this macroscopic inertial number I∗

M

allows obtaining a remarkable scaling for the mean force F
on the obstacle, scaled by the pressure force Phd associated
with the wall height, as a function of I∗

M (see Fig. 4). Note that
in the above definition of I∗

M , we also consider constant values
of H and � that correspond to the typical values before
shearing the sample (see previous discussion for the definition
of IM).

All the data collapse into one single curve for different
obstacle heights h ∈ {5d, 10d, 15d, 20d}. Considering the in-
ertial number IM initially based on the total height H of the
sample does not produce such a good collapse. This clearly
shows that the height difference H − h, corresponding to the
thickness of the granular layer able to overtop the sidewall,
plays a crucial role in the force applied on the obstacle, in
addition to the combined effects of confinement pressure P
and shearing velocity U already encapsulated into the macro-
scopic inertial number.

The scaled mean force F/(Phd ) shows a quasilinear evolu-
tion with I∗

M at low and intermediate I∗
M . Although a scattering

of the data appears at high I∗
M , a saturation then occurs from

around I∗
M = 0.3 (see the linear plot in the inset of Fig. 4).

The following relation fits well the DEM data, as shown by

the solid line drawn on Fig. 4:

F

Phd
= r1 + r2 − r1

1 + I∗0
M
I∗
M

, (6)

where r1 = 1.4 and r2 = 3.3 are the two asymptotic values
of F/(Phd ) at low and high I∗

M , respectively. The constant
I∗0
M = 0.3 is the inertial number for which F/(Phd ) = (r1 +

r2)/2. It is worth noting that the values of r1, r2, and I∗0
M were

obtained for the configuration presented in this paper, and may
be influenced by the micromechanical grain parameters (d, μ,
etc.), as well as by the system configuration. In particular, the
sensitivity of the mean force scaling to doubling L/H will be
discussed in Sec. V.

It is worthwhile to note that the data saturation (concomi-
tant with some scattering) and the plateau which vanishes
in the mean Vy profiles (see Sec. III A) both occur at I∗

M �
0.3. This observation appears to be a robust signature of the
transition from the dense inertial regime to a more collisional
regime, where enduring frictional grain-grain contacts are
replaced by short-life contacts due to the strong increase of
the inertia and the increase of the mean free path of particles.
The role played by the local μ(I ) rheology (earlier proposed
by [33,34]) on the force transmission toward the wall-like
obstacle is further analyzed below.

C. Local μ(I) rheology

The form of the empirical scaling showing a one-to-one
relation between the scaled mean force F/(Phd ) on the wall
and the boundary macroscopic inertial number I∗

M , given by
Eq. (6), suggests that the local μ(I ) rheology [33] comes into
play. To further investigate this, the time-averaged values of
the local inertial number I and the local effective friction
μloc were measured inside the whole volume of the granular
system.

For that purpose, the strain (D) and stress (σ) tensors
at local (grain) scale were computed, using a spatial kernel
smoothing method and tesselation techniques. The technical
aspects of those calculations can be found in [28]. The pres-
sure p within the granular medium was defined by

p = 1
3 Tr(σ). (7)

The local effective friction was calculated as

μloc = 1

3

Tr(σ′D′)
p‖D′‖ , (8)

where D′ = D − 1
3 Tr(D)I3 holds for the deviatoric strain ten-

sor and σ′ = σ − pI3 is the deviatoric stress tensor. We define
I3 as the identity matrix of size 3 and ‖A‖ =

√
Tr(AAT )/2 for

any A. Finally, the local inertial number was computed using
the relation

I = d
√

ρP

p
‖D′‖. (9)

Although the strain field is rather complicated in-
side the immersed-wall system investigated here (see
the streamlines drawn on Fig. 2), it was generally
observed that the strain and the stress tensors were
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FIG. 5. Spatial maps of the principal strain (a) and stress (b) ori-
entations averaged over time within the immersed-wall system:
example for IM = 9.1 × 10−2.

quite well aligned within most of the system vol-
ume. Figure 5 shows an example for IM = 9.1 × 10−2.
Nonetheless, there exist two regions inside which the principal
directions of stress and strain tensors are perpendicular to
each other. First, a region at the top of the duplicate wall
(on the left side of the system) exhibits principal directions
of stress and strain tensors that are orthogonal. It is worthy
to note that for lower IM , the stress and strain tensors were
found to be collinear in that specific region (not shown here).
This peculiar behavior at high IM might be attributed to the
complicated interaction between the flux of grains arriving
at high velocity (from the left side) and the vortex dynamics
which takes place just below, behind the duplicate wall (on
the left side). This could be another signature of the transition
toward the dilute or collisional regime, as already discussed
when interpreting the vertical velocity profiles depicted in
Fig. 3. Second, there exists a region on Fig. 5, just above the
lid and at about two thirds of the length of the system, inside
which the principal directions of strain and stress tensors are
not aligned but orthogonal, regardless of IM (the results shown
in Fig. 5 are general for all IM for that second region). If one
looks more closely at that region, this is exactly where the
grains are permanently forced to climb over the quasistatic
dead zone that forms upstream of the wall (which stands
on the right side of the system and faces the direction of
the imposed velocity U at the top) and, at the same time,
pushed down by the upper rigid wall boundary condition.
Although this is not detected on the time-averaged kinematics
(Fig. 2), this competition may lead to the formation of a strong
discontinuity in stresses. As a result, in that shock region,
the time-averaged principal directions of the strain and stress
tensors may be not aligned but perpendicular. This peculiar
behavior would merit further investigation in the future. Apart
from those two specific regions, there is collinearity between
stress and strain tensors within most of the system volume.
The variation of μloc with I is analyzed in the following.

For each position (x, y), the measured μloc was compared
to a μth(I ) derived from the relation proposed by Jop et al.
[33], which reads as follows:

μth = μ1 + (μ2 − μ1)
1

1 + I0/I
, (10)
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FIG. 6. The local μ(I ) rheology for this study, extracted from
all simulations. The data points come from a region of the granular
immersed-wall system selected to approach the conditions of a
simple sheared granular flow. That selected region is centered on the
system and extends over 90d in the x direction, by excluding the very
bottom (from 0 to 5d) and the very top (from H − 5d to H ) layers
from the analysis. The two regions (of length 30d each) that are close
to the vertical side wall and its periodic image on the left side of the
system, and inside which nonlocal effects may appear (see Fig. 7),
were not considered.

where μ1, μ2, and I0 are parameters dependent on the
mechanical grain properties. In our study, the best fitting
parameters for μth were found to be (after an iteration process)
μ1 = 0.17, μ2 = 0.48, and I0 = 0.18, as shown in Fig. 6.
Figure 6 shows the time-averaged value of μloc as a function
of I . It is important to stress that the data points shown on
Fig. 6 were extracted from a region centered on the system
and limited to a length of 90d in the x axis direction, thus
excluding the two regions (of length 30d each) close to the
vertical side wall and its periodic image on the left side of
the system. The very bottom (from 0 to 5d in the y-axis
direction) and very top (from H − 5d to H) regions were also
excluded from the analysis. What happens inside the regions
close to the side wall (nonlocal effects) is further discussed
in the following. It is clear from Fig. 6 that the density of
data points close to the continuous fit line is much higher
than the density of the data points that discard from the main
trend. The scatter of the data points observed is thus not so
significant, in addition to probably being sensitive to some
parameter choices made for the data processing through the
tessellation method used, such as the choice of the kernel for
coarse graining (see technical details in [28]).

Note that the value μ1 = 0.17 is smaller than the typical
values usually reported in the literature [35–37] and obtained
from simulations with an interparticle friction of about 0.5
(as used in the DEM simulations presented here). An even
smaller μ1 = 0.12 was found in a previous study on another
nonstandard system, namely, the lid-driven granular cavity
[28], based on numerical tests with a grain-grain friction of 0.5
too. We do not have any clear physically sound explanation for
such results apart from the fact that those measurements were
made on two systems with strong flow gradients for which
nonlocal effects (existence of subyield flows), as reported and
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FIG. 7. Spatial maps of (μloc − μth )/μth for three values of IM :
IM = 6.1 × 10−3 (a), IM = 9.1 × 10−2 (b), and IM = 0.61 (c). See
text for the definition of μloc and μth. The results are shown for h/d =
20.

modeled by Kamrin and Henann [38], could be significant.
The immersed-wall granular system with periodic conditions
(studied here) and the lid-driven granular cavity [28] are
indeed noncanonical systems that exhibit highly inhomoge-
neous kinematics in a finite-sized volume: strong variation of
the streamlines, quasistatic dead zones, macroscopic vortex
dynamics, etc. Note that the upper values of μ at low I
displayed in Fig. 6 match the classical values of about 0.25 for
μ1 that were found under much more homogeneous flow con-
ditions, such as planar shear and annular shear flow [35–37].

Figure 7 displays the spatial maps of (μloc − μth)/μth for
three values of IM , even if there exist some specific (yet small)
regions inside which the principal directions of the strain and
stress tensors were not aligned. First, it is generally observed
that the granular sample obeys the local μ(I ) rheology in most
of the volume of the granular system, except in the regions
close to the sidewalls in the two corners at the bottom of
the system. Second, at low IM the patterns resulting from
this (μloc − μth)/μth mapping is symmetric, while it becomes
asymmetric at the highest IM . At the highest IM , the region
in the left corner at the bottom, in which the measured μloc

discards from the μth derived from the μ(I ) rheology, grows in
size and tends to extend in the middle of the granular system.
Those observations are fully consistent with the streamlines
shown in Fig. 2. The regions with a dead zone (regardless of
IM) correspond to regions where the granular material does
not obey the μ(I ) rheology. In the latter regions, the values
of (μloc − μth)/μth are generally between 0 and −1 (dark-
colored regions that appear in the two bottom corners of each
map displayed in Fig. 7) and μth ∼ μ1 (small I), thus meaning
that the effective local friction μloc exactly stands between
0 and μ1. This is fully consistent with expected creeping

regimes (flow below the yield stress), as early reported and
captured by the nonlocal granular fluidity model [36,38].

The region (in the left corner at the bottom), where a
vortexlike structure forms at high IM , grows in size with
IM and also corresponds to a region where the granular
medium does not obey the local μ(I ) rheology. Again, values
of (μloc − μth)/μth ∼ (μloc − μ1)/μ1 are generally found to
stand between 0 and −1, thus indicating that a flow occurs
below the yield stress due to nearby flow. We recall here
that the data points from the regions close to the lateral wall
where significant nonlocal effects appear were systematically
excluded from the analysis shown in Fig. 6. Considering those
regions in the analysis would increase the number of data
points below μ1 in the plot of Fig 6.

IV. FORCE FLUCTUATIONS ON THE IMMERSED WALL

This section tackles the force fluctuations on the obstacle.
The autocorrelation of force time series (Sec. IV A) and
the distributions of grain-wall contact forces (Sec. IV B) are
investigated. All data sets obtained for the following analysis
were extracted from numerical simulations with an obstacle
height h = 20d . Keeping the obstacle high enough to capture
the collective effects of the grains (in order to avoid dis-
cretization issues), while the height available for the grains to
overflow was one third of the total height H of the sample,
made the presentation of the results clearer. The results of
simulations with h/d = 5, 10, or 15 (not shown here) were
very similar overall.

A. Force time-series autocorrelation

In this section, the force fluctuations are investigated by an-
alyzing the autocorrelation of force time series on portions i of
the wall. Information about the memory of the system, defined
hereafter, is then extracted through a critical autocorrelation
time called �t i

c.
The force signal record frequency is set to 10 kHz, this

value being high enough to capture short-time events so that
the results do not depend on this parameter (see more details
in [28]). To study the potential heterogeneity of the force
signals along the obstacle height, the sidewall is split into
five portions i ∈ {1, 2, 3, 4, 5} from bottom to top, of identi-
cal size h/5. Each slice has its associated force time series
from which the autocorrelation function Ci(F (t ), F (t + �t ))
is then computed, where �t is the lag between two system
states. The critical correlation time �t i

c is extracted from each
slice: it can be interpreted as the speed at which the system
forgets a certain value of force imparted to the wall. In other
words, it reflects the typical time during which a future state
of the system keeps history of its past state regarding the force
transmitted to the wall. The critical correlation time �t i

c is
defined with an arbitrary low correlation threshold:

Ci(F (t ), F
(
t + �t i

c

)) = 0.15. (11)

As the local autocorrelation function C i may be a nonmono-
tonic function, it is possible that the threshold value is reached
many times. In this case, the lowest value of �tc is kept,
avoiding the noise to have an influence on the result.
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FIG. 8. (a) Evolution of C i(F (t ), F (t + �t )) over time for five
identical portions of the wall height i ∈ {1, 2, 3, 4, 5} from bottom
to top, and IM = 1.2 × 10−3. The gray dashed line is the threshold
used to obtain �t i

c. (b) Critical time �tc beyond which the force time
series becomes weakly correlated (�tc < 0.15) for the five portions
of the wall, as a function of IM . 〈�tc〉 is the mean over the five �t i

c

values of a simulation.

Figure 8(a) shows the autocorrelation of force time series
for each of the five identical portions of wall, for a low
value of the macroscopic inertial number (IM = 1.2 × 10−3).
For this granular regime, the autocorrelations decrease slowly
to reach a vanishing value between approximatively 0.2 to
1.5 s, depending on the wall portion considered. Although
an observable trend suggests that the bottom portions are
correlated for longer times (lower slope gradient) compared to
the top portions (higher slope gradient), no general rule could
be extracted because this behavior is not strictly monotonic.

The values of autocorrelation times �t i
c for each portion of

the wall, as well as their mean over i which we called 〈�tc〉,
are displayed on Fig. 8. The values of �t i

c are scattered around
〈�tc〉, thus showing that autocorrelation times are inhomoge-
neous across the height of the sidewall. However, the average
value 〈�tc〉 shows a remarkable decreasing trend with IM .
This behavior may be interpreted as a decrease of the system
memory while increasing the inertial number, which is in
accordance with a collisional regime where short-life contacts

are dominant compared to long-lasting enduring frictional
contacts. Near IM = 1.2 × 10−2 the mean autocorrelation
time nearly vanishes, thus showing that the system is unable
to keep memory of a past state. The granular medium, which
is at the origin of the force transmission from the boundary
conditions to the sidewall, handles here the signature of a re-
markable crossover from quasistatic to dense inertial regime.
It is important to note that what we call the memory of the
system is not an intrinsic memory of the granular material,
but rather a system-dependent feature. This becomes obvious
when those �t i

c (and 〈�tc〉) are shown to be influenced by the
length of the system, as it will be discussed in Sec. V.

B. Force distributions

In the following, the distributions of force time series
evolving with the boundary macroscopic inertial number
are analyzed, considering two spatial scales: the entire wall
(Sec. IV B 1) and a portion of wall (Sec. IV B 2).

1. Force distributions on the entire obstacle

This section investigates the distribution of the total force
experienced by the sidewall, on the whole surface facing
the granular flow. This measurement gives information about
the collective effect of the granular bulk on the obstacle. The
total force time series F is obtained by summing all grain-
wall contributions at each recording time. This force scaled
by the mean force F is noted F̃ = F/F , and its probability
distribution density is computed.

Figure 9(a) shows the distributions of F̃ , for seven values
of IM ranging from 1.2 × 10−3 to 0.6. The distribution shapes
follow a nearly Gaussian law at low IM (=1.2 × 10−3). A
slight asymmetry appears, while increasing IM : the decreasing
tail at high forces becomes more and more important. At the
same time, from IM � 1.2 × 10−2, the probability to have
weak or vanishing force signals on the sidewall increases.
A systematic fit of the distributions, actually measured in
DEM, using a shifted (and truncated) log-normal function,
called P (F̃ ), provides very good results over the whole range
of IM tested, as depicted by the dashed lines on Fig. 9(a):

P (F̃ ) = 1

S
1

F̃σ

√
2π (F̃ + 1)

exp

(
− [ln(F̃ + 1) − F̃μ]2

2F̃σ
2

)
,

(12)

where F̃μ is the scale parameter, F̃σ is the shape parameter,
and the shift (truncation) is 1. S is the normalization factor
corresponding to the value at 1 of the survival function of
the (untruncated) log-normal PDF. The evolution of these
parameters with IM is displayed on Fig. 9(b).

Three distinct simulations, done for different macroscopic
shear rates and confinement pressures {U, P} but keeping
the inertial number constant (IM = 6.1 × 10−3), give identical
distributions, as shown on Fig. 9(a). This reveals that the
boundary macroscopic inertial number is the key parameter
which controls the distribution of the total force on the
wall. Such a remarkable result is further confirmed by the
monotonic variation of the two fitting parameters f̃μ and f̃σ
[see Eq. (12)] with IM , as displayed on Fig. 9(b), regardless
of {U, P}. It can be concluded that Eq. (12), fed with the
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FIG. 9. (a) Distribution of the total force on the right sidewall
for seven values of IM ranging from 1.2 × 10−3 to 0.6. The dashed
lines show fits using a (truncated) log-normal PDF given by Eq. (12).
(b) Variation of fμ and fσ , the two parameters of Eq. (12), as function
of IM .

parameters controlled by IM [Fig. 9(b)], provides an empirical
model capable of predicting the total force distribution for the
granular flow-wall interaction system studied here.

Moreover, the DEM simulations show that all distributions
of F̃ collapse when IM � 6.1 × 10−2, as shown in Fig. 9(a).
This observation becomes clearer in Fig. 9(b), as both fμ and
fσ reach a plateau from IM = 6.1 × 10−2 up to the highest
value of the inertial number achieved in this study. This satura-
tion of the total force distribution is likely to reflect a fast flow
state largely influenced by inertial effects. It occurs above a
certain value of IM between 1.2 × 10−2 and 6.1 × 10−2, which
closely matches the value of IM at which the loss of system
memory was identified in Sec. IV A.

In order to analyze the distributions of the force at meso-
scopic spatial scale (thus taking into account the potential
heterogeneity over the system height), the next section tackles
the distributions of force time series recorded on portions of
the obstacle height.
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FIG. 10. (a) Distribution of force time series experienced by five
equal portions i of the sidewall for NU = 10 and NP = 1 (each por-
tion time series is scaled by its corresponding time-averaged force).
(b) Mean distribution over i for i ∈ {2, 3, 4} for seven values of IM .

2. Force distributions on portions of the obstacle

Similarly to the approach described in Sec. IV A, the side-
wall is split into five portions i ∈ {1, 2, 3, 4, 5} of same height
each. We note Fi the force time series associated with the
portion i and Fi its mean. The upper panel of Fig. 10 shows the
distribution of Fi/Fi, the force arising from each portion scaled
by the corresponding mean, for IM = 6.1 × 10−2. The distri-
butions of the force time series from the three portions located
in the center of the sidewall are equivalent (see lines of inter-
mediate shade for i = 2, 3, 4), unlike the two located at the top
and bottom (light-colored line for i = 5 and dark-colored line
for i = 1, respectively). This difference between the portions
i ∈ {2, 3, 4} on the one side, and the portions i = 1 and i = 5
on the other side, is observed for any IM (not shown here).
This result reveals that the mesoscopic force distributions are
homogeneous along a large area located at the center, along
the y-axis (vertical) direction, of the obstacle, whereas some
modifications near the weak forces appear at the top and the
bottom. In the bottom corner, at the interface with the bottom
rough wall, few grains can be trapped and exert enduring
forces on the obstacle, thus decreasing the probability of weak
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forces on the time series. Near the top of the obstacle, the
increasing probability of small forces can be explained by the
shortening of the dead zone thickness, so that the obstacle
directly experiences the force of the flowing grains.

Because the collapse of the distributions for portions i ∈
{2, 3, 4} is observed for all values of IM , the mean of the distri-
butions over these three central portions of the sidewall, which
we name 〈Fi/Fi〉i, was computed. The variation of 〈Fi/Fi〉i
with the macroscopic inertial number is shown on Fig. 10(b).
Similarly to the distributions on the entire height of the
obstacle (Sec. IV B 1), the resulting curves depict log-normal-
like shapes. Near IM � 10−3, the distribution displays a small
amount of low forces and starts approaching a Gaussian-type
shape. The number of weak forces increases with IM , shifting
the maximum probability density toward the low forces. This
behavior can be explained by a finite-size effect. At low IM the
force signal may arise from the summation of several enduring
contact forces, which is known to produce a Gaussian-type
shape. By contrast, at higher IM the force signal arises from
a lower number of contacts, thus increasing the probability
of weak (or null) forces. Finally, all the force distributions
on wall portions collapse for IM � 6.1 × 10−2. The latter
observation reveals that, excluding the effects related to the
top and bottom ends, the force distributions at mesoscale
become independent of IM as soon as a certain IM is reached.
The collapse of distributions was interpreted as a signature
of the transition from quasistatic to dense inertial granular
regime, further confirming the result reported in Sec. IV B 1
for the entire height of the obstacle.

V. EFFECT OF THE SYSTEM LENGTH

The results presented so far were extracted from simula-
tions with a constant length of the system: L/H = 5 with
H = 30d and d = 1 mm. This section compares those results
to additional results from simulations where the length of the
system was doubled: L/H = 10, while keeping H = 30d and
d = 1 mm.

As already discussed in Sec. III A, the simulations at
L/H = 10 did not allow producing a plateau around zero
in the curves of Vy/U versus x/L (not shown here). The
results were similar to the ones shown in Fig. 3. Doubling
the length of the system did not allow reducing the effect
of the vortexlike structure that is generated by the duplicate
obstacle on the left side, and thus disturbing a lot the entire
volume of the system for IM larger than 0.3. This proves to be a
signature of the transition toward the collisional regime. Note
that in the collisional regime (beyond IM ∼ 0.3), the analogy
between the periodic system studied here and a free-surface
gravity-driven granular flow passing over a rigid wall (which
initially motivated this study) becomes largely questionable.

Figure 11 shows the mean force F scaled by the pressure
force Phd associated with the confinement pressure P and the
obstacle height h, as a function of I∗

M for L/H = 5 and 10. The
empirical scaling given by Eq. (6) is affected by the ratio L/H .
Doubling the length of the system yields a slight increase of
the scaled mean force, but the empirical scaling that relates
F/(Phd ) to I∗

M is still robust, provided that r1 and r2 in Eq. (6)
are considered as slightly dependent on L/H .
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FIG. 11. Scaled mean force F/(Phd ) versus I∗
M for L/H = 5 and

10. For each L/H , four values of h/d were considered: 5, 10, 15,
and 20. The lines show the predictions of Eq. (6) with r1 = 1.4 and
r2 = 3.3 (solid line) and with r1 = 1.5 and r2 = 4.1 (dashed line).
For both predictions, I∗0

M = 0.3 is used.

Figure 12 compares two extreme distributions of grain-wall
forces for both L/H = 5 and 10 at macroscale [Fig. 12(a)
entire height of the obstacle] and at mesoscale [Fig. 12(b):
portions of the obstacle]. At high IM the results are nearly not
affected by varying L/H but at the lowest IM the distributions
become sensitive to L/H , particularly when considering the
entire height of the obstacle.

Overall, doubling the length of the system does small
changes to the main results regarding the time-averaged dy-
namics and the distributions of grain-wall contact forces.
However, moving from L/H = 5 to 10 has a significant effect
on the variation of 〈�tc〉 with IM . While 〈�tc〉 is largely
positive at small IM for L/H = 5, it tends to approach zero
for L/H = 10 at the same IM , as shown in Fig. 13. This put
emphasis on the fact that the positive value of 〈�tc〉 at small
IM must be interpreted as a signature of a memory activated
by the system (memory of the system) in terms of the force
transmission toward the wall, but not of a memory that would
be intrinsic to the granular material itself.

VI. DISCUSSION AND CONCLUSION

This contribution described periodic numerical simulations
based on DEM of a granular flow passing over a wall-like ob-
stacle, over a wide range of confinement pressure and shearing
velocity imposed at the top of the granular flow. This con-
cluding section summarizes the main results concerning the
time-averaged dynamics (Sec. VI A) and the force fluctuations
(Sec. VI B). The paper ends by exploring the potential impli-
cations of this basic knowledge for the specific problem of the
interaction between full-scale granular flows in nature (such
as avalanches) and civil engineering structures (Sec. VI C),
which was one of the initial motivations of this study.

A. Time-averaged dynamics

The mean force experienced by a wall (of height h) in
contact with a dead zone subjected to a granular flow (of
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FIG. 12. Distributions of the total force on the entire height of
the obstacle (a), and mean over i (for i ∈ {2, 3, 4}) of the distributions
on portions of obstacle (b), for L/H = 5 (thick lines) and L/H = 10
(thin lines). In each panel, we present the results for IM = 1.2 × 10−3

(the lowest IM tested) and IM = 6.1 × 10−2 (IM beyond which the
distributions collapse).

incoming height H) passing over the wall obeys the following
scaling: F = f (I∗

M )Phd , where I∗
M is a macroscopic inertial

number built on the boundary confinement pressure P and the
shearing velocity U over the height difference H − h, and f
is a function which saturated at both low and high I∗

M . It was
found that the bulk of the granular flow obeyed the local μ(I )
rheology, while the dead zone formed upstream of the wall
did not. At very high I∗

M , the μ(I ) rheology became, however,
much less relevant. A vortexlike structure, inside which the
local μ(I ) rheology was not verified, formed downstream of
the duplicate obstacle (on the left side of the periodic system
simulated) and grew in size, thus producing a disturbance that
propagated over the entire volume of the system. This was
interpreted as the transition toward the collisional regime.

Figure 14 shows how the mean volume fraction �∗ of
the system, measured in the DEM simulations, varies with
the macroscopic inertial number I∗

M . Note that the volume
fraction initially measured in two dimensions [spheres in
the (x, y) plane] was systematically transformed into an
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FIG. 13. Critical times �t i
c (and their mean < 〈�tc〉) beyond

which the force time series becomes weakly correlated (�tc < 0.15),
for L/H = 5 and 10.

equivalent volume in three dimensions (3D), assuming
(roughly) �3D � 2

3�2D if we compare a sphere of diameter
d included in a cube of identical size d to a disk of diameter
d included in a square of size d . The curve drawn in Fig. 14
has the typical shape of the φ(I ) constitutive law generally
extracted from a number of other granular systems, such as
plane shear flows [35], inclined flows down a slope [24,39], or
annular shear cell flows [40]. It is worthy to mention that those
curves result from simulations at different obstacle heights: all
data collapse into one single curve for h/d between 5 and 20
(the case h/d = 25 discards a bit from the main trend). The
inset of Fig. 14 shows �∗ versus IM . A noticeable scattering is
observed at high IM , thus confirming that the inertial number
I∗
M defined on the shearing height H − h above the obstacle is

the relevant parameter for the immersed-wall system studied
here. Note that the relation �∗(I∗

M ) was found to be slightly
dependent on L/H for high I∗

M (not shown here).

10−3 10−2 10−1 100

I∗M

0.40

0.42

0.44

0.46

0.48

0.50

0.52

0.54

Φ
∗

h = 5d

h = 10d

h = 15d

h = 20d

h = 25d

10 10 10 10
IM

0.40

0.45

0.50

Φ
∗

FIG. 14. Volume fraction �∗ actually measured in the DEM
simulations as a function of I∗

M . Inset: �∗ versus IM .
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B. Force fluctuations

The analysis of the force fluctuations on the wall-like
obstacle was performed through two main measurements.
First, the autocorrelations of force time series were computed
at a spatial mesoscopic scale, intermediate between the grain
size and the entire wall height (considering five portions of
the wall, identical in size). Those temporal autocorrelations
were found to be inhomogeneous through the wall height.
A criterion based on the mean of an autocorrelation thresh-
old through the wall height (〈�tc〉) was, however, able to
reflect the system memory. Second, the distributions of force
signals were computed at both macroscale (wall height) and
mesoscale (considering the same portions of the wall as used
for the autocorrelations). The boundary macroscopic inertial
number IM imparted to the granular system was found to be
the control parameter of both types of measurements, thus
highlighting remarkable trends that are summarized below.

For the lowest values of IM tested, the system exhibited
a significant system memory provided that the length of the
system was small enough (L/H equal to 5), and narrowed
distributions evolving from normal-like to log-normal-like
shapes (depending on the spatial scale considered) were ob-
served. This result typically reflects the quasistatic granular
flow regime: the wall experiences a constant and large number
of enduring contacts with the grains. This increases the time
needed for a force value to be forgotten by the system on the
one hand, and restricts the range of actual force values on the
wall on the other hand. We stress here that this was a system
memory which became nearly undetectable in our numerical
simulations when the size of the system was increased up to
L/H = 10.

While increasing IM , the overall memory of the system
decreased, and the distributions widened. The inertial forces
started to come into play, with faster motions of particles
causing shorter contact times of the grains with the wall. In
comparison with the quasistatic regime, the broadening of
the statistical range of force values is thus interpreted as the
consequence of (i) shorter and scarcer contacts with the wall
near the weak force values on the one hand, and (ii) more
intense interactions near the highest forces on the other hand.
The measurements of force fluctuations showed an asymptotic
behavior near 10−2 � IM � 6 × 10−2, materialized by both
the collapse of force distributions and the vanishing of the
system memory. In accordance with the well-established time-
averaged dynamics of dense granular flows, as reviewed for
instance in [39,41], this asymptotic behavior was interpreted
as a salient signature of the transition from quasistatic to dense
inertial granular regime.

It should be stressed that the results presented in terms
of both the distributions of grain-wall contact force and the
autocorrelations of force time series are robust because they
corroborate the ones we recently obtained on a different
system named the granular lid-driven cavity [28]. Indeed, for
that different system investigated in [28] with grains being
trapped in the cavity and then forced to recirculate inside
it (thus exhibiting a large vortex kinematics, different from
the one observed in the nonstandard immersed-wall system
studied in this paper), very similar results were found in terms
of force fluctuations on the wall facing the direction of the
shearing velocity at the top. The distributions of grain-wall

contact forces were also entirely controlled by the macro-
scopic inertial number IM (regardless of the values of P and
U encapsulated in IM), moving from nearly Gaussian-type to
asymmetric log-normal distributions when IM was increased,
and this change was also accompanied by a loss of system
memory [28]. A detailed comparison between the two systems
is beyond the scope of this study and will be the topic of a
future study.

C. Insights for granular flow-wall interaction in geophysics

A free-surface flow of granular materials down a slope and
coming across a perpendicular wall-like obstacle is a common
situation in the field of natural hazards related to full-scale
gravity-driven granular flows [42]. In particular, protection
structures against snow avalanches or landslides are built to
limit their propagation through the decrease of their kinetic
energy [43]. In this situation, a roughly triangular stagnant
zone of grains, a so-called dead zone, can form upstream the
obstacle, and a more inertial zone made of flowing grains can
overcome the dead zone (see [44] and references therein). One
initial motivation of setting up the periodic immersed-wall
system investigated in this work was to gain basic knowledge
on the mean force on the wall and the force fluctuations under
a wide range of granular flow regimes. Although some results
are affected by the length of the system relative to its height,
the periodic immersed-wall system developed allowed us to
draw a couple of conclusions helpful for the understanding of
granular flow-wall interaction and the design of civil engineer-
ing structures impacted by natural granular mass flows.

First, the analysis of the mean dynamics suggests that
there exists a relatively wide range of flow regimes under
which the mean force of a granular flow on a rigid wall of
surface So (So = hd in the 2D system studied here) should be
controlled to first order by the confinement pressure: F̄/So ∼
P. Second, the ratio of the total time-averaged force F̄ on the
wall to the typical pressure force PSo is not constant: it is a
function of the boundary macroscopic inertial number I∗

M =
U

H−h d
√

ρ/P. The latter is built on the confinement pressure
P and the typical velocity gradient U/(H − h) of the sheared
layer above the wall. The ratio F̄/(PSo) typically increases
from 1 at low IM to 3–4 when IM approaches unity. The
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FIG. 15. Coefficient of variation σF /F̄ as a function of IM for two
values of h/d .
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empirical relation between F̄/(PSo) and I∗
M gives a way to

predict the variation of the force on the wall, before reaching
the faster inertial regime for which the mean force will be
controlled by the square of the flow velocity (F ∝ U 2). Third,
the distributions of grain-wall contact forces (entire height of
the wall or portion of wall) are controlled by the macroscopic
inertial number and are much larger at high IM than at low IM .
This result can be summarized by introducing the coefficient
of variation σF /F̄ (where σF denotes the standard deviation)
and considering its variation with IM , as shown on Fig. 15.

The relative amplitude of the force fluctuations is about
25% in the quasistatic regime and increases logarithmically
with the inertial number. In the collisional regime, the relative
amplitude of force fluctuations reaches a constant value (inde-
pendent of IM) which becomes very significant, about 80% for
h/d = 20 in our study. In the dense inertial regime (0.25 <

σF /F̄ < 0.7–0.8) and the collisional regime (σF /F̄ � 0.7 −
0.8), the fluctuations play a major role in the magnitude of the
total force and are thereby a key ingredient for the design of

civil engineering structures (protection dams, buildings, etc.)
likely to be impacted by granular mass flows. It is worthwhile
to remind that the results were obtained in two-dimensional
configurations [spheres stay in the (x, y) plane on Fig. 1, by
construction]. Three-dimensional simulations will need to be
undertaken in the future in order to check some factors that are
likely to influence the force distributions. These may include
the effects caused by a drastic increase of the number of grains
in contact with the wall, or the increase of steric hindrance in
the granular bulk.
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