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A fluid particle changes its dynamics from diffusive to oscillatory as the system density increases up to the
melting density. Hence the notion of the Frenkel line was introduced to demarcate the fluid region into rigid
and nonrigid liquid subregions based on the collective particle dynamics. In this work, we apply a topological
framework to locate the Frenkel lines of the soft-sphere and the hard-sphere models relying on the system
configurations. The topological characteristics of the ideal gas and the maximally random jammed state are first
analyzed, then the classification scheme designed in our earlier work is applied to soft-sphere and hard-sphere
fluids. The dependence of the classification result on the bulk density is understood based on the theory of fluid
polyamorphism. The percolation behavior of solid-like clusters is described based on the fraction of solid-like
molecules in an integrated manner. The crossover densities are obtained by examining the percolation of solid-
like clusters. The resultant crossover densities of soft-sphere fluids converge to that of hard-sphere fluid. Hence
the topological method successfully highlights the generality of the Frenkel line.
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I. INTRODUCTION

Hard-sphere and soft-sphere models have been widely used
to simulate the dynamics and structure of the fluid phase.
The hard-sphere model is one of the most extensively studied
models in statistical physics. The soft-sphere model, in which
the penetrability of a sphere depends on the slope of the
repulsive wall, has also been used as a simple model. In this
model, the pair potential is given by

φ(r) =
{

ε(σ/r)n, r � σ,

0, r � σ,
(1)

where φ(r) is the interatomic pair potential between two
spheres of diameter σ separated by a distance r, ε is the energy
parameter, and n is the repulsive exponent. In these repulsive
systems, no first-order gas-liquid transition occurs because
the attractive interaction is absent. Hence it is believed that
the hard-sphere and the soft-sphere systems would follow the
same dynamics scheme in the whole fluid region [1].

Brazhkin et al. questioned this continuous picture of dy-
namics [2]. Based on the phonon theory [3,4] and on experi-
mental validations [5], they proposed the notion of the Frenkel
line. They argued that the particle dynamics of supercritical
fluid, a state of matter beyond the gas-liquid critical point,
changes from diffusive (gas-like) to oscillatory (solid-like)
across the Frenkel line. They proposed to use the heat capacity
criterion and the velocity autocorrelation function to locate the
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Frenkel line of supercritical fluids [6]. They further applied
these thermodynamic and dynamic criteria to more general
classes of fluid models such as the slightly soft-sphere model
and the hard-sphere model.

However, a series of recent works on the phonon theory
revealed that these thermodynamic and dynamic criteria could
not be directly extended to locate the Frenkel line of all
fluid models. Bryk et al. noted that the Frenkel lines of the
soft-sphere fluids located from these thermodynamic criteria
did not converge to the density where the anomalous behavior
of the hard-sphere models was observed [7]. The nonconver-
gence of the Frenkel lines of the soft-sphere fluids to that of
the hard-sphere fluid was critical since the transport properties
of the soft-sphere fluids including self-diffusion, shear and
bulk viscosity, and thermal conductivity coefficients converge
to those of the hard-sphere fluid [8,9].

The nonconvergence of the Frenkel lines mainly originates
from the quasicrystalline approximation (QCA), which is
the basis of the conventional thermodynamic and dynamic
criteria. Khrapak et al. examined the validity of the QCA
for the soft-sphere potentials and reported that the QCA fails
when the repulsive exponent n of the soft-sphere potential is
higher than 20 [10]. Hence, Brazhkin et al. recently proposed
to use the anomalous transport properties as criteria to locate
the rigid-nonrigid transition density of the hard-sphere model
[11]. Yoon et al. proposed a dynamic criterion based on the
notion of the solidicity from the two-phase thermodynamic
(2PT) model [12]. They observed that the solidicity, which
is defined as the ratio of the diffusivity of a system to
the diffusivity of the hard-sphere system at the zero pressure
limit, shows an inflection behavior near the dynamic crossover
density. Since the solidicity does not depend on the QCA, they
demonstrated that the Frenkel lines of the soft spheres located
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from the new criterion converge to that of the hard-sphere
model [11].

In contrast to the dynamics-based approaches, there have
been only a few works that attempted to locate the Frenkel
line based not on the collective particle dynamics but on the
system configuration. Bolmatov et al. proposed that the third
maximum of the pair correlation function be related to the
structural crossover across the Frenkel line [13]. Ghosh et al.
applied this observation to characterize the Frenkel line of
the confined fluids [14]. However, Bryk et al. criticized the
use of the pair correlation function as geometrical evidence
of the Frenkel line since the intensity of the third maximum
was so small that it cannot be distinguished from either the
thermal noise or numerical errors [15]. Fomin et al. discovered
that the packing fraction of effective hard spheres reaches
the percolation threshold near the Frenkel line [16]. Ryltsev
et al. proposed that the concentration of tetrahedral clusters
is higher than the percolation threshold above the Frenkel
line [17]. Unfortunately, they could explain how the solid-like
structure evolves in the rigid liquid region only approximately.

In our last work, thus, we suggested a topological classifi-
cation procedure to analyze the dynamic crossover of super-
critical argon across the Frenkel line [18]. In this procedure,
geometric details of the Voronoi cells are not used to classify
a particle as either gas-like or solid-like. Instead, the topolog-
ical information, or the local connectivity of an atom to its
neighbors, was used to classify whether an atom resembles
the ideal gas or the maximally random jammed (MRJ) state.
Based on this procedure, we discovered that the fraction of
the solid-like particles steeply increases over the rigid liquid
region, which is enclosed by the Frenkel line and the freezing
line. This result provided the physical meaning of the Frenkel
line as a percolation transition line from the ideal gas to the
MRJ state.

In this work, we apply the designed method to analyze the
rigid-nonrigid crossover of the soft-sphere and hard-sphere
fluids. We first examine the topological characteristics of the
ideal gas and the MRJ state, respectively. The topological
classification method is then applied to locate the Frenkel
lines of soft-sphere and hard-sphere models. The dependence
of the solid-like fraction on the bulk density is explained
from the scope of the fluid polyamorphism theory and the
isomorph theory. We further represent the generality of
the dynamic crossover in terms of the solid-like fraction.
The rigid-nonrigid crossover densities of soft-sphere fluids
converge to that of the hard-sphere model as the repulsive
exponent increases. These results substantiate that the
topological framework can be used to locate the Frenkel line
of general types of potentials.

II. METHODS

A. Molecular dynamics simulations

We performed time-driven NVT simulations [19] of fluids
modeled with the repulsive n − 6 potentials [Eq. (2)]

φn−6(r) = Cnε

[(
σ

r

)n

−
(

σ

r

)6
]
, (2)

FIG. 1. A central (blue) atom, its Voronoi cell, and surrounding
neighboring atoms.

where Cn is given as

Cn =
(

n

n − 6

)(
n

6

) 6
n−6

. (3)

Each system contained 2000 particles. The repulsive exponent
n was chosen from n = 8–32. The size parameter (σ ) was
3.405 Å, the same as that of argon modeled with the Lennard-
Jones potential. Energy parameters (ε) were determined so
that the coefficients Cnε become equal to 4εl j where εl j/kB

is equal to 119.8 K, the energy parameter of argon. The
potentials were shifted and truncated at the cutoff radius rcut =
(n/6)1/(n−6)σ where the n − 6 potential has its minimum. The
simulation temperatures were selected as T ∗ = kBT/εl j =
6.642–92.989. The time step was varied from 0.5 f s to 2 f s
depending on the repulsive exponent (n) and the simulation
conditions. The systems were equilibrated for 100 000 steps.
After the equilibration, they were run for additional 100 000
steps to obtain the configurations and the system pressures.
We additionally performed MD simulations of 16 000 par-
ticles modeled with the repulsive 12–6 (Weeks-Chandler-
Andersen [20], WCA) potential at T ∗ = 92.989 to examine
the influence of the finite-size effect.

For the hard-sphere systems, the event-driven molecular
dynamics (EDMD) simulations [21] were conducted. For each
simulation condition, two hundred configurations of 2048
hard spheres (σ = 1.0, kBT = 1.0) were collected with a fixed
dimensionless time interval of 1.00. The packing fractions
(η = πρσ 3/6) were from 0.06 to 0.54 where ρ is the number
density of particles (ρ = N/V ).

B. Local structure analysis via Voronoi topology

The dynamics of a particle in a dense system is dominated
by the relative positions of its surrounding neighbors. Hence
we conjectured that the topological framework for local struc-
ture analysis proposed by Lazar et al. [22] would aid in build-
ing a robust connection between local structure and dynamics.
In this framework, the arrangement of neighbors surrounding
each particle is described by considering its Voronoi cell,
the region of space closer to it than to any other particle.
Figure 1 illustrates a central blue atom, its Voronoi cell, and
neighboring gold atoms. A simple topological description of
a Voronoi cell is a count of its number of faces with different
numbers of edges. In particular, the vector (p3, p4, p5, . . .)
gives the number of faces pk with k edges for all k � 3;
the numbers pk have been historically referred to as Voronoi
indices, and the vector itself is called the p vector [23].
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Although a p vector provides more information than a mere
count of faces, it does not completely describe how a particle’s
neighbors are arranged relative to the central particle and to
one another. For example, the p vector associated with parti-
cles in both face-centered cubic and hexagonal close-packed
perfect crystals is (0, 12, 0, 0, . . .), yet particles are arranged
differently in the two systems. A more refined description of
the Voronoi cell, and thereby of the arrangement of neighbors,
is provided by the isomorphism class of its edge graph [22],
which identifies two Voronoi cells as the same if their faces
can be matched in such a way that two faces are adjacent
in one Voronoi cell if and only if corresponding faces are
adjacent in the other. This connectivity information can be
encoded in a series of integers called a Weinberg vector [23].
We use the term Voronoi topology to refer to this topological
description of a Voronoi cell.

Many geometric approaches to local structure analysis
have been developed in recent decades for studying atomic
systems [24]. Although such methods are well suited for
studying low-temperature crystals, they tend to perform
poorly when applied to high-temperature crystals or to sys-
tems otherwise strongly perturbed from their ground state
[22,24]. In recent work we explained some fundamental
limitations of geometric approaches [25] and explained why
topological ones, such as that used in this work, tend to be
more robust.

This topological approach to local structure analysis is in
line with the isomorph theory. The isomorph theory [26] states
that the following simple relation is satisfied for any two con-
figurations R1 = (�r1

(1), . . . , �rN
(1) ) and R2 = (�r1

(2), . . . , �rN
(2) )

if they are isomorphic to each other

ρ
1/3
1 R1 = ρ

1/3
2 R2 ⇒ P(R1) = P(R2). (4)

Here �ri is the location vector of particle i, N is the number
of atoms in the system, and P is the Boltzmann statistical
weight of the given configuration. In other words, two config-
urations are regarded to be isomorphic if their configurations
in the reduced unit are the same. Similarly, the topological
description does not depend on the distances between the
central particle and its neighbors. Two local configurations are
considered the same if their Voronoi cells are topologically
identical regardless of their volumes.

C. Topological characterization of the dynamic limits

Since the Frenkel line was originally defined as the ther-
modynamic states where the particle dynamics change from
diffusive to oscillatory, it was required to select the configu-
rations that are opposite to each other from the viewpoint of
the dynamics. A many-body system in which particles only
translate without the interference of their neighbors would be
the ideal gas. In contrast, systems in which most particles are
randomly distributed and only vibrate in their place would
be the MRJ state [27]. Therefore, we constructed 50 samples
of 500 000 particles each of both systems. The configura-
tions of the ideal gas were generated by distributing points
randomly, whereas those of the MRJ state were produced by
compressing the hard-sphere system using the Lubachevsky-
Stillinger algorithm [28]. We then analyzed these samples

using the open-source VOROTOP software [29], which com-
puted the distribution of topological features of the model
systems.

D. Topological classification strategy

Figure 2 schematically describes the topological classifica-
tion strategy used in this work. First, we compute the list of the
Weinberg vectors of soft (hard) spheres obtained from the MD
simulations using VOROTOP. We then compare the likelihood
of finding the Weinberg vector of a single atom in the list of
the Weinberg vectors of the ideal gas ( fig) to that of the MRJ
state ( fmrj). If fmrj > fig, the atom is classified as solid-like
(si = 1 where si is a state number). Otherwise, it is classified
as gas-like (si = 0). After this initial classification, a weighted
mean-field strategy [30] is used to reclassify an atom based on
its state number and those of its neighbors. When the ith atom
is reclassified, its averaged state number is defined as

s̄i = 1

Ni

Ni∑
j=0

⎛
⎝ 1

Nj

Nj∑
k=0

sk

⎞
⎠, (5)

where Ni is the number of the nearest neighbor atoms of the ith
particle. The indices in Eq. (5) start from zero since it should
include the initial classification result of the central atom.
This procedure makes it possible to remove the influence of
small local fluctuation on the classification result. Note that
solid-like local structures might appear in ideal gas by pure
chance since the ideal gas essentially includes every possible
configuration: if the topological framework alone is used, a
nonzero fraction of particles in ideal gas is always classified
as solid-like. By applying the weighted mean-field procedure,
the probability to find a solid-like molecule in the ideal gas
converges to zero. As a last step, the averaged state number s̄i

is rounded to decide the state of molecule i.

E. Percolation analysis

Percolation theory [31] has frequently been used to analyze
the structural characteristics of the connected molecules (clus-
ters) discovered in the fluid phase. According to percolation
theory, an infinite (spanning) cluster appears when the particle
concentration is higher than a particular concentration of
the particles called the percolation threshold (�c). Here, a
cluster is defined as a connected assembly of atoms that are
classified as the same state, either solid-like or gas-like. From
the viewpoint of the Voronoi tessellation, two particles can be
regarded to be connected if they share a face with each other.
Hence two atoms belong to the same cluster if they are
connected through the atoms whose classification results are
identical to theirs. A clustering algorithm proposed by Stoll
[32] is used to detect the cluster structure. In the first step of
the algorithm, the list of clusters is obtained without consider-
ation of the periodic boundary conditions. In the second step,
the algorithm determines whether a cluster is infinite or not by
examining the connectedness of two Voronoi cells which are
located at opposite sides of the simulation box and assigned
to the same cluster. If they are Voronoi neighbors across the
boundary, the cluster is regarded to be a spanning (infinite)
cluster. After this test, the independent clusters which are
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FIG. 2. A scheme of the topological classification procedure. In step (a), the types of Voronoi cells are obtained as a set of the Weinberg
vectors. Then the topological classification is performed based on the list of the Weinberg vectors of the ideal gas and the MRJ state. In step
(b), a cell is classified based on the probabilities of finding the cell in the ideal gas and the MRJ state. After the topological classification, a
weighted mean-field classification is conducted. The weight is given based on the chemical distance from the central atom. The Voronoi cells
are represented as two-dimensional ones for understanding the algorithm conveniently.

connected through the periodic boundaries are assigned to a
single cluster if two atoms in these clusters are connected to
each other.

III. RESULTS AND DISCUSSION

A. Topological characterization of the ideal gas
and the MRJ state

As the topology of each Voronoi cell encodes the manner
in which neighbors of a particle are arranged, the distribu-
tion of Voronoi topologies provides a meaningful statistical
description of local ordering in a system. In crystals, the set of
possible Voronoi types is finite, restricted by the symmetry of
the crystal and by the manner in which unstable vertices of an
ideal structure can resolve [22]. In contrast, the set of possible
Voronoi types in an ideal gas is infinite, as almost all arrange-
ments of particles are possible with some finite probability.
Because the number of topological types is infinite, it is clear
that not all arrangements are equally likely. Indeed, in prior
work we documented the distribution of Voronoi topologies
in the ideal gas and found that certain ones appear more
frequently than others [33]. In this section we report data from
the topological analysis of the ideal gas and MRJ systems.

The average number of faces in the ideal gas and MRJ
systems were 15.54 (±3.33) and 14.28 (±1.17), respectively.
The higher concentration of the distribution about the mean
in the MRJ system suggests more order in that system than
in the ideal gas. This similarly expresses itself in the distribu-
tion of p vectors and Voronoi topologies. Table I shows the
ten most common p vectors in the two system; each records
the number of faces with a given number of edges, beginning
with 3. The ten most frequent p vectors in the MRJ system

account for almost a third of all constituent atoms; in contrast,
the ten most common p vectors in the ideal gas account for
less than three percent. The relative dispersion of p vectors in
the ideal gas case can be seen as reflecting the relative lack of
order in that system, as compared to the MRJ one.

Figure 3 illustrates the eight most common Voronoi topolo-
gies in both the ideal gas and the MRJ systems, along
with their estimated frequencies. The distribution of Voronoi
topologies in the MRJ system is more concentrated among a
smaller number of types, with each of the eight most frequent
types accounting for at least 1.4% of all atoms. In contrast, in
the ideal gas, no single Voronoi topology accounts for more
than 0.27%. This can again be understood as reflecting the
relative disorder of the ideal gas as compared with the MRJ

TABLE I. Lists of the ten most common p-vectors, their number
of faces F , and their frequencies f in the ideal gas and MRJ states.

Ideal gas MRJ

F p-vector f (%) F p-vector f (%)

12 (1, 3, 4, 3, 1, 0, . . .) 0.39 13 (0,3,6,4,0,...) 5.59
11 (1, 3, 4, 2, 1, 0, . . .) 0.34 14 (0,2,8,4,0,...) 5.01
13 (1, 4, 3, 3, 2, 0, . . .) 0.30 14 (0,3,6,5,0,...) 4.56
13 (1, 3, 4, 4, 1, 0, . . .) 0.29 13 (0,1,10,2,0,...) 3.49
11 (1, 4, 2, 3, 1, 0, . . .) 0.29 14 (0,4,4,6,0,...) 3.39
13 (2, 3, 3, 3, 1, 1, . . .) 0.28 14 (1,3,4,5,1,...) 2.68

9 (1, 3, 3, 2, 0, 0, . . .) 0.27 15 (0,3,6,6,0,...) 2.48
10 (0, 4, 4, 2, 0, 0, . . .) 0.26 15 (0,2,8,5,0,...) 1.97
13 (1, 3, 5, 2, 2, 0, . . .) 0.26 13 (0,2,8,3,0,...) 1.95
11 (2, 2, 3, 3, 1, 0, . . .) 0.26 12 (0,2,8,2,0,...) 1.85
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Ideal gas
1. f=0.27%
(±0.0010%)

(1, 3, 3, 2, 0, . . .)
F=9, S=1

2. f=0.16%
(±0.0008%)

(1, 3, 3, 1, 0, . . .)
F=8, S=2

3. f=0.16%
(±0.0008%)

(0, 4, 4, 2, 0, . . .)
F=10, S=2

4. f=0.12%
(±0.0007%)

(1, 3, 4, 1, 1, . . .)
F=10, S=1

5. f=0.12%
(±0.0007%)

(0, 4, 4, 1, 0, . . .)
F=9, S=4

6. f=0.10%
(±0.0006%)

(0, 4, 4, 0, 0, . . .)
F=8, S=8

7. f=0.10%
(±0.0006%)

(0, 3, 6, 2, 0, . . .)
F=11, S=2

8. f=0.10%
(±0.0006%)

(1, 4, 2, 2, 1, . . .)
F=10, S=1

MRJ
1. f=3.48%
(±0.0037%)

(0,1,10,2,. . . )
F=13, S=4

2. f=2.40%
(±0.0031%)

(0,3,6,4,. . . )
F=13, S=1

3. f=2.06%
(±0.0028%)

(0,3,6,5,. . . )
F=14, S=1

4. f=1.76%
(±0.0026%)

(0,2,8,4,. . . )
F=14, S=2

5. f=1.53%
(±0.0025%)

(0,3,6,4,. . . )
F=13, S=6

6. f=1.48%
(±0.0024%)

(0,1,10,3,. . . )
F=14, S=2

7. f=1.48%
(±0.0024%)

(0,2,8,2,. . . )
F=12, S=4

8. f=1.44%
(±0.0024%)

(0,2,8,4,. . . )
F=14, S=2

FIG. 3. Schlegel diagrams of the eight most common grain topologies (Weinberg vectors) in the ideal gas and MRJ systems. Listed for
each topological type is the observed frequency f , the p-vector, the number of faces F , and the order S of the associated symmetry group.
When possible, Schlegel diagrams were drawn in such a way to highlight their symmetries.

system. A statistical analysis of the Voronoi cells discovered
in the MRJ state (325 399 types) reveals that the top 10% of
Voronoi types accounts for 96.9% of the total number of the
observations. There are 162 132 types of Voronoi cells which
are discovered in both ideal gas and MRJ state with similar
frequencies: their standard errors of mean overlap with each
other. However, the sum of their observation probabilities is
only 1.624%. This result provides a solid background for the
topological classification strategy adopted in this work.

Of additional potential interest in studying the relationship
between the local neighborhood of a particle and its dynamics
is the symmetry group associated with its Voronoi cell [34].
The average symmetry group order is 1.161 in the ideal gas,
and 3.365 in the MRJ system. Table II lists the fraction of
atoms in each data set with all observed symmetry group
orders. The MRJ system has many more Voronoi cells with

TABLE II. Fraction of Voronoi cells in each data set with sym-
metry order S; error estimates indicate standard error from the mean.
The symmetry order of the regular pentagonal dodecahedron (with
icosohedral symmetry) is 120.

S Ideal gas (%) MRJ (%)

1 91.695 ± 0.006 63.523 ± 0.010
2 6.615 ± 0.005 22.833 ± 0.008
3 0.007 ± 0.000 0.301 ± 0.001
4 1.004 ± 0.002 8.421 ± 0.006
6 0.283 ± 0.001 2.962 ± 0.003
8 0.167 ± 0.001 0.054 ± 0.001
12 0.115 ± 0.001 0.226 ± 0.001
16 0.031 ± 0.000 0.002 ± 0.000
20 0.036 ± 0.000 0.001 ± 0.000
24 0.029 ± 0.000 0.221 ± 0.001
28 0.005 ± 0.000 0.000 ± 0.000
32 0.001 ± 0.000 0.000 ± 0.000
48 0.010 ± 0.000 0.113 ± 0.001
120 0.001 ± 0.000 1.342 ± 0.002

high-order symmetries than does the ideal gas. In particular,
the number of atoms with icosahedral symmetry (S = 120)
is three orders of magnitude larger in the MRJ than in the
ideal gas.

The distribution of symmetry group orders in the two
systems might be correlated with their dynamics. In particular,
the more symmetric a particle’s Voronoi cell, the more con-
fined that particle will be due to the influence of its symmet-
rically arranged neighbors. For reference, in body-centered
cubic crystals, the order of the symmetry group of each
Voronoi cell is 48; other crystals have similarly high-order
symmetries. Atoms with highly symmetric arrangements of
neighbors, and thus highly symmetric Voronoi cells, might be
thought of as trapped in a potential “cage.”

Topological features of the Voronoi cells in the ideal gas
and MRJ systems thus provide a quantitative description of
local structure, and provide reference states against which to
compare more general fluids. In a future paper we will provide
a statistical description of a more general class of fluids.

B. Frenkel lines of soft-sphere and hard-sphere fluids

Figure 4 shows the fraction of solid-like molecules (�solid)
of the soft-sphere fluids and the hard-sphere fluid. For all re-
pulsive exponents and simulation temperatures, �solid’s show
a sigmoidal dependence on the density [Eq. (6)].

�solid = 1

1 + a exp(−bρ)
. (6)

They start to steeply increase near the dynamic crossover
densities obtained from the 2PT model and converge to unity
near the freezing densities.

The sigmoidal dependence of �solid on the density can
be understood from the viewpoint of fluid polyamorphism
[30,35,36]. According to the theory of fluid polyamorphism,
the interconversion of gas-like and the solid-like states can
be expressed as the chemical reaction [A(gas) � A(solid)].
The equilibrium constant Keq of the interconversion is
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FIG. 4. The fraction of solid-like molecules (�solid) as a function
of the bulk density (ρ) at different conditions. As the repulsive expo-
nent (n) increases, the temperature dependence of �solid decreases.
�solid curves of the soft-sphere fluids become close to that of the
hard-sphere fluid. The symbols below the horizontal axes denote the
dynamic crossover densities obtained from the 2PT model.

represented as

Keq = �solid

�gas
= exp

(
−	G‡

kBT

)
, (7)

where 	G‡ is the Gibbs energy difference between the
two states. Assuming that the Gibbs free energy of the
interconversion (	G‡) is proportional to ρ, Eq. (7) can be
transformed into Eq. (6).

Figure 4 demonstrates that the structural evolution of soft-
sphere fluids approaches that of the hard-sphere fluid as the

FIG. 5. The fraction of solid-like molecules of the Lennard-Jones
(LJ) and the repulsive 12-6 (WCA) fluids. The solid-like fraction
curves of both systems agree with each other. The discrepancy of
the solid-like fractions of both systems decreases as the temperature
increases.

repulsive exponent n is increased, where the hard-sphere fluid
is understood as the n → ∞ limit. When the repulsive expo-
nent n is small [Fig. 4(a)], �solid curves largely depend on the
temperatures. As the repulsive exponent increases [Figs. 4(b)
and 4(c)], different isothermal curves of �solid more closely
resemble that of the hard-sphere fluid.

Figure 4 also shows that the crossover density is smaller in
systems with larger n. As Brazhkin et al. stated [11], the rigid-
nonrigid crossover densities would be determined by the cage
effect of surrounding molecules. The extent of the cage effect
is determined by the competition between the relative kinetic
energy of the central particle and the softness of the repulsive
wall of its neighbors. When the repulsive exponent n is high or
the simulation temperature is low, particles are easily arrested
by their nearest neighbors. Hence, the crossover density of the
hard-sphere fluid should be lower than any soft-sphere fluids.
When n is small and the local cage is softer, more neighbors
are required to trap the central particle at the high temperature.

Interestingly, while the 2PT model and the theory of col-
lective phonon dynamics based on the Frenkel frequency un-
derstand this cage effect based on the dynamics of a particle,
the topological classification method quantifies it based on
the fraction of solid-like molecules. This scenario implies
that the attractive interaction would not play an important
role in determining the location of the Frenkel line. Figure 5
demonstrates this idea; the crossover densities of the LJ
fluid from our earlier work, where the interatomic potential
includes attraction, are almost consistent with those of the
repulsive 12–6 fluid. When the system temperature is low,
they slightly disagree with each other, but the discrepancy
between these systems decreases as the temperature increases.
Hence the rigid-nonrigid crossover can be well explained
by the hard-sphere paradigm, which states that the excluded
volume effects dominate the liquid behavior [20,37].

Next we analyze the solid-like structures of the soft-sphere
and the hard-sphere fluid systems from the viewpoint of the
percolation theory. When the probability of finding an infinite
cluster in a configuration (pinf) is expressed as a function of
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FIG. 6. (a) The probability of finding an infinite cluster in a
configuration (pinf) as functions of the solid-like fraction (�solid).
Regardless of the repulsive exponents and the temperatures, pinf

collapses to a single line. The dotted line denotes the pinf curve
obtained from our last work on the Lennard-Jones potential. (b) The
convergence of the crossover densities (percolation densities) of the
soft-sphere fluids to that of the hard-sphere fluid. As the repul-
sive exponent increases and the simulation temperature decreases,
the crossover densities of soft spheres become close to that of hard
spheres.

the �solid, pinf curves at different conditions collapse to a sin-
gle line obtained from the LJ simulations [18] regardless of the
repulsive exponents and temperatures [Fig. 6(a)]. Moreover,
both pinf curves of LJ and WCA fluid show the same depen-
dence on the system size [see Fig. 7(b) in the Appendix].

This result demonstrates that the rigid-nonrigid transition
across the Frenkel line is quasi-universal; it does not depend
on the types of interactions. In line with the isomorph theory,
it can be restated that two configurations with the same
�solid are isomorphic, showing the same percolation behavior.
Provided that the percolation of solid-like clusters is related
to the thermodynamic and transport properties of general fluid
systems, the generality of the Frenkel line would have a deep
relation with the excess entropy scaling [38,39], which will be
dealt with in our future studies.

Since the percolation behaviors of the soft-sphere and
hard-sphere fluids are equal to that of the LJ fluid, the per-
colation threshold obtained from our previous work (�c

solid =
0.1159 ± 0.0081) can be used to locate the dynamic crossover

FIG. 7. Finite-size effects on (a) the fraction of solid-like
molecules and (b) the probability of finding an infinite cluster in
a configuration. No significant finite-size effect on the solid-like
fraction was observed. The percolation of solid-like structures, on
the other hand, depends on the system size.

densities. Figure 6(b) shows the crossover densities of soft-
sphere and hard-sphere fluids. As shown in the 2PT method
[12], the dynamic crossover densities of soft-sphere fluids
converge to that of hard-sphere fluid, which corresponds to
η = (π/6)ρσ 3 ∼ 0.315. This result again demonstrates the
advantage of the topological classification method. The ther-
modynamic and dynamic criteria by Brazhkin et al. are based
on QCA, and the crossover densities from these criteria do
not converge to that of the hard-sphere systems where QCA
breaks down [7]. The solidicity criterion from the 2PT model
is free of QCA, yet it relies on Carnahan-Starling equation
of state [40], which is an approximate model. On the other
hand, the topological criterion from this work does not rely
on hypotheses that are constrained to the repulsive exponents.
Moreover, it does not require a vast amount of the post-
processing procedure and data to obtain the thermodynamic
properties of a system; it only requires the location of the
particles and the simulation box length. Overall, these results
show that the topological framework successfully generalizes
the notion of the rigid-nonrigid transition in the fluid models.

IV. CONCLUSION

The topological framework sheds light on the general-
ization of the notion of the rigid-nonrigid crossover. It not
only offers physical insight into the relationship between
the dynamics and the geometry of particles but also over-
comes a limit of the conventional methods based on the
thermodynamics and dynamics of the system. The dynamic
limits of fluid particle systems can be clearly characterized
based on their topological characteristics. The topological
framework deduced from these dynamic limits provides a
classification scheme that can locate the rigid-nonrigid transi-
tion of soft-sphere and hard-sphere systems. The fraction of
solid-like molecules (�solid) from the classification method
can be used as an order parameter to describe the rigid-
nonrigid transition in an integrated manner. The dynamic

052603-7



YOON, HA, LEE, LEE, AND LAZAR PHYSICAL REVIEW E 99, 052603 (2019)

crossover densities of the soft-sphere particles converge to that
of the hard-sphere particles, which was also observed in the
2PT model. Hence it would be advantageous to expand our
understanding of the fluid physics as well as to calculate the
thermodynamic properties of the fluid systems.
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APPENDIX: FINITE-SIZE EFFECT

Figure 7(a) compares the fraction of solid-like molecules
modeled with the repulsive 12 − 6 potential at T ∗ = 92.989.
The fraction of solid-like molecules does not change signifi-
cantly when the number of molecules in the system increases.
Hence the topological classification results do not depend on
the size of the system. In contrast, the percolation behavior of
the system depends on the system size as shown in our earlier
work [18]. Compared to the system with 2000 molecules,
pinf of the N = 16 000 system shows more abrupt increase
when the system density increases. As shown in Fig. 7(b),
the dependence of pinf on �solid of the repulsive 12–6 (WCA)
fluid is the same as that of the Lennard-Jones fluid. Again, this
result substantiates that the percolation of solid-like structures
in the rigid liquid region is universal.
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