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Effects of spherical confinement and backbone stiffness on flexible polymer jamming
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We use molecular simulations to study jamming of a crumpled bead-spring model polymer in a finite container
and compare to jamming of repulsive spheres. After proper constraint counting, the onset of rigidity is seen to
occur isostatically as in the case of repulsive spheres. Despite this commonality, the presence of the curved
container wall and polymer backbone bonds introduce new mechanical properties. Notably, these include
additional bands in the vibrational density of states that reflect the material structure as well as oscillations
in local contact number and density near the wall but with lower amplitude for polymers. Polymers have fewer
boundary contacts, and this low-density surface layer strongly reduces the global bulk modulus. We further show
that bulk-modulus dependence on backbone stiffness can be described by a model of stiffnesses in series and
discuss potential experimental and biological applications.
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I. INTRODUCTION

The phenomenon of jamming is observed in systems
ranging from granular materials flowing down a chute [1]
to biomacromolecules [2–5]. Most theoretical understanding
of jamming comes from ideal models of granular materials,
e.g., simulations of repulsive disks and spheres in periodic
boundary conditions (PBCs). In general, a packing of a
biopolymer into a container involves, at least, two unavoidable
additional features: backbone bonds that link the material into
a polymer chain and container walls that influence the material
near the boundary. As a step toward closing the large gap
between the most idealized models and experimental systems,
we investigate the effects on jamming of unbreakable adhesive
bonds and external spherical confinement (SC).

Jamming occurs as the constituents of a flowing mate-
rial sufficiently constrain one another’s motion, leading to a
configuration that resists applied stress. A central question
is whether the material jams isostatically, that is, in precise
balance of constraints and degrees of freedom, consistent with
the boundary conditions. Simulations of frictionless repulsive
disks and spheres in PBCs have shown that the onset of
rigidity occurs as a jump in particle-particle coordination
number from zero to twice the dimensionality: four for disks
and six for spheres, which correspond to isostaticity [6–13].
We show that jamming in our simulations with backbone
bonds and a concave confining wall occurs isostatically in
fundamentally the same way as for repulsive spheres.

Repulsive spheres typically jam at a packing fraction of
about 64%, which corresponds to the density of the maximally
random jammed (MRJ) state [6,7,14–19]. Unlike repulsive
spheres, a bead-spring model polymer has “built-in” con-
straints provided by backbone bonds. Isostatic packings of
freely jointed chains of tangent hard spheres can be ob-
tained at φMRJ using algorithms that eliminate the effects of
connectivity and allow effective equilibration through chain-
connectivity-altering Monte Carlo moves [20–30]. However,

when connectivity is preserved, approximately tangent fully
flexible bead-spring chains jam at about 2% below φMRJ in
PBCs with little system-size dependence and retain a sig-
nificant fraction of unconstrained degrees of freedom [31].
Confinement of monomers also reduces the jamming density
by inducing layering near the boundary [32–42]. We present
both the reduction in density due to SC alone using repulsive
sphere packings and the further reduction due to the polymer
backbone that links all particles together.

On the other hand, few studies of polymer packings in
confined geometries address mechanical properties. Previ-
ous investigations have largely focused on chain conforma-
tion within the packing [43–47] and topological ordering
of segments [48]. Long polymers with specified bond-bond
angles typically coil during packaging in SC to minimize
bending energy [49–55] and thus exhibit boundary-induced
layering [53]. In contrast, we use a crumpled flexible-chain
model to avoid coiling [52] and to focus on the role of
backbone connectivity in distinguishing the polymer from the
monomer systems.

In Sec. III, we explain the necessity of using direct con-
straint counting rather than coordination number to assess the
onset of rigidity due to unique considerations of systems in
external confinement. In Sec. IV A, we show that essentially
the same understanding of states of self-stress (SSSs) and
zero modes in repulsive sphere packings can be extended to
the case of a polymer in SC. In Sec. IV B, we provide the
distribution of jamming densities in simulations of spherically
confined polymers and compare to those of monomers in SC
and in PBCs to isolate the effects of backbone bonds and
the confining wall. We find boundary-induced order in local
density and coordination (Sec. IV C) and in the vibrational
density of states with effects on band structure due to the
confining wall and the backbone (Sec. IV D). Finally, we
show how the bulk modulus changes due to these structural
differences between monomers and polymers as well as due
to the polymer backbone stiffness (Sec. IV E).
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II. SIMULATION DETAILS

To study jamming of flexible polymers, we use three-
dimensional molecular dynamics simulations [56] of single
chains, each composed of 256 � N � 8192 monodisperse
frictionless spherical particles of diameter σ . Each particle
represents a monomer along a polymer chain, and interactions
are governed by the following potentials:
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Nonconsecutive monomers interact via the harmonic re-
pulsive potential V0(ri j ), where ri j is the distance between
the centers of particles (also referred to as sites) i and j, ε0

is the characteristic energy, and θ (x) is the Heaviside step
function. Consecutive monomers k and l are bound by the
two-sided harmonic potential VB(rkl ) so that backbone bonds
have energy scale εB and rest length σ . To induce jamming,
the polymer is confined by a spherical wall centered at the ori-
gin according to the radial harmonic potential VW (ri), where
ri is the radial coordinate of site i and R is the wall radius.
The total potential energy E is the sum of all pairwise and
wall potentials. We consider at each site an equal point mass
m, which sets the mass scale, and energies will be reported in
units of ε0, distances will be reported in units of σ , pressures
will be reported in units of ε0/σ

3, and frequencies will be
reported in units of

√
ε0/mσ 2.

Disordered configurations are generated by thermalizing
the polymer chains at temperature kT = 0.003 in a large con-
fining sphere at packing fraction φ = N ( σ

2R )3 = 0.02. Each
thermal configuration is then quenched to T = 0 using the
FIRE algorithm [57]. We compress each quenched system
in small increments of 0.001 � �φ � 0.01 (adjusted by
system size) by decreasing R and minimizing energy after
each compression until a jammed configuration is obtained,
indicated by a nonzero E . We then expand or compress
these configurations to within 1% of each target pressure
p ≡ −∂E/∂V where the system volume V = 4πR3/3 is that
bounded by the confining sphere. For each system of size N ,
at least 100 random configurations are prepared, and each of
these is studied at a large range of target pressures 10−7 �
p � 10−1, bond energies 0.1 � εB � 10, and wall energies
0.1 � εW � 10.

The same procedures are repeated for nonbonded
monomers in SC (where εB = 0) and in PBCs [where
εW = εB = 0 and φ = πN

6 ( σ
2R )3 in a cubic domain with side

length 2R].

III. ISOSTATICITY AND COORDINATION

We review the analysis of the mechanical constraints that
resist deformations and cause jamming. This allows us to
introduce the effects of confining walls and adhesive bonds.
Here, we introduce the index theorem, and in Appendix B, we
derive the theorem in detail and explain associated subtleties.

When interested in the linear response at low pressures,
near jamming, we may consider the unstressed network of a
given system by replacing all contacts (including backbone
bonds and wall contacts) with unstretched harmonic springs
in an analysis following Ref. [58]. The mapping to the spring
system is exact in the limit of zero pressure, and each spring
introduces one harmonic constraint. Each contact i′ � NC ,
where NC is the number of contacts, is replaced by a harmonic
bond of rest length ri′ equal to ri j, rkl , or R − ri [referring
to Eqs. (1)] depending on the interaction. A zero mode is
a normal mode of the system that causes no springs to be
extended or compressed and corresponds to a motion with
zero stiffness. A SSS is a set of extensions and compressions
assigned to the springs that results in zero net force at each
site. The index theorem embodies the fact that each contact
either reduces the number of zero modes or increases the
number of SSSs [58], which, for a d-dimensional system with
dN degrees of freedom, is

N0 − NS = dN − NC . (2)

Creating a rigid (i.e., having no floppy modes),
d-dimensional packing of spheres requires the number of
constraints to match or exceed the degrees of freedom
to be constrained [59]. Therefore, NC � dN − f (d ),
where f (d ) is the number of zero modes associated with
rigid-body motions. PBCs permit f (d ) = d rigid translations
whereas a frictionless (d − 1)-spherical boundary permits
f (d ) = 1

2 d (d − 1) rigid rotations. By its strictest definition
[58], an isostatic system contains neither floppy modes nor
SSSs [N0 = f (d ), NS = 0]; however, jammed packings
necessarily have at least one SSS (NS � 1) corresponding
to a nonzero modulus [7,9] so that the number of contacts
of a jammed isostatic system is N iso

C = dN − f (d ) + 1.
Each additional constraint added to such a system creates an
additional SSS,

NS = NC − N iso
C + 1. (3)

Constraints in repulsive sphere packings are commonly
characterized by the average coordination number,

z = 1

N

N∑
i=1

zi, (4)

where zi is the number of contacts of particle i, but this is less
appropriate in confinement. First, without external confine-
ment, as in PBCs, all contacts are between two particles, so
z = 2NC

N is twice the contact density, and the relation between
NS and z is

NS

N
= �z

2
≡ z − ziso

2
, (5)

with ziso = 2N iso
C

N = 2d − 2 f (d )
N . However, in external confine-

ment, each wall contact involves only one particle. Since the
wall itself is not counted as a particle, wall contacts do not get
double-counted, and the coordination number z is lower than
twice the contact density by an amount that decreases with
system size,

2NC

N
− z = NW

N
∼ 1

L
, (6)
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where NW is the number of wall contacts and L ≡ N1/d is
the linear system size. Therefore, z is twice the density of
constraints only when each contact constrains two degrees
of freedom.

Second, previous studies of monomers have removed rat-
tlers in order to isolate the rigid subsystem so that �z
is directly related to NS [7,9]. Due to unbreakable bonds,
polymers instead contain particles called flippers, which are
constrained only by backbone bonds and thus can freely move
tangent to their neighbors [21]. To accurately analyze the rigid
subsystem of a confined polymer, an analogous computation
of �z would require both a boundary correction and the
removal of all flippers and the backbone bonds constraining
them.

IV. RESULTS

A. States of self-stress and zero modes

In Fig. 1, we compute NS [Eq. (B4)]. Our results show
that NS � 1 as seen in the splitting of NS/N curves to 1/N in
the low-p limit. Jamming in our systems, even with adhesive
bonds and confinement, therefore corresponds to the introduc-
tion of a single SSS. For the polymers, the SSSs may contain
both extended and compressed backbone bonds; indeed, we
find that ≈30% of backbone bonds are extended near the
jamming transition so the ratio of extended to compressed
backbone bonds is ≈0.5.

We see the power-scaling law with pressure NS/N ∼ �z
∼ p1/2, the same as for spheres [7,9] for both monomers and
polymers (εB = 1) in confinement. This may be contrasted
with a perfect d-dimensional crystal in external confinement,
which would contain NS � Ld−1 at p → 0+. The increasing
number of SSSs involves an increasing number of sites (N rigid)
and engaged contacts (N rigid

C ) as the rigid subsystem grows.

FIG. 1. Selected index theorem values for (a) monomers (εB =
0, εW = 1) and (b) polymers (εB = εW = 1). Monotonically increas-
ing (decreasing) curves show NS/N (N0/N ). Upper curves show
computational results for (NC + N0 − NS )/N , equal to the dimen-
sionality d = 3 as guaranteed by Eq. (2). Black lines have slope
1/2. Approximately 100 states of each system size and pressure are
considered.

To quantify the number of unconstrained motions, we
compute N0 [Eq. (B2)]. We find that Nmono

0 > Npoly
0 in the

low-p limit. For monomers, these are primarily rattlers, which
have no constraints, so each contributes d = 3 zero modes.
For polymers, these are primarily flippers; the smaller number
of zero modes reflects the extra constraints from the backbone
bonds that constrain motion even on particles outside the
rigid subsystem. Because flippers can occur at chain ends and
may involve consecutive polymer sites, directly computing
the precise number of flippers from N0 requires distinguishing
topologically distinct groups and is not necessary to see that
about 1 to 2% of the degrees of freedom are unconstrained
even at moderate pressures. The significant number of un-
constrained motions is consistent with other realistic packing
protocols [60,61].

The fraction of rattlers (flippers) decreases with system
size. In the high-p limit, no rattlers (flippers) remain as all par-
ticles become sufficiently coordinated that the only remaining
zero modes are those associated with f (d ) rigid rotations
within the spherical container. As pressure increases, particles
rearrange to allow the system to relax. Rearrangements only
result in small-scale configurational changes, even though the
chain spans the full system.

Next, we delete rattlers and flippers, isolating the N rigid

particles and N rigid
C engaged contacts of the rigid subsystem.

At all pressures, we find that the number of zero modes that
remain is again f (d ), indicating that no other zero modes are
present in the rigid subsystem. Therefore, from Eq. (2),

lim
p→0+

N rigid
C = dN rigid − f (d ) + 1 = N rigid,iso

C , (7)

and we find that the rigid subsystem jams isostatically.

B. Packing fraction at jamming

For reference, we provide the fraction of systems that
are jammed fJ at packing fraction φ as well as the average
packing fraction at jamming φN

J for 256 � N � 8192 (Fig. 2).
Monomers in PBCs jam near 64% as expected for MRJ

states for all system sizes. Confinement shifts jamming dis-
tributions to lower densities and increases system-size depen-
dence. φN,mono

J < φMRJ, in agreement with previous studies of
confined monomers [36,37,40,41]. The deviation of φJ from
φMRJ is almost 6% at N = 256 and diminishes to less than 1%
by N = 8192.

Figures 2(b) and 2(c) show that the inclusion of unbreak-
able backbone bonds further reduces the jamming density
to almost 10% below φMRJ at N = 256 and 4% below at
N = 8192. The ≈4% difference between φN,mono

J and φ
N,poly
J

persists across system sizes, similar to the density shift seen
in jamming of flexible thermal polymers in PBCs [31]. Back-
bone bond stiffness has no appreciable effect on φ

N,poly
J of

flexible polymers, so only εB = 1 data are shown in Fig. 2.
In addition, we consider monomer packings generated

from jammed polymer configurations by deleting the back-
bone bonds. Without the extended bonds, the packings are
unstable, and jamming is reattained at densities similar to the
monomer distributions in Fig. 2(a).
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FIG. 2. Fraction of jammed states for (a) monomers and (b) poly-
mers (εB = 1) in SC (εW = 1). (c) Comparison of φN,mono

J and φ
N,poly
J

in SC to monomers in PBCs. Approximately 500 states (250 for the
largest systems) of each system size are considered.

C. Boundary-induced structure

We compute the average local number density n̄ and av-
erage local coordination z̄ by binning point masses at {ri}
and their respective coordination values {zi} over distance
from the boundary R − r (Fig. 3). Here, each nonbonded

FIG. 3. Average local number density n̄ (lower curves, left axis)
and average local coordination z̄ (upper curves, right axis) for
N = 8192 systems (εW = εB = 1) at p = 10−4. Dashed horizontal
lines are the global number density n and coordination number z for
each system. Some 50 bins of equal volume were used.

contact, backbone bond, and wall contact involving particle i
is included as one contact in zi. Density layering is significant
near the boundary (and, as reflected in Fig. 2, reduces φN

J ).
The global number density n and coordination number z
are shown as dashed lines in Fig. 3. Oscillations occur in
both n̄ and z̄, similar to previous density profiles of confined
monomers determined in experiments [37,42] and simulations
[34,35,38–41,53] as well as tangent hard-sphere chains [29].
Both oscillatory periods are consistent with the height of a
regular tetrahedron (3-simplex)

√
2/3σ ≈ 0.82σ and agree

with the well-established polytetrahedral structure of jammed
monomer [62,63] and polymer [24–31] states. We note that
sharply peaked maxima (minima) in n̄ (z̄) are separated by
broad rounded minima (maxima). This qualitative “inversion”
of curves would suggest that sites of high-density layers are,
perhaps unintuitively, less coordinated than sites in the low-
density layers between them. This could be rationalized by
considering that particles in high-density layers sit between
two lower-density layers with which they have fewer contacts
than particles in low-density layers that sit between two high-
density layers. However, the structure is even more complex
than this as z̄ curves are also shifted to the right of their
inverted n̄ counterparts; qualitatively, this phase shift appears
to be about one-quarter of the period.

Although the curves are similar for monomers and poly-
mers, a first noticeable difference is the height of the ini-
tial narrow peak at R − r = σ/2, indicating Nmono

W > Npoly
W ,

which becomes important to the bulk modulus as considered
in Sec. IV E 1. Additionally, for polymers, the oscillation
amplitude of n̄ is noticeably less than that of monomers,
indicating that polymers exhibit less-extreme layering. In
contrast, z̄mono < z̄poly at nearly all points because of backbone
bonds retained by flippers, which lead to the higher global
coordination z of polymers than monomer systems with fully
uncoordinated rattlers.

D. Density of states

To investigate the vibrational density of states, we con-
struct the dynamical matrix D jμ

iν [Eq. (B6)]. The set of
eigenvectors {U μ

i } of D jμ
iν are the polarization vectors of the

system’s normal modes, and the eigenvalues {λ} = {ω2} are
the squared frequencies of the normal modes [64]. From {ω},
we compute the density of states D(ω). Since there is little
variation among system sizes, we present only N = 2048 data.

1. Boundary modes

We compute D(ω) in systems with wall potentials 0.1 �
εW � 10 for monomers in SC (Fig. 4). We first note that
peaks at ω = 0 represent zero modes due to rattlers and rigid
rotations. The curves have the universal characteristic shapes
seen previously in disordered systems in PBCs [7], the so-
called boson peak at small finite ω. However, wall potentials
induce NW boundary modes with typical frequencies of ωW ≡√

εW /mσ 2, resulting in additional pronounced peaks.
At large εW , the additional modes lead to a band gap in

D(ω). In this case, modes with ω > 3 may be isolated, and
we bin the total set of polarization magnitudes {|ui|} over
R − r to compute the average polarization 〈|u|〉 with respect to
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FIG. 4. D(ω) at p = 10−4 and 0.1 � εW � 10 for a N = 2048
monomer system. Vertical lines indicate corresponding ωW val-
ues. The inset: average displacement for eigenstates {U μ

i : ω > 3,

εW = 10}.

distance from the wall (Fig. 4, the inset). The boundary modes
are almost entirely localized to the two layers of sites nearest
the boundary, giving the two distinct peaks in 〈|u|〉.

2. Backbone modes

Next, we see the effect of backbone-bond stiffness on the
density of states [Fig. 5(a)]. Backbone interactions lead to a
broad band approximately centered at

√
2ωB ≡

√
2εB/mσ 2 as

identified in Refs. [65,66]. The broadness of this band may be
contrasted with the narrower and more structured boundary-
mode band in D(ω). Like the high-εW boundary band in Fig. 4,
the high-εB backbone band’s separation from the bulk band
suggests a degree of independence in mode structure, and the
density of states of the full system can be broken down into
contributions from all three sources.

FIG. 5. D(ω) for N = 2048 polymer systems at p = 10−4 and
0.1 � εB � 10. (a) Three systems with ε0 = εW = 1. Vertical lines
indicate

√
2ωB. (b) D(ω) with ε0 = εW = 0, εB = 10 for the system

in (a) and averaged over >20 systems. Vertical lines indicate natural
frequencies of regular simplices.

In Fig. 5(b), we replot D(ω) when εB = 10 for the system
in Fig. 5(a) but set ε0 = εW = 0 in our computation of K j′

i′
(see Appendix B). Bulk and boundary bands vanish into the
δ-function peak of zero modes, but we observe almost no
change in the backbone band, highlighting its independence
from the bulk band. A universal feature of the polymer vibra-
tional spectra, the broad backbone band is a feature of real
globular proteins [67,68]. For better resolution of its features,
we compute the average curve from >20 systems. Several
pronounced peaks appear in the backbone band, which are
similar to the signatures of analytically derived modes in col-
lections of short chains of length Nch � 5 in PBCs [66]. The
most pronounced peak is at ω = √

2ωB, which corresponds
to the vibrational frequency of the 1-simplex (a single bond)
as well as a normal mode of the general 3-simplex. There

are also small peaks at ω =
√

2 ± 1
2 ωB and ω =

√
2 ±

√
1
2ωB,

which correspond to vibrational frequencies of regular 2- and
3-simplices, respectively.

E. Bulk modulus

1. Effect of backbone connectivity

Plotting the bulk modulus B ≡ φ ∂ p/∂φ of monomers and
polymers over a range of 10−7 � p � 10−1 (Fig. 6), we
find a constant, nonzero limit limp→0+ = B0, consistent with
the power-law scaling relation B ∼ p0 [7,8]. As pressure in-
creases from zero, B remains within 1% of B0 until p ∼ 10−4

whereas over this range NS increases by orders of magnitude
from NS = 1 in the system sizes considered here (Fig. 1). B
also varies with N , mostly due to variation of φN

J with system
size (Fig. 2).

The bulk modulus is substantially (≈40%) higher for
monomers than for polymers. Variation in the prefactor φ

in the definition of B accounts for only a small part of
the difference; φ

N,poly
J is only ≈4% lower than φN,mono

J
[Fig. 2(c)]. Therefore, it must also be that (∂ p/∂φ)N,mono >

(∂ p/∂φ)N,poly. Section IV A showed that the rigid subsys-
tems are nearly equal in size between the two system

FIG. 6. Bulk modulus for (a) monomer and (b) polymer systems,
(c) Bmono

scaled/Bpoly
scaled ratio.
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types (N rigid,mono ≈ N rigid,poly, N rigid,mono
C ≈ N rigid,poly

C ), so the
difference in B must be due to configurational differences.

Recall that monomer packings have stronger layering and
far more wall contacts than polymers (Sec. IV C). Only wall
contacts couple the motion of the wall to the interior packing,
and therefore we may expect B to rise with the wall con-
tact density NW /A ∼ NW (φ/N )2/3. We consider the modulus
scaled correspondingly Bscaled ≡ B

NW
( N

φ
)
2/3

and plot the ratio

Bmono
scaled/Bpoly

scaled in Fig. 6(c). We see that this ratio is approxi-
mately 1 for all system sizes and pressures, demonstrating that
the difference in B is primarily due to NW .

2. Effect of backbone stiffness

We also investigate the effect on B of the backbone stiff-
ness by varying εB into both low-stiffness and high-stiffness
regimes at pressures 10−5 � p � 10−1, plotted in Fig. 7. At
low pressures, the bulk modulus vanishes if εB → 0 as the
configuration without backbone bonds is undercoordinated for
rigidity. The bulk modulus saturates to a constant as εB → ∞;
backbone bonds become essentially inextensible compared to
other contacts, yet the material can still deform around an
infinitely stiff backbone. (In the equivalent case of decreasing
ε0, recall that the units of εB and B are proportional to ε0 so
that B decreases proportionally to ε0.)

To motivate a simple curve-fitting relation, consider
that the material is isostatic at jamming, so the exis-
tence of the bulk modulus is dependent on every con-
tact, similar to the simple situation of springs all in
series. Given that B is measured by isotropically de-
forming the wall, we therefore consider a different sys-
tem: a one-dimensional chain of Neff

0 springs of stiff-
ness k0 ≡ ε0/σ

2 (these represent both wall and non-
bonded-particle interactions since we have set ε0 = εW = 1)
and Neff

B springs of stiffness kB ≡ εB/σ 2 (representing back-
bone interactions). The chain’s overall effective spring con-
stant is

keff =
(

Neff
0

k0
+ Neff

B

kB

)−1

, (8)

which is proportional to the bulk modulus B = βkeff/σ , where
β is a dimensionless constant. Rearranging Eq. (8) in terms of

FIG. 7. Bulk modulus for N = 2048 polymer systems. Solid
lines show curve fitting to Eq. (9).

TABLE I. Curve-fitted parameters for Eq. (9).

log10 (p) B∞ ε

−1 0.562 ±0.005 0.039 ± 0.004
−2 0.2676 ±0.0006 0.110 ± 0.002
−3 0.1854 ±0.0004 0.194 ± 0.002
−4 0.1663 ±0.0004 0.247 ± 0.003
−5 0.1612 ±0.0008 0.260 ± 0.006

εB and B∞ = limεB→∞ B yields

B = B∞(1 + ε/εB)−1, (9)

with B∞ = βk0/σNeff
0 and ε = σ 2k0Neff

B /Neff
0 . In natural units

σ = k0 = 1, the energy scale ε represents the ratio Neff
B /Neff

0 .
We plot curve fits using Eq. (9) in Fig. 7, which agree

well with data for p � 10−2; curve-fitted values of ε and B∞
are given in Table I. The upward deviation in our data at
p = 10−1 for the lowest εB is a result of extreme compression
and overcoordination as second-nearest-neighbor interactions
occur, which the fitting form is not meant to capture. Pressure
effects diminish in the low-p limit.

V. DISCUSSION AND CONCLUSIONS

We have analyzed jammed configurations of a flexible
bead-spring polymer in SC. Despite the presence of adhesive
backbone bonds and spherical confining walls, the conditions
at jamming superficially carry over from the case of repulsive
spheres in PBCs. After accounting for the rigid-body motions
within the spherical container, wall contacts, and undercon-
strained particles (rattlers and flippers), we see that jamming
occurs exactly at isostaticity and coincides with the emergence
of a single SSS. Jamming occurs at somewhat reduced density
compared to monomers, and, upon further compression, the
number of SSSs scales as the square root of pressure as for
monomers in SC.

The boundary causes layering in both local density and
coordination, which are, unexpectedly, out of phase; quali-
tatively, curves for density and coordination are inverted in
shape and phase-shifted ≈π/2. The boundary also introduces
a narrow band of vibrational modes into the density of states
with characteristic frequency scaling with the square root of
the wall stiffness. At high wall stiffness, these modes are
highly localized to the outermost two layers of sites. The
independence of boundary modes from bulk modes extends to
backbone modes; bands generated by high-stiffness backbone
bonds are virtually unchanged after the removal of nonbonded
and boundary potentials. Not only do these bands follow a
universal pattern, but they also display peaks corresponding to
regular low-dimensional simplices, indicating the possibility
of inferring aspects of the internal structure from the vibra-
tional spectrum.

The higher number of wall contacts in monomer packings
raises the bulk modulus by ≈40% compared to polymers. An
explanation comes from a model of stiffnesses in series that
scales with the wall contact number. A similar conceptual
model motivates a fitting relation that describes the depen-
dence of the bulk modulus on backbone stiffness and predicts

052505-6



EFFECTS OF SPHERICAL CONFINEMENT AND BACKBONE … PHYSICAL REVIEW E 99, 052505 (2019)

its value in the limiting case of incompressible backbone
bonds.

Although packing of a flexible-chain polymer is a highly
idealized model of a biopolymer, several insights may apply
immediately to experiment. The vibrational states convey
information about the strength of confinement, the number of
boundary constraints, and the backbone configuration, which
could be exploited to study and potentially manipulate poly-
mer structure. Our results may also apply to the cytoskeleton,
the protein network that spans the cell from the nucleus to
the cell membrane and accounts for cytoplasmic structure
and rigidity. The number of contact points with the cell
membrane may be strongly linked with cellular compress-
ibility and membrane flexibility. This dependence could be
measured experimentally, e.g., via atomic force microscopy.
Further biological relevance could be found within the cell
nucleus where our model may help elucidate the envelope’s
influence on chromatin structure and mechanics. In addition,
we hope this paper clarifies fundamental aspects of jamming
with regard to internal constraints and the finite boundaries
present in all real systems.

Future analysis may investigate the spatial structure of
SSSs in SC, the origin of the apparent phase shift in
local density and coordination, or the material elasticity at
higher pressure and with higher-curvature walls where inter-
nal stresses and higher-order terms in the energy expansion are
relevant (discussed in Appendix A). A fuller analysis may also
consider nonbonded adhesive interactions, backbone-bending
stiffness, dihedral stiffness, bond stresses, or finite tempera-
ture to yield more accurate models of real biopolymers.
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APPENDIX A: UNSTRESSED-NETWORK
APPROXIMATION

We first explain the approximation of low stresses, accurate
at low pressures, that permits the index theorem analysis based
on an unstressed spring network (Appendix B). In the follow-
ing, we use Einstein notation, and sites are labeled by plain
Roman indices, bonds are labeled by primed Roman indices,
and Cartesian components are labeled by Greek indices.

We explicitly calculate the lowest-order energy terms to
analyze stability of a static configuration {r0

i } after energy
minimization, i.e., in force balance, with potential energy
E0 = E ({r0

i }). Let ri be the position of particle i and ui =
ri − r0

i be its displacement from its reference position. For
small displacements, we can Taylor expand the energy,

E ({ri}) = E0 + uμ
i

∂E
∂rμ

i

∣∣∣∣
{r0

i }
+ uμ

i uν
j

2

∂2E
∂rμ

i ∂rν
j

∣∣∣∣
{r0

i }
+ · · ·, (A1)

where terms proportional to uμ
i are zero since we expand about

a stable configuration.

All potentials in the simulation where nonzero have
the form V (r) = ε(1 − r/d )2/2, where r = |r| corresponds
to displacements |ri − r j |, |rk − rl |, or |ri| [referring to
Eqs. (1)]. A displacement component parallel to the inter-
action direction u‖ ≡ u · r/r corresponds to stiffness κ ≡
∂2V/∂u2

‖ = ε/d2. A component perpendicular u⊥ ≡ |u −
u‖r/r| also has finite stiffness ∂2V/∂u2

⊥ = κ (1 − d/r), which
is positive for wall contacts and extended backbone bonds.
Explicitly, the change in energy due to a small displacement
perpendicular to ri j, rkl , or ri is

�V0(u⊥) = ε0

2

(
1 − σ

ri j

)(u⊥
σ

)2
+ O(u4

⊥), (A2a)

�VB(u⊥) = εB

2

(
1 − σ

rkl

)(u⊥
σ

)2
+ O(u4

⊥), (A2b)

�VW (u⊥) = εW

2

(
1 − R − σ/2

ri

)(u⊥
σ

)2
+ O(u4

⊥), (A2c)

where θ (x) is omitted for brevity. The prefactor of
the quadratic term is negative for overlapping monomers
(ri j < σ ), so energy decreases in the perpendicular direction,
and the particles tend to slip off one another. Small dis-
placements perpendicular to extended backbone bonds (rkl >

σ ) or tangential to the wall instead require an increase in
energy, resulting in linear restoring forces. Prefactors vanish
in the unstressed, i.e., zero-energy limit (r = d), so the energy
costs of these motions appear only at O(u4

⊥) and produce no
linear response. Figure 8 illustrates the tangential curvature of
V (r) for r < d (∂2V/∂u2

⊥ < 0), r = d (∂2V/∂u2
⊥ = 0), and

r > d (∂2V/∂u2
⊥ > 0).

Although extended backbone bonds and wall contacts con-
strain tangential motion, we focus on the unstressed case
(at jamming) where the mapping to unstretched springs is
exact for harmonic analysis [58]. In that case, each interaction
constrains motion only along the interaction direction. There-
fore, at sufficiently low pressure, only relative motion in the
direction normal to the contact contributes significantly to the
linear response, but higher-order terms in the energy expan-
sion can, in principle, affect jamming in some materials, e.g.,
they are seen to stabilize zero-frequency modes in packings of
aspherical particles [69–71]. At rest length, nonzero contribu-
tions up to fourth order in the expansion come from the terms

1.00
0.50

0.00

0.50 0.00 0.50 1.00
0.00
0.10
0.20 V(r)

(ε)

x  (d)

y  (d)
0.50

FIG. 8. Plot of the z = 0 potential energy surface V (r) = ε(1 −
r/d )2/2, r = √

x2 + y2 + z2 to illustrate the curvature in the tangen-
tial direction of an extended or compressed harmonic interaction and
the higher-order stabilizing terms at zero pressure, which are absent
in the case of repulsive interactions.
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κu‖u2
⊥/6d, −κu2

‖u2
⊥/12d2, and κu4

⊥/8d2, so the curvature of
confining walls and the adhesive regime of backbone bonds
may contribute to higher-order stability at zero pressure. In
principle, these terms may be able to stabilize zero modes in
the packing; however, as stated in the main text, after rattlers
and flippers have been deleted, no zero-frequency modes
are present in our packings other than rigid-body motions,
indicating that harmonic analysis accounts for all constraints
in our sphere packings.

APPENDIX B: DERIVATION OF THE INDEX THEOREM

Site displacements form the dN-dimensional displacement
vector U μ

i , where μ indexes the d = 3 Cartesian components
of each vector ui. The linear operator Ci

i′μ, termed the compati-
bility matrix, maps U μ

i to the NC-dimensional bond elongation
vector Ei′ ≡ ∂ri′

∂rμ
i

U μ
i ,

Ci
i′μU μ

i = Ei′ . (B1)

Since a zero mode is described by a set of displacements that
causes no bond elongations, the null space of Ci

i′μ is spanned
by modes associated with both floppy modes and global
rigid-body motions of which there are in total,

N0 = nullity
(
Ci

i′μ
)
. (B2)

Conversely, we may consider the resulting force on each

site as the linear response to a tension vector Fμ
i ≡ − ∂ri′

∂ri
μ

Ti′ .

We then obtain the equilibrium matrix,

Qi′μ
i Ti′ = −Fμ

i . (B3)

Comparing with Eq. (B1), we see that, in matrix form, Qi′μ
i is

the transpose of Ci
i′μ.

In certain networks, the bonds may be placed under tension
or compression while maintaining zero net force on each site,
i.e., Qi′μ

i T S
i′ = 0. Such a tensional state T S

i′ is referred to as a
SSS and is contained in the null space of Qi′μ

i . The number of
SSSs in a system is thus given by

NS = nullity
(
Qi′μ

i

) = nullity
(
Ci′μ

i

)
. (B4)

From the rank-nullity theorem and given rank(Ci
i′μ) =

rank(Qi′μ
i ), we obtain the index theorem [58],

N0 − NS = dN − NC . (B5)

Finally, we note the connection to the dynamical matrix,
defined as

D jμ
iν = 1

m
Ci′μ

i K j′
i′ C j

j′ν = 1

m
Qi′μ

i K j′
i′ Q j

j′ν, (B6)

where K j′
i′ ≡ ∂2V (ri′ )/∂r2

j′ is the diagonal stiffness matrix.
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