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Characterization and control of a bottleneck-induced traffic-jam transition
for self-propelled particles in a track
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A collection of self-propelled elongated particles is circulating in a circular track. Due to the presence of a
bottleneck, the flow transits to a congested state for a sufficient number of particles, even if the whole track
is not saturated. Both experiments and simulations are used to identify the transition toward congestion. An
intermediate regime of coexistence is characterized by intermittency between a free flow state and a jammed
state. The range of the coexistence region is found to depend explicitly on fluctuating quantities such as
the distribution of the escape times from a jam and the headway time distribution between free particles.
Optimization strategies, such as the “slower is faster” effect, are tested in experiments and simulations, and
an increase in the traffic performances is reported.
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I. INTRODUCTION

Assemblies of self-propelled particles are model systems
to mimic the collective behaviors observed in complex active
systems [1–4]. The approach is to reduce the complexity
of the individual elements in order to reveal the physical
mechanisms at the origin of the emergence of a collective
dynamic. This work focuses on the emergence of traffic jams
as a collective effect of particle ensembles with physical
interactions.

The concept of jamming is encountered in a wide vari-
ety of situations, such as road [5–7] and internet [8] traf-
fic, escape from confined environments [9–11], or granular
flows [12–15]. The typical physical approaches are based on
models in which the flow dynamics depends on the local
density. This is the case for continuous models derived from
fluid dynamics [16,17] or hopping models using cellular au-
tomata [18,19].

A variety of model experiments have been proposed to
explore the traffic of self-propelled elements in roadlike ge-
ometries. For noncontact interactions mediated by a diffusing
surfactant [20] or light sensing [21], the traffic flow limitation
is associated with the saturation of the track. Self-propelled
particles with contact interactions have been used to explore
either a free regime of traffic [22] or the congested regime
obtained with particles in a hopperlike constriction [23].

In this work, we explore the transition between free flow
and a jammed state for a set of self-propelled elements. Here,
the emergence of jams is not related to saturation of the
whole track but to the presence of a bottleneck. The model
particles used in the experiments are autonomous robots with
contact interactions, and they are constrained to move in a
track with a localized reduction in width. A transition from a
free-flowing to a congested state is observed when the number
of particles is increased. First we characterize the transition
and show that it differs from what would be observed for jams
occurring due to the track saturation mechanism. Second, we
investigate some strategies to shift the onset of congestion

and we observe either a decrease or an increase in the overall
traffic performances for the particle ensemble.

To probe the traffic performances of active particles in a
model geometry, the relation between the average flux and the
number of particles in the track is used. This representation
is analogous to the so-called fundamental diagram [24–26]
usually encountered in traffic engineering. The fundamental
diagram represents the vehicle flux at a counting point as
a function of the vehicle density. At low densities, the flux
increases linearly with the vehicle density. The associated
slope is the free velocity that is weakly affected by the density
variations in this regime. For higher densities, the appearance
of traffic jams drastically modifies the flow, and the overall
traffic decreases with the increase in the number of vehicles.

The triggering of jams is related to a wide variety of causes,
such as obstacles and lane reduction [27–29], road cross-
ings [30], or density fluctuations without bottlenecks [24,31].
However, the fundamental diagram systematically shows the
increasing and decreasing regimes discussed above. If the
increasing regime is expected, the regime with a decrease
of the traffic with an increase of the number of vehicle
is counterintuitive. The physical systems with self-propelled
particles mentioned before [18–21] capture such a decrease in
the case of track saturation.

Improving the traffic performances close to track satura-
tion is possible, but it requires significant modifications of
the particles’ properties, such as their sizes or their mean
velocities. Notably, the reduction of velocity is known to
improve the traffic performances near congestion according
to the “slower is faster” effect reported in model systems and
road or pedestrian traffic measurements [32–38]. Here, we
show that it is possible to go beyond the “slower is faster”
effect in our simple system: a regulation strategy is tested in
the simulations where the average properties of the particles
are not modified. Instead, particles are locally slowed down
before the bottleneck, leading to a more uniform particle
distribution and an overall increase in the flow behavior.

2470-0045/2019/99(5)/052605(9) 052605-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052605&domain=pdf&date_stamp=2019-05-13
https://doi.org/10.1103/PhysRevE.99.052605


THOMAS BAROIS et al. PHYSICAL REVIEW E 99, 052605 (2019)

1 cm

bottleneck

10 cm

θ

N = 4

θ (°)
-180 -90 0 90 180

W
(c

m
)

-2

-1

0

1

2

bottleneck

single lane double lane 2w
w

motion

(a) (b)

(c)

FIG. 1. (a) Electromechanical rodlike robots used in the ex-
periments. (b) Snapshot of the traffic experiment for N = 4 self-
propelled particles turning anticlockwise in the track. The location
of a particle in the track is given by the angle θ . (c) Width W of the
track (solid line) as a function of the angular position θ .

II. EXPERIMENTAL SETUP

Two types of self-propelled electromechanical particles
are used in this work: dry granular particles (self-propelled
rodlike robots) and particles moving close to an air-water in-
terface in a shallow tank (fishlike robots). The main emphasis
of this work concerns the dry particles, while the swimming
particles are used to test how different escape time statistics
affect the jam dynamics.

The dry granular particles are electromechanical robots,
nearly ellipsoidal, with an aspect ratio close to 3 (length
� = 4.4 cm, width w = 1.5 cm) [Fig. 1(a)]. The robots have
a battery and a vibrating element that leads to a unidirectional
propulsion in the tail-to-head direction [39–41]. The random-
ness of the shocks due to the vibration results in an effective
diffusion of the orientation of the robot without confinement.

The swimming fish robots have dimensions of 7.3 cm in
length, 3.2 cm in height, and 1.7 cm in width. They are
propelled by the flapping of a caudal fin (operated by a set
of two batteries and an electromagnetic motor) and move at
velocities between 10 and 15 cm s−1. The track was immersed
in a water pool roughly 5 cm in height, and the fish robot
motion is nearly bidimensional.

The experiments with the dry granular particles (rodlike)
are conducted in a circular track of length L = 182 cm with
a varying width. The revolution period for a single particle is
Tt = 5.5 s and the maximal capacity of the track is 78 parti-
cles. Figure 1(b) shows a snapshot of the traffic experiment
with four self-propelled vehicles in motion. The width of the
track W (θ ) is presented in Fig. 1(c). W (θ ) does not exceed

4 cm, and the particles cannot reverse their direction. A wider
track would allow the particles to change their orientation
and possibly to form clusters mediated by the walls [40–44].
The track has a bottleneck similar to a 2-to-1 lane reduction
on a road: on half of the track, overtaking is possible with
W (θ ) > 2w, and on the other half only one robot can go
through because w < W (θ ) < 2w.

The average traveling velocity of the particles is vT = 33
cm s−1. This average velocity varies by about 2 cm s−1

between two particles. For a given particle, the velocity fluctu-
ates over time with a standard deviation of 3 cm s−1. Here, the
velocity fluctuations are sufficiently large so that the particles
can catch up with each other in the double lane sector.

III. EXPERIMENTAL RESULTS

A. Transition to congestion

A set of movies is recorded for a varying number N of
particles in the track (see the Supplemental Material [45]).
For a few particles, as in Fig. 1(a) with N = 4, the flow is
free. At higher numbers, a clogging of particles is observed at
the bottleneck, as shown in Fig. 2(a).

The relation between the flux Q and the total number
of particles N in the track is represented in Fig. 2(b) with
filled circles. The flux is measured by counting the particles
crossing the position θ = −90◦ with a fixed N in the track
during the acquisition time. A free regime is observed at low N
where Q varies linearly with N . For high values of N > 20, a
congested regime is observed and the flux is strongly reduced
in comparison to an extrapolated free regime. There is a finite
flux in this regime since the particles may escape from the
jam, but there is permanently a particle population blocked at
the bottleneck.

A transition region is observed for the range 9 � N � 18,
where, for a fixed N , the flow switches spontaneously between
the free and the congested regimes. The instantaneous flow
is presented with the angular trajectories in Fig. 2(c) for
N = 5, 15, and 22 particles. For N = 5, the angle θ increases
linearly with time for all the trajectories indicating a free-
flowing regime. For N = 15, this angular dynamics shows
both linear regimes, indicating free flow, as well as blocked
regimes where the angle varies little with time. The particles
in the jam form a horizontal band at the bottleneck below
θ = 126◦. For N = 22, this horizontal band is persistent in the
trajectory diagram, which means that the state is exclusively
jammed.

The instantaneous velocities of the particles are computed
from the recorded trajectories. Figure 3 shows a representation
of the particle velocity distributions depending on the number
of particles in the track N . At low N , the velocity distribution
is monomodal and centered on the typical velocity vT =
33 cm s−1 of the particles freely moving in the track. Ap-
proaching N = 10, the velocity distribution is slightly shifted
to a lower value, typically 30 cm s−1, which corresponds
to the velocity of the slowest particles in the track. This
velocity reduction is consistent with the formation of moving
clusters [22] with the slowest particles ahead. The veloc-
ity distribution becomes bimodal in the coexistence region
9 � N � 18, and the mode related to the particles in the
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FIG. 2. (a) Snapshot of the traffic experiment for N = 22 self-propelled particles. At the bottleneck, 13 particles are packed in a slowly
flowing jam. (b) Particle flux Q as a function of the total number of particles N (filled circles). For 9 � N � 18, there is a switching between
the jammed and the free regimes over time at fixed N . Outside this range, the regime is exclusively free or congested. In the coexistence region,
the flux is computed over the time period for which the flow state is either free (squares) or jammed (diamonds). The dashed lines are for the
free flux Qf = N/Tt and the congested flux Qc = 1.2 s−1. (c) Angular trajectories θ (t ) of the particles for N = 5, 15, and 22 corresponding to
the free, the coexisting, and the jammed regimes, respectively. The snapshot (a) corresponds to the timeline 7.8 s in the trajectory for N = 22.

jam has a typical velocity of 5 cm s−1. The threshold value
of 15 cm s−1 is selected to discriminate between particles
belonging to the free mode with high velocities or the jammed
mode at low velocities. This threshold is about half of the free
velocity. At higher N , the velocity distribution is dominated
by the contribution of the particles in the jam even if a small
proportion of the particles still escapes from the jam.

For each recording at constant N , the flux is computed sep-
arately over the time period for which the flow is either free or
jammed. To do so, the existence of a jam is deduced from the
instantaneous particles velocities: if at least N − 1 particles
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FIG. 3. Velocity map of the self-propelled particles in the traffic
experiment with the dry granular robots. A linear color scaling is
used to represent the probability to have a particle having a velocity
v with a total number of N particles in the track. The dashed line
v = 15 cm s−1 indicates the threshold value between a particle in a
jam and a free particle.

are moving faster than the threshold velocity of 15 cm s−1,
the flow state is considered to be free. The angular trajectories
for N = 15 show two spontaneous transitions between the
jammed and the free states. A decomposition in two branches
is obtained in the coexistence region as presented in Fig. 2(b),
where Q f and Qc are the free and the congested branches.

B. Two-population stationary model

A first analysis of the flow state is proposed with stationary
arguments. The traffic of the particles is described by two
populations where nJ (t ) is the number of particles in the jam
and N − nJ (t ) is the number of free particles in the track.
Without a jam nJ (t ) = 0, the flux is given by Q f = N/Tt . If
there is a jam nJ (t ) � 2, the particles may escape from the jam
with a distribution of escape times. For a persistent jam, the
average flux is given by the inverse of the average escape time
Qc = 1/Te. An average escape time Te = 0.82 s is obtained
from the measurement of the escape time distribution. The
associated flux 1/Te = 1.2 s−1 is represented by the horizontal
dashed line Qc in Fig. 2(b). It gives a satisfying description
for the jammed branch near the coexistence region. In the
persistent jam region, Q tends to decrease with increasing N .
A more accurate description of the escape dynamics could be
proposed with 1/Te depending on N . Because this study is
focused on the transition region, only a simplified approach is
considered where the average escape time Te is independent
of N .

The relation between the average number of particles in
the jam nJ and N can be established in the stationary limit.
For a jam with an average nJ particles, each particle spends
a time nJTe in the jam and a time Tt in the track giving nJ =
N × nJTe/(nJTe + Tt ) and consequently

nJ = N − Tt

Te
. (1)
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FIG. 4. Number of jammed particles nJ as a function of the total
number of particles N in the track. The square symbols correspond to
the average value nJ = 〈nJ (t )〉t during an acquisition with fixed N .
The maximum value of nJ (t ) during an acquisition is represented
by triangles pointing upward and downward, respectively, for the
minimum value. The solid line is the upper bound nJ = N for which
all the particles are in the jam. The dashed line is the relation (1). In
the coexistence region, nJ > 0 and {nJ}min = 0.

The ratio Tt/Te = N − nJ fixes the average number of free
particles when a persistent jam is formed.

The beginning of the coexistence region is consistent with
N − nJ = Tt/Te = 6.6 with a threshold nJ = 2 clogged par-
ticles. Below N = 9, the jams that might eventually form
vanish rapidly as not enough particles feed the jam since
most of their time has to be spent in the free-flowing part of
the track.

C. Role of the jam size fluctuations

The analysis of the traffic by stationary flow states de-
scribes both the free and the congested regimes with Q f =
N/Tt and Qc = 1/Te, respectively. A critical number Nc =
Tt/Te corresponding to a crossover for the two regimes Q f =
Qc is defined, but the details of the transition are not predicted.

Figure 4 presents the number of jammed particles nJ as a
function of the total number of particles N in the track. In
the free regime N < 9, nJ = 0. In the jammed regime, the
average number of jammed particles nJ is consistent with
Eq. (1). The instantaneous number of jammed particles nJ (t )
fluctuates between a lower value {nJ}min > 0 and an upper
value {nJ}max ∼ N corresponding to all the particles in a jam.
In the range 9 � N � 18, nJ is nonzero, and jams appear
after a finite time. However, the jam state is not persistent
because {nJ}min = 0, which means that the fluctuations of
jam size are large enough to result in a complete dissolution
of jams.

To show how the jam size fluctuations may modify the
traffic diagram, a similar traffic experiment was performed
with the self-propelled particles mimicking swimming fishes.
The artificial fishes are confined in an annular tank with a
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FIG. 5. (a) Particles flux as a function of the number of particles
for the two experiments with the two types of self-propelled particles
circulating in a track with a bottleneck. Q and N are normalized with
Qc = 1.2 s−1 and Nc = 7.7 for the dry granular and Qc = 0.19 s−1

and Nc = 3.7 for the artificial fishes. (b) Escape time distribution
from a jam with dry self-propelled particles. Average time Te =
0.83 s, standard deviation δTe = 1.8 s. (c) Escape time distribution
from a jam with swimming artificial fishes. Te = 5.4 s, δTe = 3.1 s.

bottleneck. The track profile is similar to the track profile
used for the dry granular robots presented in Fig. 1. The
flux Q of the dry granular and the swimming self-propelled
particles is presented in Fig. 5(a) as a function of the total
number of particles N . The representation of the flux is in
normalized units with Q/Qc = 1 in the jammed regime. Nc is
such that the slope in the free regime is unity. In the case of the
swimming particles, the two regimes, free and congested, are
clearly identified, but, contrary to the dry granular particles,
there are almost no data points above the congested branch
Q/Qc = 1.

The swimming particles were chosen because they have a
dynamics of escape from jams that differs from the escape
dynamics of the dry particles. Figure 5 presents the escape
time distributions for the dry granular particles (b) and the
artificial fish robots (c). For both particles, an average escape
time Te is defined and it is used to characterize the jammed
regime Q/Qc = 1 in the plot (a) with Qc = 1/Te. For the
artificial fish, Te = 5.4 s and the maximum of the distribution
is relatively close to Te. In the case of the dry granular
particles, the maximum of the distribution is located at a time
typically four times smaller than the average escape time Te =
0.83 s. The relative amplitude of the fluctuations is computed
as the ratio between the standard deviation δTe and the average
escape time Te. For the artificial fish, δTe/Te = 0.58 while
for the dry granular, δTe/Te = 2.16. Consequently, the fluc-
tuations of escape time are much larger for the dry granular
particles, which means that nJ (t ) fluctuates sufficiently to
dissolve almost any jam in the region 1 < N/Nc < 2. In the
limit of no fluctuations and large Nc, the flow regime would
follow the two regimes Q f and Qc represented by a dashed
line in Fig. 5(a) with a sharp transition at N = Nc. While
the artificial fishes with smaller fluctuations in escape time
statistics follow this trend, the dry particles with large fluctua-
tions in escape times do not. This points to the importance of
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FIG. 6. Vehicle flux Q as a function of the number of particles N
with a damper. The inserted image shows the location of the damper
that is a soft sheet positioned in the track. The dashed lines are
the same as in Fig. 2(b). The solid line is for the free branch with
damper Qf ,d = N/Tt with Tt = 7.1 s. The inserted plot shows the
time delay probability between two particles following each other at
the counting point θ = −90◦. Without the damper, the time delay is
maximal for particles following each other with Tf = �/vT . With the
damper, the maximum is shifted at Td = �/(vT − vD ).

escape time statistics in setting the characteristics of the traffic
diagram.

D. Regulation by a damper

A regulation strategy is tested with a modification of the
particle dynamics in the track. The regulation mechanism
implemented relies on the concept of “slower is faster.”

To reduce the velocity of the particles, a damper, i.e., a thin
layer of soft plastic, is positioned in the track in the single lane
sector. This soft sheet covers the track width over a length of
LD = 19.5 cm between θ = −170◦ and −133◦. A dashed line
is used in the inserted image in Fig. 6 to signal the location
of the soft sheet. The sheet is not clearly visible in the image
because it is covered by some particles. The thin sheet acts
as a damper: the particle self-propulsion is less efficient on
the damper because of its softness, and the average velocity is
reduced to vD = 9 cm s−1.

The traffic relation with the damper is shown in Fig. 6.
In the free regime at low N , the flux is reduced compared
to the first experiment without a damper, simply because the
flux is inversely proportional to the revolution period. The
coexistence between jammed and free flow is still observed
for an intermediate number of particles. However, the region
of the free flow is increased up to N = 18 particles. For high
numbers N � 25, the flux is comparable to what is measured
without regulation.

The presence of the damper increases the revolution period
to Tt = 7.1 s. The traffic improvement by the regulation with
the damper is effective for intermediate N in the coexistence
region. The shift of the coexistence region toward higher N is

consistent with the presence of the damper and the revolution
period Tt increase. In the stationary model described before,
the number of particles in the jam nJ is expected to decrease
with an increase of the revolution period Tt according to
Eq. (1).

The maximal flux with the damper is Q = 2.2 s−1 for
N = 18. Without a damper the maximal flux is Q = 1.8 s−1

for N = 12. The effect of the velocity reduction alone should
not result in an increase of the maximal flux. To a first approx-
imation, the velocity reduction and the associated increase
of Tt should be equivalent to an increase of the track length
for an unmodified velocity. Since the vehicle density goes as
the inverse of the track length, the velocity reduction should
be equivalent to a density reduction and a shift of the flux
relation with a rescaling for N and without modification for
Q. This scaling argument is supported by the measurements
on road traffic [38] in which the flow diagram appears to be
a function of the occupancy divided by the inverse of the
speed limits. Accordingly, the maximal vehicle flow reported
is independent of the speed limitations.

The increase of the maximal flux is related to the fact
that the damper is not only increasing the revolution period
but it also modifies the spacing between the particles. The
inserted plot in Fig. 6 shows the headway time distribution at
the counting point θ = −90◦, just after the damper. Without
damper regulation (R Off), the headway time probability is
maximal for Tf = 0.15 s, which corresponds to the typical
headway time �/vT = 0.13 s for two particles following at
contact distance. With the damper (R On), the maximum
of the headway time probability is shifted to Td = 0.45 s.
Converted to a spacing distance TdvT − �, it corresponds to a
typical separation between following particles of two particle
lengths. The consequence of this separation is to decrease
the encounter probability at the bottleneck and then to de-
crease the clogging probability. This points to the importance
of headway time statistics on setting the details of traffic
diagrams.

IV. DYNAMICAL MODEL

In the previous section, a stationary analysis has been
proposed based on the existence of an average revolution time
Tt and an average escape time Te. This analysis is not sufficient
to describe the details of the transition to congestion because
the dynamics of the particles and notably their fluctuations
have to be considered. The object of this section is to introduce
a dynamical model that captures the physics of the transition
from free flow to congestion and to pinpoint the role of the
fluctuations.

A. Lattice model

The dynamics of the particles and the transition to con-
gestion are addressed by a lattice model in which both time
and space are discrete quantities. The particles are assimilated
to cellular automata moving in a discrete track with periodic
boundaries composed of a single lane with 50 cells followed
by a double lane with 50 × 2 cells. The particles obey the
exclusion rule that states that a particle does not move to
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an occupied cell. The dynamics of the particles follows three
rules.

First, for each time step the particles have a probability
Pm = 0.95 to move forward. Pm is not exactly equal to unity in
order to induce some fluctuations in the trajectories and allow
interactions between particles via the exclusion rule.

Second, in the double-lane sector, both lanes are explored
via a probability Pc = 0.1 to change lanes at each time step.
The two processes of moving forward and changing lanes are
independent.

The last pair of cells in the double-lane sector is mimicking
the bottleneck via a third rule. If there is only one particle
on the last pair of cells, the particle dynamics is the same
as before. If two particles occupy the last pair of cells, the
particle in one of the lanes has a probability Pe = 0.05 to move
forward.

B. Lattice model solution

1. Numerical solution

The results of the simulation of the lattice model previously
described are represented by filled circles in Fig. 7.

The simulations are carried out for 106 time steps with
N = 1, . . . , 30 particles. N is varied in a regime below the

track saturation that would occur for N approaching the 150
cells of the track. The trajectories of the cellular automata are
processed to define an instantaneous flux per particle 1/T ,
where T is the number of time steps to cross the full track.
This flux per particle is in normalized units T (1)/T with
T (1) = Nc/Pm, the mean revolution time for a single particle,
where Nc = 100 is the linear number of cells. The total
normalized flux Qn is the sum of T (1)/T over the N particles.
The probability map in Fig. 7 represents in a logarithmic color
scale the total flux distribution and its average value with
filled circles. The statistics of the flux shows two branches
associated with Qn, f = N for the free regime and Qn,c =
PeNc/Pm for the congested regime. Coexistence between the
two regimes is observed, typically for 10 � N � 18, where
the flow state spontaneously switches between the free and
the congested regime as observed in experiments.

An additional set of simulations, not presented in the
figure, is performed to investigate the influence of the moving
probability Pm. For Pm = 1, the flow regime is exclusively
free, simply because the particle spacing is independent of
time and there is no possible jam nucleation. In the range
0.90 � Pm � 0.96, the jam nucleation is possible and almost
independent of the value of Pm, with a relative variation for
Qn of 5% at most. This is because the motion fluctuations 1 −
Pm = 5% are large enough so that the particles randomly catch
up with each other in the double-cell sector and eventually
arrive simultaneously at the bottleneck. With Pm = 0.95, the
particle dispersion is typically 1.5 cells after the 50 cells of the
double-lane sector. The transition to the correlated motion is
typically for Pm = 0.98, for which the particle dispersion after
50 cells is 1.0.

Similarly, a transition to a single file motion in the double-
lane sector would be obtained for Pc < 0.02, meaning that Pc

would be too small for the particles to explore the second lane.

2. Analytical solution

An analytical model is proposed to account for the flux re-
lation observed in the simulation presented with filled circles
in Fig. 7. For a fixed N , the average flux depends on (i) the
typical duration of a free state and (ii) the typical duration
of a jammed state. The solution is established in the limit of
particles moving without synchronization in the double-lane
sector (Pm < 0.98) and exploring both lanes (Pc > 0.02).

For (i), with an initial free state, a jam forms when two par-
ticles simultaneously occupy the last two sites of the double
lane. Assuming that all the configurations are equivalent, the
probability Pj to form a jam at a given time step is Pj = [N ×
(N − 1)]/[NT × (NT − 1)] with NT = 150 the total number
of cells. The average duration of the free state is simply Pj

−1.
For (ii), and with an initial congested state, the jam is

effectively dissolved when the number of escape events is at
least N during a mean revolution time. NR ≈ 105 represents
the number of escape attempts during Nc/Pm time steps after
which an escaped particle returns to the jam. The probability
to have Ni particles escaping at a rate Pe with NR attempts is
given by the binomial relation B(Ni ) = CNi

NR
Pe

Ni (1 − Pe)NR−Ni ,
where C is the binomial coefficient. The probability Pd to
dissolve any jam of size N is the cumulative probability of
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all escape events with Ni � N and Pd = �iB(Ni � N ). Pd
−1

represents the duration of a jammed state period.
The average flux (Qn, f Pj

−1 + Qn,cPd
−1)/(Pj

−1 + Pd
−1) is

presented by a solid line in Fig. 7 and shows a remarkable
agreement with the simulations.

C. Modification of the time distributions

In the following, the rules of the lattice model are modified
to show how the coexistence region can be shifted by a mod-
ification of the particle fluctuations but without modification
of the average quantities defining the free and the congested
regimes.

1. Escape time distribution

So far, the numerical solution of the lattice model has
been proposed with an escape probability Pe independent
of the time step. In this case, the distribution P(τ ) for an
escape after a time τ is exponential with P(τ ) ∝ exp(−Peτ ).
In addition to the exponential distribution for the escape time,
a Gaussian distribution P(τ ) ∝ exp[−(τ − Pe

−1)2/2δτ 2] is
tested. The distribution is centered on an escape time Pe

−1 =
20 time steps with a standard deviation δτ = 4 time steps.
This narrow distribution of escape times limits fluctuations in
nJ (t ), making fluctuations down to nJ (t ) = 0 very unlikely,
and thus it inhibits the dissolution of even a small jam. The
simulation results are represented by open squares in Fig. 7,
and a narrow coexistence region is observed around N = 10.
For N � 11, the regime is fully in the congested branch. The
extent of the coexistence region as well as the efficiency of
the traffic are therefore highly sensitive to the distribution of
escape times.

The numerical results of the lattice model are consistent
with the results obtained in Fig. 5 if one considers that the
escape time distribution is approximately exponential for the
dry granular particles and Gaussian for the artificial fish.

2. Headway time distribution

A regulation rule is implemented in the simulations to
mimic the effect of the damper on the distance regulation.
In the experiments, the effect of the damper combines a
slowing-down and a distance regulation of the particles. The
slowing-down is known to increase the flux at high densities
according to the “slower is faster” effect. In the lattice model,
the regulation rule is imposed for the cell tagged R in Fig. 7,
where a particle can move only if the next n = 5 cells are
empty. Contrary to the experiments, this rule does not induce
a velocity reduction for an isolated particle. The simulation
results with open circles show an improvement of the traffic,
and the coexistence region is extended up to N = 21. In the
range 15 � N � 18, the flux is increased by a factor of 1.6.

V. CONCLUSION

A relation similar to the fundamental diagram in traffic
engineering is reported for an ideal model of self-propelled
elements in both experiments and a lattice model. The jams
are triggered at a bottleneck of the track, and the traffic perfor-
mances decrease well below the saturation of the whole track.
A coexistence region is identified where the flow state sponta-

FIG. 8. Angular trajectories of N = 4 particles. Each particle is
represented by a single color.

neously switches between a free and a congested regime with
a fixed number of particles in the track.

The role of the particle fluctuations is crucial to account
for the existence of the coexistence region. The range of
the coexistence region strongly depends on the escape time
statistics from a jam and is very sensitive to the headway
time distribution for the particles arriving at the bottleneck
without a jam. The lattice model is used to show that the
coexistence region may be shifted if the time or distance
distributions between the particles are modified, even if the
average traffic remains unchanged in the limits of the free
and the congested regimes. The simulations are used to show
that the flux increases if the separation between particles is
controlled in the free-flowing region. On the other hand, the
simulations demonstrate that a nearly constant escape time for
the escape in the presence of a jam has the opposite effect and
results in a decrease of the flow performance.

FIG. 9. Angular trajectories of N = 8 particles. Each particle is
represented by a single color.
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FIG. 10. Angular trajectories of N = 14 particles. Seven colors
are used to represent the trajectories of the 14 particles.
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APPENDIX A: PARTICLE TRACKING
AND FLUX MEASUREMENT

The particle trajectories are extracted from image analysis.
The recording camera has a frame rate of 20 frames per
seconds. The image resolution is 962 × 962 pixels with RGB
color in eight-bit depth. Each robot has a pair of colored
stickers that are identified to obtain the location and the
orientation of the particles. The angular position θ of the
particles in the track is obtained from the 2D trajectories
{Xi(t ),Yi(t )} by θ = arctan (Yi(t )/Xi(t )).

The flux diagrams with Q as a function of N are obtained
with a set of experiments where the number of particles
in the track is fixed. For each particle number investigated
(N = 2, 3, . . . ), a sequence of 1–2 min in length is used to
record the particle trajectories. The trajectories are processed
to count the particles crossing the line θ = −90◦. The flux Q
(s−1) is obtained by dividing the counted particles Ncount by
the duration Tseq of the sequence. A visual inspection of the
images is used to add the contribution of the particles missed
by the algorithm.

APPENDIX B: JAM SCENARIO

The angular trajectories of the particles are presented in
Figs. 8, 9, 10, and 11. The slope of the trajectories is the

FIG. 11. Angular trajectories of N = 34 particles.

angular velocity of the particles with respect to the center of
the track.

For N = 4 (Fig. 8), a free traffic regime is observed.
The particles have a homogeneous velocity in the track.
The formation of a moving cluster is observed between 0
and 40 s because a slightly slower particle is slowing down
the other following particles. Even if the double lane sector
allows overtaking, the overtaking by the fastest particles is not
systematically observed because of the random dynamics of
the particles in the track. An overtaking event is occurring at
49 s and then a spreading of the cluster is observed.

For N = 8 (Fig. 9), the traffic is still dominantly free but
very short blocking events can be observed. A jam with a
duration of 5 s is observed around 70 s. A clustering of the
particles acting as a precursor of the jam event is observed
between 60 s and the blocking event at 70 s. Because there are
not enough particles to maintain the jam since some particles
are still escaping from the front of the jam, the jam is rapidly
dissolved. The dissolution of the jam results in a spreading of
the cluster at times greater than 70 s.

For N = 14 (Fig. 10), the traffic is switching between
jammed and free states. There are enough particles in the track
to observe multiple blocking events. However, the number of
particles is not sufficient to maintain enough particles in the
jam, and the intrinsic fluctuations of the jam size are reaching
nJ (t ) = 0 after a short time, typically less than 10 s.

For N = 34 (Fig. 11), there are enough particles in the
track to maintain a persistent jam. The jam is slowly flowing
and the particles escape with a time distribution P(Te).

[1] V. Narayan, S. Ramaswamy, and N. Menon, Science 317, 105
(2007).

[2] J. Deseigne, O. Dauchot, and H. Chaté, Phys. Rev. Lett. 105,
098001 (2010).

[3] A. Bricard, J.-B. Caussin, N. Desreumaux, O. Dauchot, and D.
Bartolo, Nature (London) 503, 95 (2013).

[4] E. Bonabeau, M. Dorigo, and G. Théraulaz, Swarm Intelli-
gence: From Natural to Artificial Systems (Oxford University
Press, Oxford, 1999), p. 1.

[5] B. S. Kerner, Phys. World 12, 25 (1999).
[6] D. Chowdhury, L. Santen, and A. Schadschneider, Phys. Rep.

329, 199 (2000).

052605-8

https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1126/science.1140414
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1103/PhysRevLett.105.098001
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1038/nature12673
https://doi.org/10.1088/2058-7058/12/8/30
https://doi.org/10.1088/2058-7058/12/8/30
https://doi.org/10.1088/2058-7058/12/8/30
https://doi.org/10.1088/2058-7058/12/8/30
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1016/S0370-1573(99)00117-9
https://doi.org/10.1016/S0370-1573(99)00117-9


CHARACTERIZATION AND CONTROL OF A … PHYSICAL REVIEW E 99, 052605 (2019)

[7] D. Helbing, Rev. Mod. Phys. 73, 1067 (2001).
[8] M. Takayasu, H. Takayasu, and K. Fukuda, Physica A 277, 248

(2000).
[9] D. Helbing, I. Farkas, and T. Vicsek, Nature (London) 407, 487

(2000).
[10] E. Altshuler, O. Ramos, Y. Núñez, J. Fernández, A. Batista-

Leyva, and C. Noda, Am. Nat. 166, 643 (2005).
[11] D. Helbing, L. Buzna, A. Johansson, and T. Werner, Transport.

Sci. 39, 1 (2005).
[12] A. J. Liu and S. R. Nagel, Nature (London) 396, 21

(1998).
[13] T. S. Majmudar, M. Sperl, S. Luding, and R. P. Behringer, Phys.

Rev. Lett. 98, 058001 (2007).
[14] A. Janda, D. Maza, A. Garcimartín, E. Kolb, J. Lanuza, and E.

Clément, Europhys. Lett. 87, 24002 (2009).
[15] I. Zuriguel, A. Janda, A. Garcimartín, C. Lozano, R. Arévalo,

and D. Maza, Phys. Rev. Lett. 107, 278001 (2011).
[16] M. J. Lighthill and G. B. Whitham, Proc. R. Soc. London, Ser.

A 229, 317 (1955).
[17] S. P. Hoogendoorn and P. H. Bovy, Proc. Inst. Mech. Eng., Pt.

I: J. Syst. Contr. Eng. 215, 283 (2001).
[18] K. Nagel and M. Schreckenberg, J. Phys. I 2, 2221 (1992).
[19] S. Maerivoet and B. De Moor, Phys. Rep. 419, 1 (2005).
[20] K. Nishinari, K. Sugawara, T. Kazama, A. Schadschneider, and

D. Chowdhury, Physica A 372, 132 (2006).
[21] N. J. Suematsu, S. Nakata, A. Awazu, and H. Nishimori, Phys.

Rev. E 81, 056210 (2010).
[22] B. Tian, W.-P. Sun, M. Li, R. Jiang, and M.-B. Hu, Chin. Phys.

B 27, 038902 (2018).
[23] G. A. Patterson, P. I. Fierens, F. Sangiuliano Jimka, P. G. König,

A. Garcimartín, I. Zuriguel, L. A. Pugnaloni, and D. R. Parisi,
Phys. Rev. Lett. 119, 248301 (2017).

[24] B. S. Kerner, Phys. Rev. Lett. 81, 3797 (1998).
[25] 75 Years of the Fundamental Diagram for Traffic Flow

Theory: Greenshields Symposium: 2008, Woods Hole, Mas-
sachusetts, Transportation Research Circular (Transportation
Research Board, 2011), URL https://books.google.fr/books?id=
x8s4ngAACAAJ.

[26] A. Seyfried, B. Steffen, W. Klingsch, and M. Boltes, J. Stat.
Mech.: Theor. Exp. (2005) P10002.

[27] S. Kurata and T. Nagatani, Physica A 318, 537 (2003).
[28] K. Nassab, M. Schreckenberg, A. Boulmakoul, and S. Ouaskit,

Physica A 369, 841 (2006).
[29] L. Davis, Physica A 451, 320 (2016).
[30] T. Nagatani, J. Phys. A 26, 6625 (1993).
[31] Y. Sugiyama, M. Fukui, M. Kikuchi, K. Hasebe, A. Nakayama,

K. Nishinari, S.-i. Tadaki, and S. Yukawa, New J. Phys. 10,
033001 (2008).

[32] A. Kesting, M. Treiber, and D. Helbing, Transport. Res. Rec.
1999, 86 (2007).

[33] S. A. Soria, R. Josens, and D. R. Parisi, Safety Sci. 50, 1584
(2012).

[34] A. Garcimartín, I. Zuriguel, J. Pastor, C. Martín-Gómez, and D.
Parisi, Transport. Res. Proc. 2, 760 (2014).

[35] C. Gershenson and D. Helbing, Complexity 21, 9 (2015).
[36] J. M. Pastor, A. Garcimartín, P. A. Gago, J. P. Peralta, C. Martín-

Gómez, L. M. Ferrer, D. Maza, D. R. Parisi, L. A. Pugnaloni,
and I. Zuriguel, Phys. Rev. E 92, 062817 (2015).

[37] P. Lin, J. Ma, T. Liu, T. Ran, Y. Si, and T. Li, Physica A 452,
157 (2016).

[38] F. Soriguera, I. Martínez, M. Sala, and M. Menéndez, Transport.
Res. Pt. C: Emerging Technol. 77, 257 (2017).

[39] A. DeSimone and A. Tatone, Eur. Phys. J. E 35, 85 (2012).
[40] L. Giomi, N. Hawley-Weld, and L. Mahadevan, Proc. R. Soc. A

469, 20120637 (2013).
[41] A. Deblais, T. Barois, T. Guerin, P.-H. Delville, R. Vaudaine,

J. S. Lintuvuori, J.-F. Boudet, J.-C. Baret, and H. Kellay, Phys.
Rev. Lett. 120, 188002 (2018).

[42] H. H. Wensink and H. Löwen, Phys. Rev. E 78, 031409 (2008).
[43] N. Tarcai, C. Virágh, D. Ábel, M. Nagy, P. L. Várkonyi, G.

Vásárhelyi, and T. Vicsek, J. Stat. Mech.: Theor. Exp. (2011)
P04010.

[44] R. Sánchez and P. Díaz-Leyva, Physica A 499, 11 (2018).
[45] See Supplemental Material at http://link.aps.org/supplemental/

10.1103/PhysRevE.99.052605 for a set of movies recorded for
a varying number N of particles in the track.

052605-9

https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1103/RevModPhys.73.1067
https://doi.org/10.1016/S0378-4371(99)00499-9
https://doi.org/10.1016/S0378-4371(99)00499-9
https://doi.org/10.1016/S0378-4371(99)00499-9
https://doi.org/10.1016/S0378-4371(99)00499-9
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1038/35035023
https://doi.org/10.1086/498139
https://doi.org/10.1086/498139
https://doi.org/10.1086/498139
https://doi.org/10.1086/498139
https://doi.org/10.1287/trsc.1040.0108
https://doi.org/10.1287/trsc.1040.0108
https://doi.org/10.1287/trsc.1040.0108
https://doi.org/10.1287/trsc.1040.0108
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1038/23819
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1103/PhysRevLett.98.058001
https://doi.org/10.1209/0295-5075/87/24002
https://doi.org/10.1209/0295-5075/87/24002
https://doi.org/10.1209/0295-5075/87/24002
https://doi.org/10.1209/0295-5075/87/24002
https://doi.org/10.1103/PhysRevLett.107.278001
https://doi.org/10.1103/PhysRevLett.107.278001
https://doi.org/10.1103/PhysRevLett.107.278001
https://doi.org/10.1103/PhysRevLett.107.278001
https://doi.org/10.1098/rspa.1955.0089
https://doi.org/10.1098/rspa.1955.0089
https://doi.org/10.1098/rspa.1955.0089
https://doi.org/10.1098/rspa.1955.0089
https://doi.org/10.1177/095965180121500402
https://doi.org/10.1177/095965180121500402
https://doi.org/10.1177/095965180121500402
https://doi.org/10.1177/095965180121500402
https://doi.org/10.1016/j.physrep.2005.08.005
https://doi.org/10.1016/j.physrep.2005.08.005
https://doi.org/10.1016/j.physrep.2005.08.005
https://doi.org/10.1016/j.physrep.2005.08.005
https://doi.org/10.1016/j.physa.2006.05.016
https://doi.org/10.1016/j.physa.2006.05.016
https://doi.org/10.1016/j.physa.2006.05.016
https://doi.org/10.1016/j.physa.2006.05.016
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1103/PhysRevE.81.056210
https://doi.org/10.1088/1674-1056/27/3/038902
https://doi.org/10.1088/1674-1056/27/3/038902
https://doi.org/10.1088/1674-1056/27/3/038902
https://doi.org/10.1088/1674-1056/27/3/038902
https://doi.org/10.1103/PhysRevLett.119.248301
https://doi.org/10.1103/PhysRevLett.119.248301
https://doi.org/10.1103/PhysRevLett.119.248301
https://doi.org/10.1103/PhysRevLett.119.248301
https://doi.org/10.1103/PhysRevLett.81.3797
https://doi.org/10.1103/PhysRevLett.81.3797
https://doi.org/10.1103/PhysRevLett.81.3797
https://doi.org/10.1103/PhysRevLett.81.3797
https://books.google.fr/books?id=x8s4ngAACAAJ
https://doi.org/10.1088/1742-5468/2005/10/P10002
https://doi.org/10.1088/1742-5468/2005/10/P10002
https://doi.org/10.1088/1742-5468/2005/10/P10002
https://doi.org/10.1016/S0378-4371(02)01376-6
https://doi.org/10.1016/S0378-4371(02)01376-6
https://doi.org/10.1016/S0378-4371(02)01376-6
https://doi.org/10.1016/S0378-4371(02)01376-6
https://doi.org/10.1016/j.physa.2006.01.073
https://doi.org/10.1016/j.physa.2006.01.073
https://doi.org/10.1016/j.physa.2006.01.073
https://doi.org/10.1016/j.physa.2006.01.073
https://doi.org/10.1016/j.physa.2016.01.093
https://doi.org/10.1016/j.physa.2016.01.093
https://doi.org/10.1016/j.physa.2016.01.093
https://doi.org/10.1016/j.physa.2016.01.093
https://doi.org/10.1088/0305-4470/26/23/013
https://doi.org/10.1088/0305-4470/26/23/013
https://doi.org/10.1088/0305-4470/26/23/013
https://doi.org/10.1088/0305-4470/26/23/013
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.1088/1367-2630/10/3/033001
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.3141/1999-10
https://doi.org/10.1016/j.ssci.2012.03.010
https://doi.org/10.1016/j.ssci.2012.03.010
https://doi.org/10.1016/j.ssci.2012.03.010
https://doi.org/10.1016/j.ssci.2012.03.010
https://doi.org/10.1016/j.trpro.2014.09.085
https://doi.org/10.1016/j.trpro.2014.09.085
https://doi.org/10.1016/j.trpro.2014.09.085
https://doi.org/10.1016/j.trpro.2014.09.085
https://doi.org/10.1002/cplx.21736
https://doi.org/10.1002/cplx.21736
https://doi.org/10.1002/cplx.21736
https://doi.org/10.1002/cplx.21736
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1103/PhysRevE.92.062817
https://doi.org/10.1016/j.physa.2016.02.017
https://doi.org/10.1016/j.physa.2016.02.017
https://doi.org/10.1016/j.physa.2016.02.017
https://doi.org/10.1016/j.physa.2016.02.017
https://doi.org/10.1016/j.trc.2017.01.024
https://doi.org/10.1016/j.trc.2017.01.024
https://doi.org/10.1016/j.trc.2017.01.024
https://doi.org/10.1016/j.trc.2017.01.024
https://doi.org/10.1140/epje/i2012-12085-x
https://doi.org/10.1140/epje/i2012-12085-x
https://doi.org/10.1140/epje/i2012-12085-x
https://doi.org/10.1140/epje/i2012-12085-x
https://doi.org/10.1098/rspa.2012.0637
https://doi.org/10.1098/rspa.2012.0637
https://doi.org/10.1098/rspa.2012.0637
https://doi.org/10.1098/rspa.2012.0637
https://doi.org/10.1103/PhysRevLett.120.188002
https://doi.org/10.1103/PhysRevLett.120.188002
https://doi.org/10.1103/PhysRevLett.120.188002
https://doi.org/10.1103/PhysRevLett.120.188002
https://doi.org/10.1103/PhysRevE.78.031409
https://doi.org/10.1103/PhysRevE.78.031409
https://doi.org/10.1103/PhysRevE.78.031409
https://doi.org/10.1103/PhysRevE.78.031409
https://doi.org/10.1088/1742-5468/2011/04/P04010
https://doi.org/10.1088/1742-5468/2011/04/P04010
https://doi.org/10.1088/1742-5468/2011/04/P04010
https://doi.org/10.1016/j.physa.2018.01.031
https://doi.org/10.1016/j.physa.2018.01.031
https://doi.org/10.1016/j.physa.2018.01.031
https://doi.org/10.1016/j.physa.2018.01.031
http://link.aps.org/supplemental/10.1103/PhysRevE.99.052605

