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Stability of binary colloidal crystals immersed in a cholesteric liquid crystal

Setarehalsadat Changizrezaei*

Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada

Colin Denniston†

Department of Applied Mathematics, The University of Western Ontario, London, Ontario N6A 5B8, Canada
and Department of Physics and Astronomy, The University of Western Ontario, London, Ontario N6A 5B8, Canada

(Received 9 January 2019; published 13 May 2019)

In this paper, we model a number of both closed-packed and non-closed-packed crystals inside a cholesteric
liquid crystal (LC) with different pitch values and nematic LC through the Landau–de Gennes free-energy
method. We used binary boundary conditions (normal and planar anchoring) applied on the surface of colloids
as we are interested in investigating the stability of binary crystals. The results indicate that body-centered-cubic
(BCC) crystals have a lower-energy lattice defect structure than the diamond crystal, and the most energetically
favorable BCC lattice can be formed in a cholesteric liquid crystal with a pitch value commensurate with
the lattice spacing. Furthermore, it is shown that a pair of binary colloids can be self-assemble into a stable
face-centered-cubic lattice structure inside a nematic LC, as it has the lowest energy comparing to diamond and
BCC crystals.
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I. INTRODUCTION

Liquid crystals (LC) are widely used in a variety of
applications [1–3]. One potential application is as a pho-
tonic material when combined with a self-assembled colloidal
crystal inside the LC. Photonic crystals are formed from a
periodic organization of particles, of size comparable to the
wavelength of light, which represents a periodic dielectric
pattern in space. Colloidal crystals are composed of a periodic
lattice of colloids within a macroscopic media resulting a
periodic dielectric function. As a result, they can be used
as the basis of photonic crystals. Therefore, self-assembly of
colloidal particles in a fluid has been studied as a potentially
efficient method to generate photonic crystals [4–6]. The
resulting phonotic band structures can be used to control and
confine electromagnetic waves due to refraction and reflection
of light from different interfaces in the periodic dielectric
medium. This behavior is similar to electron propagation in
semiconductors [7]. For this purpose, the presense of a pho-
tonic band gap is desirable, meaning there is a certain range
of frequencies for electromagnetic waves that is forbidden
to be propagated in all directions of wave propagation [8].
Closed-packed crystals’ photonic band structure typically do
not possess photonic band gaps, but in 1990 it was found that
a diamond structure of spheres in empty space does show a
complete band gap [9]. This makes it particularly interesting
to investigate colloidal crystal structures that are stable in a
non-closed-packed configuration.

Self-assembly of particles inside a LC provides a method
to generate colloidal photonic crystals [4–6,10]. A simple
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fluid is not an ideal medium to produce a non-closed-packed
structure as most colloidal interactions are isotropic and
spherically symmetric (which typically leads to close-packed
crystal structures). However, a potentially ideal host medium
for generating non-closed-packed structures is a liquid crystal.
As LCs have anisotropic properties, long-range anisotropic
interactions exist between the colloidal particles. When par-
ticles are immersed in LCs, the LC molecules are distorted
around the particles from their preferred uniform orientation
due to the imposed boundary conditions on the particle’s
surface. The distortions often produce topological defects, and
the director distortion increases the elastic free energy of the
system [11,12]. The long-range anisotropic forces are induced
between the particles as sharing the distortion volumes around
the particles helps minimize the elastic free energy [13–17].
The imposed boundary conditions on the surface of the par-
ticles dictates the type of topological defects and the induced
interactions.

In a nematic, when the preferred orientation of LC
molecules on the surface of colloids is parallel (planar anchor-
ing), a pair of defects are generated at the poles of particles,
called boojums [11]. The boojum cores can be single, split,
and double cores [18]. The stable single core can be found
at weak anchoring, small particles, and high temperature. The
split cores are a pair of +1/2 point defects connected by a
defect line of the same strength. If the defect line connecting
a pair of split core boojums is not developed completely,
then the defect structure is known as a double boojum. In
contrast, when there is normal anchoring of LC molecules on
the surface of colloids, two possible defect structures can be
generated in nematic LC. One possible defect is a Saturn ring
defect, which is a disclination defect line surrounding around
the particle inducing a long-range quadropolar interaction and

2470-0045/2019/99(5)/052701(9) 052701-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052701&domain=pdf&date_stamp=2019-05-13
https://doi.org/10.1103/PhysRevE.99.052701


CHANGIZREZAEI AND DENNISTON PHYSICAL REVIEW E 99, 052701 (2019)

stable for small particles, and another possibility is a −1
point defect, called a hyperbolic hedgehog, inducing far-field
dipolar interaction [11,12,19–22].

When the colloids are immersed inside a cholesteric LC,
the associated defect lines become twisted around them.
Depending on the size of the pitch in cholesteric LC and
size of colloid, a broad range of defect structures can be
seen [14]. Considering colloids with strong planar anchoring
inside a cholesteric LC, a defect-bonded chain is generated
by connecting the boojum handles from adjacent parti-
cles [17]. Moreover, a blue phase LC can produce a three-
dimensional (3D) disclination network. As a result, colloidal-
blue phase composites can be generated as the colloids are
attracted to the 3D defect network depending on the anchoring
strength [23,24]. Also, the stability of a diamond colloidal
crystal with normal anchoring inside a cholesteric LC through
its phonon spectrum is investigated in Ref. [25]. In this 3D
self-assembled structure, the defect lines travel along the
symmetry axes of the diamond crystal.

Binary particles with normal and planar anchoring inside a
nematic LC can self-assemble into 2D crystals, such as a 2D
square crystal [26,27]. The anisotropic interactions between
colloids with heterogeneous boundary conditions inside both
nematic and cholesteric LC are studied in Ref. [27]. In this
paper, it was found that multiple local minima exist in 3D
space when binary colloids are placed inside cholesteric LC
with different pitch values and there are short-range attractive
forces induced between colloids. So we can conclude that a
variety of potential crystals including closed-packed and non-
closed-packed structures could potentially be formed inside
cholesteric LC using these binary particles as the basis for the
lattice.

In this paper, we examine binary colloidal crystal struc-
tures, and in particular diamond and BCC lattices, inside a
cholesteric LC. We test different helical pitch values commen-
surate with our system size in order to measure the binary
advantage energy for each of the colloidal crystals, find the
pitch value at which the most energetically favorable defect
structure occurs, and then compare the stability of closed-
packed and non-closed-packed crystals. We also investigate
the defect structure of diamond, BCC, and FCC lattices inside
a nematic LC to find the potential stable crystal.

II. MODELLING

Using the Landau–de Gennes formalism [28], the LC
is modeled by a tensor order parameter Q to describe the
LC molecules orientation. This tensor is defined as Qi j =
〈m̂im̂ j − 1

3δi j〉, which is the ensemble average of the indi-
vidual molecular orientation m̂. Q is a symmetric traceless
matrix. Its largest eigenvalue is 2

3 q (0 < q < 1) and represents
the magnitude of order along the corresponding eigenvector
n̂, which defines the director field. The evolution of Q can be
tracked using Beris and Edwards theory [29] as follows:

(∂t + u · ∇)Q − S(W , Q) = �H, (1)

where H is the molecular field, u is the fluid velocity, and
� is a rotational diffusion constant. Also S(W , Q) is related
to the symmetric and antisymmetric component of velocity

gradient as:

S(W , Q) = (ξD + �)(Q + I/3) + (Q + I/3)(ξD − �)

− 2ξ (Q + I/3)Tr(QW ), (2)

where the symmetric and antisymmetric velocity gradient
components, D = (W + W T )/2 and � = (W − W T )/2, are
related to Wαβ = ∂βuα . ξ is related to the effective aspect ratio
of LC molecule.

The right-hand side of Eq. (1) drives the system toward a
free-energy minimum through the functional derivative of the
free energy:

H = −δF

δQ
+

(
I
3

)
δF

δQ
. (3)

In our work, the whole free energy of the system is composed
of the bulk free energy and elastic and surface energies:

F =
∫

{Fbulk + Felastic}dV +
∫

Fsurface dS. (4)

The bulk free energy of the system is described as:

Fbulk = A0

2

(
1 − γ

3

)
Q2

αβ − A0γ

3
QαβQβγ Qγα

+ A0γ

4

(
Q2

αβ

)2
, (5)

where A0 is a constant, and the phase transition between
isotropic and LC phases can be controlled through γ . In order
to have a stable LC phase, γ is set to 3.2 (the isotropic fluid
is stable when γ < 2.7, the LC is stable when γ > 3.0, and
coexistence is possible for 2.7 < γ < 3.0).

Felastic represents the elastic distortion via

Felastic = L1

2
(∂αQβγ )2

+ L2

2
(∂αQαγ )(∂βQβγ )

4πL1

P
εαβγ Qαν (∂βQγ ν ).

(6)

The usual distortions in a nematic LC are represented through
the first two terms. The last term is present to model a
cholesteric LC with a helical twist pitch P in the director
which minimizes this term. L1 and L2 are the elastic con-
stants, which can be mapped to the Frank elastic constants
K1, K2, K3 [29]. In our work, we chose K1 = K3 and K2 < K1

and K3 to have a stable cholesteric LC. However, in nematic
LC, we chose K1 = K2 = K3.

Finally, Fsurface is associated with the interaction of LC
molecules with the surface of the colloidal particles. In our
work, the preferred orientation of LC molecules on the surface
of the colloids is either normal or planar anchoring. Anchoring
strength is controlled through a parameter αs. We use a large-
enough value of αs to have strong anchoring. The imposed
planar and normal LC molecule anchoring on the colloid
surface is induced by:

Fsurface = αs

2

(
Qi j − Q0

i j

)2 → Normal anchoring, (7)

Fsurface = αs

2
(Q̃i j − Q̃i j

⊥
)2 → Planar anchoring, (8)
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TABLE I. Simulation parameters.

Symbol Value Units

A0 0.5 atm
γ 3.103 —
K1 15 pN
K2 6.7,15 pN
K3 15 pN
� 0.33775 atm−1 μm−1

ξ 0.52 —
x 0.0625 μm
t 0.5 μs
P0 1.0 atm

where Q0
i j = q0(n̂i

0n̂ j
0 − 1

3δi j ), n̂0 is the normal to the sur-
face of particle, and q0 is the equilibrium bulk value of q.
Also, Q̃i j = Qi j + 1

3 q0δi j and Q̃i j
⊥ = (δik − n̂i

0n̂k
0)Q̃kl (δl j −

n̂l
0n̂ j

0) is the projection of Q̃i j onto the tangent plane of the
surface [30].

The LC also satisfies the Navier-Stokes and continuity
equations with the following symmetric:

σαβ = −P0δαβ − ξHαγ

(
Qγ β + 1

3
δαβ

)

− ξ

(
Qαγ + 1

3
δαγ

)
Hαβ

+ 2ξ

(
Qαβ + 1

3
δαβ

)
Qγ εHγ ε

− ∂βQγ ν

(
δF

δ∂αQγ ν

)
(9)

and antisymmetric tensors:

ταβ = Qαγ Hγ β − Hαγ Qαβ. (10)

These equations are solved using a lattice Boltzmann algo-
rithm described in Refs. [31–34].

Using the above equations, the corresponding stresses and
forces can be calculated in the fluid and then applied to the
colloids. The fluid-colloid interaction is modeled by mapping
the colloids onto the fluid mesh on which the lattice Boltz-
mann method is defined. In this method, each spherical colloid
is first discretized into 6252 nodes, and then the nodes are
coupled to the fluid mesh through interpolating onto nearby
fluid lattice sites. The details of this method are described
in Refs. [13,35–39]. The algorithm was performed using a
custom LAMMPS [40] package. The simulation parameters
used are given in Table I.

The full three-dimensional computation of the liquid cystal
and colloid dynamics is quite costly and so we break it into
stages in order to minimize this cost. We first examine the
energy of several candidate crystal states of colloids inside
the LC. As such, the dynamics in this case are just used to
take us to a minimum of the liquid crystal energy given the
fixed colloid configuration. We then applied LC forces onto
the particles to measure the phonon frequencies of the lowest
energy lattice found and establish its stability when allowing
the colloids positions to fluctuate.

III. RESULTS

In nature there are several stable binary atomic crystal
structures such as SiC, ZnC, etc. We examine several of
these lattice structures as potential candidates for our colloidal
crystal. The binary colloids will be formed from spherical
particles with two different boundary conditions for the di-
rector (normal and planar) on the surface of the sphere.
Once immersed in the LC, the particles induce defects in the
LC matrix and these defect dominate the interactions of the
particles. We investigated similar heterogeneous particle pairs
inside a LC in Ref. [27]. Once placed in a crystal lattice the
defect structure can be quite different from that found for a
single pair. How the defects align with the lattice also affects
the overall stability of the crystal [25].

In the first subsection, the defect structures of a body-
centered-cubic (BCC) and diamond lattice with binary basis
particles inside a cholesteric LC with different pitch values are
investigated. We examine which lattice has the lowest energy
per particle and hence could be as a potential stable crystal for
binary particles in cholesteric LC. In the second subsection,
we did the same simulations for face-centered-cubic (FCC),
BCC, and diamond lattices inside a nematic LC. Commensu-
rability issues mean that a FCC and BCC are unlikely to be
competing lattice structures at a fixed cholesteric pitch, so we
only compare the FCC for the nematic case.

A. Cholesteric LC

1. Diamond lattice

We first considered a colloidal crystal in a diamond lattice
with a unit cell composed of eight particles of radius 1.06 μm
(17x) inside a cholesteric LC. The simulation box di-
mensions are (L × L × L) with L = 5.5 μm, or (88 × 88 ×
88)x, and is periodic in the x, y, and z directions. In this
case, the nearest surface to surface separation is about 4x.
Similarly to Ref. [25], the closest nearest surface separation is
chosen in a way that it is large enough so the particle surfaces
do not overlap each other and small enough so that the director
distortion of one particle can affect its neighboring particles.

The colloidal particles have binary boundary conditions
(normal and planar) on the particle surfaces. As shown in
Fig. 1, the binary diamond lattice consists of two FCC lattices
displaced from each other by ( a

4 , a
4 , a

4 ), where a is the lattice
constant of the cubic super cell. The colloids from the two
different FCC lattices are shown in different colors. The
director field is aligned perpendicularly on the surface of
particles in blue (dark) and tangentially on the green (lighter)
particles.

The lattice structure is immersed in a cholesteric LC.
Several values of the pitch are investigated in order to examine
the resulting LC configuration that is obtained by running the
equations of motion toward their steady state. To compare
various crystal structures we will examine the particle energy
for the configuration:

E/n = (En − E0)/n. (11)

This measures the increase of free energy per particle when n
particles (n = 8 for a diamond unit cell, n = 2 for a BCC unit
cell, and n = 4 for a FCC unit cell using a standard cubic unit
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FIG. 1. Unit cell of binary diamond colloidal crystal in cholesterics with different pitches. There is planar anchoring on the surface of green
colloids and normal anchoring on the surface of blue colloids. There are eight particles inside the unit cell. The defect structures (disclinations)
are shown in yellow. The pitch values are (a) and (d) (first column) L/2 = 44x, (b) and (e) (second column) L = 88x, and (c) and (f) (third
column) 2L = 176x, where L is the size of a unit cell. The top row shows the configuration with the lowest energy found for a given pitch,
whereas the bottom row shows the highest energy configuration found for a given pitch.

cell) are placed in the crystal configuration as compared to the
same system size with no particles (E0). It is reasonable to
assume that the director field must have the same periodicity
as the crystal in order for the lattice to be stable. As such,
the director field must be aligned at the systems (periodic)
boundaries. In a cholesteric LC this means it can only rotate
by multiples of π in the direction of a twist axis. As a result,
we cannot choose arbitrary pitch values as they should be
commensurate with the size of the lattice constant. Therefore,
we used three different pitch values λ where the director twists
over the distance L by 2π (λ = 88x = L), 4π (λ = 44x =
L/2), and π (λ = 176x = 2L).

First, we examine a diamond colloidal crystal placed inside
a cholesteric LC with a pitch value of 88x (director twists
by 2π over box size L). The twist axis in the cholesteric
LC is initially along the z direction. We performed several
simulations initialized with different initial values for the
angle between the director and x axis. Ideally, the final state
would be independent of the initial conditions. Unfortunately,
the system easily gets stuck in localized states. While in many
cases the states only differ slightly in energy (see Fig. 2),
there are cases where different defect structures can be found
depending on the initial θ values. The extreme cases are
shown in Figs. 1(b) and 1(e). While the defect lines look
similar in the two cases, the lower-energy case [Fig. 1(b)] has
slightly shorter defect lines which are localized to a single
colloid. We will return to the question of whether we have
found the global minimum later when we look at the stability
of these structures.

Next, the diamond colloidal crystal was inserted inside a
cholesteric LC with smaller pitch value of 44x (director
twists by 4π over box size L). Again, depending on the initial

angle we set the director, we arrive at different local minima.
As it can be seen in the Fig. 2, the lowest-energy crystal can be
found at θ = 3◦, and its corresponding defect configuration is
shown in Fig. 1(a). In this case, the defect lines stretch across
the lattice in order to reduce distortion in the LC medium,
but these lines tend to flow more along the x and y directions
rather than z, suggesting a memory of the initial orientation
of the pitch. It is worth mentioning that small pitch value
makes the defect lines more twisted around the colloid [41].
The higher-energy local minima found are typically more
disordered in their disclination structure, as seen in Fig. 2(d).
Finally, we investigated the defect structure of the diamond
lattice inside a cholesteric LC with the larger pitch value of
176x (director twists by 2π over box size L). The defect
configurations are shown in Figs. 1(c) and 1(f) and are quite

FIG. 2. The energy gained per particle for binary diamond col-
loidal crystal (n = 8) inside a choelsteric LC with pitch values of
88x, 44x, and 176x as a function of θ .
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localized to each colloid. Again, the energy landscape of the
local minima is quite jagged, as shown in Fig. 1.

In summary, for all cases examined of the diamond col-
loidal lattice, the energy landscape is quite rough and the
defect lines do not really respect the symmetries of the lattice.
As we shall see later, none of these structures are good
candidates for the true energy minima of this system.

2. BCC lattice

Next, we examine the energy of particles with binary
boundary conditions as a basis for a binary BCC lattice. We
chose a BCC instead of, say, an FCC lattice, as it is possible to
have a BCC lattice with the same particle sizes and separations
and unit cell size as the diamond lattice. As such, we can
directly compare the energies of the two crystals at the same
pitch (again, chosen commensurate with the unit cell), as it
is possible for the system to go from one configuration to the
other. With the same nearest-neighbor particle as we used in
diamond lattice, we can actually construct a smaller BCC unit
cell with size (44 × 44 × 44)x. In this case, the pitch values
used for the diamond simulations are still commensurate
with the system size, except for the larger one (where the
director twists by π over a distance L = 88x), where we
will need to use a 2 × 2 × 2 unit cell system in order to have
commensurability.

Similarly to the diamond simulations, we measured the en-
ergy per particle using Eq. (11) (n = 2 particles per BCC unit
cell). We first considered the BCC unit cell in a cholesteric
LC with pitch value of 88x, and the lowest energy defect
patterns can be seen in Fig. 3(a). The central green colloid
has planar anchoring and the blue ones at the corners have
normal anchoring. The plot of the energy per particle is
shown in Fig. 4 as a function of an initialization angle for
the director. The energy landscape for the BCC crystal is
much more regular and symmetric than found for the diamond
crystal and almost identical defect structures are found for
many different initial configurations. The minimum in energy
occurs at θ = 45◦, and the defect lines are twisted in a way
producing less distorted volume in the unit cell and they travel
along the symmetry axes of the BCC unit cell. The higher
energy configurations typically have a slightly longer defect
lines somewhere in the system, potentially in pairs that cannot
easily be relaxed.

Next, similar simulations are performed for BCC unit cell
in LC with a higher pitch value 176x. In this case, we
considered a system considered of 2 × 2 × 2 unit cells in each
direction so that the director field rotates by π in the box of
size (88 × 88 × 88)x. Considering the Fig. 4, the energy
curve is smooth and almost the same defect configuration is
found for most cases. A minimum in energy again is found
for initial θ = 45◦, corresponding to the defect structures
presented in Fig. 3(c). As can be seen in this figure, the defect
lines are symmetrically joined between the spheres, leading to
the lower energy in the system (the green colloids have planar
anchoring and the blue ones have normal anchoring).

Finally, the BCC crystal is examined in a cholesteric LC
with the lower pitch value of 44x. The plot of energy in
Fig. 4 shows that the lowest energy BCC colloidal crystal can
be found at both θ = 5◦ and θ = 80◦, producing the lowest

FIG. 3. The defect structures for a BCC colloidal crystal inside
a cholesteric LC with different pitch values (a) 88x with θ = 45◦,
(b) 44x with θ = 5◦, and (c) 176x with θ = 2◦.

distorted volume in the BCC unit cell. The same sorts of
defect structure exist for both angles, but the lines are twisted
in opposite directions [Fig. 3(b)]. All defect configurations
at 25◦ < θ < 60◦ are in the same higher-energy state corre-
sponding to the most distorted unit cell.

Overall, we see the energy landscape for the BCC lattice
being more symmetric and not as rugged as found for the
diamond lattice. In addition, the defect lines that form in the
lowest energy states found for the BCC lattice tend to follow
lines of symmetry in the lattice for the shorter pitches. For
the longest pitch, there are noticeably more defect lines [cf.
Fig. 3(c)] in the system. We also note that with the exception
of the longest pitch, the energies for the BCC lattice are lower
than those found for the diamond lattice.
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FIG. 4. The energy gained per particle for binary BCC colloidal
crystal (n = 2 per unit cell) inside a choelsteric LC with pitch value
of 88x, 44x, and 176x as a function of θ . The energy for BCC
in cholesteric LC with highest pitch value is divided by 16 as there
are totally eight unit cells in our system.

B. Nematic LC

It is also interesting to examine these lattice structures in a
nematic (corresponding to a cholesteric with infinite pitch).
In this case, there is evidence from experiments [26] that
one can arrange the binary particles into a 2D square lattice
with alternating particle types, similarly to the structure show
schematically in Fig. 5. There are multiple ways to generalize
this into a 3D lattice. Given that the particles were quite
closely packed in the experiment, the most natural general-
ization is to take the 2D structure as a face of a FCC lattice. In
order to have the same closest surface to surface separation of
4x, a FCC unit cell of size (54 × 54 × 54)x is considered.
The plot of energy and defect structures are shown in Figs. 6
and 7. In this case, almost all initial orientations of the director
end up in essentially the same state. The lowest-energy defect
structure is shown in Fig. 7(c).

For comparison to the lattices examined in the cholesteric
we will also examine a BCC and a diamond lattice in a
nematic. For both cases the states found are again nearly
independent of the initial orientation, except for a few cases,

FIG. 5. Face of FCC lattice gives a square lattice in 2D.

FIG. 6. The energy gained per particle for binary BCC (n = 2),
FCC (n = 4), and diamond (n = 8) colloidal crystal inside a nematic
LC as a function of θ .

as seen in Fig. 6. The corresponding minimal energy states are
shown in Fig. 7.

C. Stability

Comparing the energies for both BCC and diamond crys-
tals in a cholesteric LC, it can be concluded that the most
energetically favorable crystal is BCC, as it has lower energy
defect structure with more symmetric defect lines in LC with
pitch value of 88x. However, by itself this does not mean
that it would not be possible to produce a diamond crystal with
some metastability as energy barriers between states could
quite easily be larger than thermal energies (kBT ). To test the
stability of the crystal structures found so far, we add thermal
noise to the molecular field H in the liquid crystal and allow
the particles to move in response. These simulations are much
more costly than just finding the minima so we will restrict
ourselves to looking at the most promising cases found so far.

For the diamond lattice in the cholesteric the lowest energy
state found was for the longest pitch. However, once we allow
the particles to move in response to thermal fluctuations we
quite quickly discover that the crystal structure is unstable and
the colloids cluster into a denser grouping within the periodic
unit cell as seen in Fig. 8. We therefore conclude that the
diamond lattice is not even a locally stable state. This is not
that surprising given the lack of lattice symmetries seen in the
corresponding defect structure in Fig. 1.

We now examine the BCC crystal in the cholesteric with
pitch 88x which had the lowest energy of any of the colloidal
crystals found in any of the cholesteric systems. Therefore, it
may be a potential stable crystal. When we add the thermal
noise and allow the particles to move in response we find that
in this case the particles fluctuate about the lattice locations.
In order to investigate the stability of BCC lattice, the phonon
spectrum corresponding to the vibrational modes of the crystal
is found by calculating the eigenvalues of the dynamical
matrix (the details can be found in Ref. [25]). As the phonon
frequencies can be directly related to second derivative with
respect to particle location of the effective energy of the
crystal, this is equivalent to the second derivative test for a
minima familiar from first year calculus. If all the phonon
frequencies are real and positive, then the crystal should be
locally stable.

In order to accurately find the particles vibrations, we used
two BCC unit cells put together. However, there will still be
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FIG. 7. The lowest energy defect structures found for (a) a BCC
colloidal crystal, (b) diamond colloidal crystal, and (c) FCC colloidal
crystal inside a nematic LC.

some finite-size effects present in our simulations. Using the
minimum energy BCC found before, we added noise to the
system and applied LC forces on the colloids to measure
the particle displacements and calculate the phonon spectrum.
We discarded the first 100 000 time steps to ensure we were
following the equilibrium state.

A BCC irreducible Brillouin zone with its reciprocal lattice
points is considered in order to map out the crystal phonon
frequencies. We chose the path along points �, H, N, �, P,
and H as can be seen in Fig. 9(a) and then calculated the

FIG. 8. Displaced colloids that were initially in the lowest energy
state found for a diamond lattice [cf. Fig. 1(c)] and then subject to
thermal noise.

eigenvalues of the dynamical matrix by using the particles
displacements. As shown in Fig. 10(a), all the eigenvalues
are positive, which shows there is a local minimum energy
corresponding to the second derivative of the potential energy.

FIG. 9. Irreducible Brillouin zone for the (a) BCC lattice and
(b) FCC lattice.
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(a)

(b)

FIG. 10. Phonon frequencies of (a) BCC lattice in cholesteric
and (b) FCC lattice in a nematic. The data were divided into 10
bins, and the error bars corresponds to the standard deviation of the
frequencies.

It is therefore fairly probable that pairs of binary colloids will
self-assemble into BCC lattice structure.

Considering crystals in a nematic LC, if we compare the
energy per particle for BCC, FCC, and diamond lattices, then
we can see that FCC appears to be the most energetically
favorable lattice generated in a nematic LC, which is consis-
tent with the results found in [26,27], suggesting that a binary
system of colloids in a nematic LC can be arranged into a 2D
square lattices or linear chain configurations. Therefore, the
stability of the FCC lattice in the nematic is also investigated
by adding noise to the system. The Fig. 9(b) shows the first
irreducible Brillouin zone (BZ) for FCC lattice. We chose

points �, X, W, and L on the FCC BZ and calculated the
phonon frequencies from simulation data of the fluctuating
particles. As can be seen in Fig. 10(b), the eigenvalues of
dynamical matrix are all positive showing that the FCC crystal
in a nematic LC can be considered as a stable crystal structure.

IV. DISCUSSION AND CONCLUSIONS

In this paper, we examined the energy and stability of
a non-closed-packed crystal (diamond) and a closed-packed
crystal (BCC) with basis colloids of binary boundary condi-
tions inside a cholesteric LC with a variety of pitch values.
Comparing the energy gained by a pair of colloids and dif-
ferent defect structures, we found that the BCC lattice has a
high likelihood to be formed in a cholesteric LC. The energy
is lower for the BCC crystal inside a cholesteric LC with
the pitch value such that the director would be expected to
twist by π over one unit cell of the lattice. In investigating
the stability of the lattice structures, the diamond crystal in a
cholesteric was not found to be stable. The stability of binary
BCC lattice was investigated through calculating the phonon
frequencies. The positive real frequencies suggests the BCC
lattice is stable. We also examined simulations for FCC, BCC,
and diamond lattices in a nematic LC, and it can be concluded
that the FCC lattice is the most energetically favorable lattice
in a nematic LC and is also stable to fluctuations.

It would be interesting to examine how application of
an external electric field could influence the stability of the
crystal structures found. Such fields change the total LC free
energy. Depending on the direction the field is applied, the
defects around the particles may be altered as the field affects
the orientation of LC molecules. This could also result in
different types of induced interactions leading to different
interaction energy landscapes. It would also be interesting
to examine confined crystals where the defects in the crystal
structure could interact with defects on the boundary of the
domain.
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