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Plectoneme dynamics and statistics in braided polymers
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Braids composed of two interwoven polymer chains exhibit a “buckling” transition whose origin has been
explained through the onset of plectonemic structures. Here we study, by a combination of simulation and
analytics, the dynamics of plectoneme formation and their statistics in steady state. The introduction of an order
parameter—the plectonemic fraction—allows us to map out the phase boundary between the straight-braid phase
and the plectonemic one. We then monitor the formation and the growth of plectonemes, observing events typical
of phase separation kinetics for liquid-gas systems (fusion, fission, and one-dimensional Ostwald ripening) but
also of DNA supercoiling dynamics (plectonemic hopping). Finally, we propose a stochastic field theory for the
coupled dynamics of twist and local writhe which explains the phenomenology found with Brownian dynamics
simulations as well as the power laws underlying the coarsening of plectonemes.
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I. INTRODUCTION

Polymer braids lie at a crossroads between topology, sta-
tistical mechanics, and biological physics. Within cells, two
DNA double helices inevitably intertwine to form a braided
molecule, or catenane, when replication terminates [1]. Braids
also arise in biology with interwoven collagen helices [2] or
amyloid fibrils [3]. The properties of braided polymers can
be quantitatively studied with single-molecule experiments in
vitro [4–6]. In nanotechnology, semiflexible polymers teth-
ered to colloidal particles may be used to create biomimetic
braids at near-molecular scale [7].

From a statistical mechanics viewpoint, these systems are
of fundamental interest in view of the “buckling” transition
between a straight-braid phase, where the braid centerline
fluctuates around a straight line, and a plectonemic phase,
where the centerline writhes in three dimensions (3D). The
plectonemic phase arises for sufficiently large “catenation
number”—essentially the linking number between the two
polymers in the braid. The thermodynamics of the transition is
understood as a competition between torsional stresses stored
in a twisted braid and bending energy cost associated with
plectoneme formation, which can be formulated at the mean-
field theory level [8–10]. The underlying physics is similar to
that of buckling in supercoiled DNA under tension, although
in braids the absence of H bonding between the intertwining
molecules leads to important qualitative distinctions [8].

A quantitative understanding of the transition between
straight and plectonemic phases in braided polymers, going
beyond mean field, is still elusive, although Monte Carlo sim-
ulations have mapped out the phase diagram for DNA braids
under tension by monitoring the location of the singularity in
the plots of braid extension versus catenation number [11].
The recent experiments in Ref. [6] also showed evidence
of a multimodal distribution of braid extension (end-to-end
distance), which arises because the population of braids in
equilibrium has multiple plectonemes at large catenation.

In sharp contrast to this body of work on the thermody-
namics of the transition between the straight and plectonemic
phases, the dynamics in the latter phase has received much
less attention. Experimentally, the main study in this field has
only addressed the diffusional dynamics of DNA supercoils
[12], whereas theory or simulation studies on braid dynamics
are to date altogether lacking. To fill this gap, here we present
Brownian dynamics (BD) simulations of two braided semi-
flexible polymers at fixed values of the catenation number and
under a stretching force.

After introducing the model of braided chains under tor-
sion and the relevant observables (see Sec. II), in Sec. III we
first map the boundary between the straight and the plectone-
mic phase and then we focus on the dynamics of the braid
following a quench of variable depth into the latter. Our key
finding is that the kinetics of plectonemic growth resembles
phase separation in liquid-gas systems. Thus, first twist is
converted into writhe to nucleate formation of a plectoneme.
Later, plectonemes coarsen via a combination of fusion and
one-dimensional (1D) Ostwald ripening. In steady state, we
also observe plectonemic “hopping,” whereby a plectoneme
seemingly unravels at one place while reforming at another,
as in the experiments in Ref. [12]. Finally, in Sec. IV we
propose a stochastic field theory for twist and writhe dynamics
which explains the fundamental origin of the phase separation
phenomenology we observe as due to the underlying topolog-
ical conservation of the braid catenation number. Section V is
devoted to discussion and conclusions.

II. MODEL AND SIMULATION DETAILS

Braids are modelled by a pair of semiflexible intertwined
chains, each of which is made up by N beads of diameter
σ and has persistence length 20.6σ (appropriate, e.g., for
double-stranded DNA when σ = 2.5 nm) (see Fig. 1). The
total energy U of each chain comprises three terms: (i) a
finitely extensible nonlinear elastic (FENE) spring potential

2470-0045/2019/99(5)/052503(9) 052503-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052503&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1103/PhysRevE.99.052503


GIADA FORTE et al. PHYSICAL REVIEW E 99, 052503 (2019)

f
T

Uf

Lf

Z
z

yx

FIG. 1. Setup of the molecular dynamic simulations. The braid
is made by two semiflexible chains. Each chain is composed of N =
250 beads with diameter σ and mass m and has a persistence length
lp = 20.6σ . The two chains are anchored to a static impenetrable
wall at the bottom and, at the top, to a rigid body composed of 63
particles of radius 3.5σ . The rigid body is subjected to a force f and
a torque τ along the z axis. We will refer to the braid extension Z
also as the end-to-end distance. Finally Uf and Lf denote the ends of
the upper and lower fork, respectively; i.e., the points where the two
chains start to intertwine.

which accounts for the chain connectivity, (ii) a truncated and
shifted Lennard-Jones potential which accounts for excluded
volume interactions [13], and (iii) a bending potential which
provides the chain with an intrinsic bending stiffness:
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where ri, j = |ri, j | = |r j − ri| is the distance between the ith
and the jth bead, R0 = 1.5σ is the maximum bond length,
ε = kBT is the thermal energy of the system, Kf = 30 ε

σ 2 is
the bond strength, θ (x) is the Heaviside function, and φi is the
angle among the three consecutive beads i − 1, i, and i + 1.
The value of Kbend is related, in units of σ , to the persistence
length of the chain lp � Kb/ε. By using Kb ≈ 20ε we set lp =
20.6σ . Note that beads belonging to different polymers also
interact via excluded volume interactions:
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where now i and j are two indices which are running on the
first and second chains, respectively. To mimic a typical exper-
imental magnetic tweezers set up, each chain is anchored to an
impenetrable wall at the bottom while the other pair of ends
are fixed to the surface of a top plate that can rotate around
the z axis under the action of a constant torque τ . Interactions
between the bottom wall and the chains are accounted by the

following harmonic potential:

Ubot = Kw(r − rc)2 , (5)

where r is the distance between the bead and the region
surface, rc = σ is a cutoff distance below which there is no
interaction, and Kw = 200 ε

σ
is the spring constant. The top

plate is composed of beads (labelled w) of diameter 7σ which
interact with the the beads in the two chains (labelled b)
through a truncated and shifted Lennard-Jones potential:
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In Eq. (6) the sum runs over all pairs (b,w) with reciprocal
distance db,w, r̃c = 2

1
6 σ and � = 2

1
6 (R − σ

2 ) with R being the
radius of the wall bead. Note that in all simulations we set
the distance d between the two end beads anchored at the top
plate to be d/L0 � 0.17, where L0 = Nσ is the contour length
of each chain [14].

The dynamics of the system is described by the Langevin
equation:

mr̈i = −γ ṙi + ξi + ∇riU (ri ), (7)

where ri is the position of the ith bead, γ is the friction
coefficient, and ξi is the usual stochastic Brownian noise
defined by

〈ξi,α (t )〉 = 0,

〈ξi,α (t ) · ξ j,β (t ′)〉 = 2γ kBT δi, jδα,βδ(t − t ′) . (8)

In Eq. (8), t and t ′ are times, kB is the Boltzmann constant,
T denotes temperature, δi, j is a Kronecker δ, and δ(t − t ′) a
Dirac δ. As characteristic time unit we consider the Brownian
time τLJ = σ 2

2D (the time needed by a bead to diffuse across a
length equal to its diameter): By using the Einstein relation
D = kBT/γ and the Stoke’s law γ = 3πση we obtain τLJ =
3π
2

σ 3η

kBT , where η is the viscosity of the fluid inside the flow cell.
The time evolution of the system is obtained by integrating
numerically Eq. (7) with the LAMMPS software [15] with an
integration time step in the range [0.0025, 0.01] τLJ.

To simulate the system at equilibrium in the fixed catena-
tion number (or interchain linking number) Ca and force f
ensemble, initial conditions are prepared by interwining the
two chains with the desired value of Ca. The latter is moni-
tored by first closing the two chains and then computing their
linking number. The system is then relaxed by BD simulations
at constant temperature T and reduced force f̃ = f σ

kBT . Since
chains cannot cross the top plate and the bottom wall, the
initial catenation Ca is preserved at all times.

A crucial point in our study concerns the detection of
plectonemes along the braided filaments [see Fig. 2(a)]. This
is performed by first constructing a distance map for each of
the two chains. This map is a contour plot of the distances
between beads i and j of one chain (e.g., the blue one). [The
distance map in Fig. 2(a) has a cutoff at rcut = 10σ [16]
as differences in distances of noncontacting monomers are
irrelevant.] Plectonemic domains can be identified as darker
regions extending perpendicularly from the diagonal in the
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FIG. 2. Detection of plectonemic domains in braids. (a) Snapshot
of a braid in the plectonemic phase and a zoom showing its two
plectonemes. (b) Contact map referring to the blue chain of panel
(a). The color map provides the distance between the ith and jth
beads (1 � i, j � 250) in σ units with a cutoff at rcut = 10σ . The two
plectonemes are described by the two darker regions moving away
from the diagonal: The region within the dashed brown (solid green)
ellipse corresponds to the plectoneme highlighted by the dashed
brown (solid green) ellipse in panel (a). (c) Zoom of the plectonemic
region encircled by the solid green ellipse in panel (a). In the left
snapshot one observes the whole braid, while in the right one only
one chain is shown to better highlight the bending of the chains in
the plectoneme. (d) Zoom on the darker region within the solid green
ellipse in panel (b) corresponding to the plectoneme represented
in panel (c). The portions within the orange rectangle and ellipses
correspond to the plectonemic areas of panel (c) enclosed in the
rectangle and ellipse respectively. The rectangles include the apex
of the plectoneme while the ellipse shows the location of its root.

distance map [Fig. 2(b)]. The portion of these regions closer
to and farther from the diagonal represents, respectively,
the apices and the roots of the plectonemes [see Figs. 2(c)
and 2(d)].

More precisely, the algorithm to detect plectonemes
through distance maps works as follows. First, we use a
threshold Rmax to identify the set of “contacting beads” for
which ri, j � Rmax [these are the darker regions in the maps in
Fig. 2(b)]. Then we measure the positions of the plectoneme
extremities [i.e., the points in the ellipses in Fig. 2(d)] and use
these to determine the plectoneme length. In our algorithm,
plectonemes retained in the subsequent analysis were required
to be larger than an additional threshold �p (measured in units
of σ ) [17].

Note that every distance map refers to a single chain: This
means that we study plectonemes in each filament separately.
Sometimes a chain wraps around the other locally forming
a solenoidal structure whose beads satisfy the conditions
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FIG. 3. Thermodynamics of the transition between the straight-

braid and plectonemic phase. (a) Overall fraction of plectonemic
length 〈Lpl〉/L0 (L0 = Nσ with N = 250) as a function of Ca for
f̃ = 11 (red squares) and f̃ = 8 (blue circles). 〈Lpl〉/L0 becomes
nonzero above a critical catenation number Cac = Cac( f̃ ), where
plectonemes form. For each pair of (Ca, f̃ ) values, averages have
been taken over 10 trajectories. (b) Mean normalized end-to-end
distance < Z > /L0 versus Ca curves for f̃ = 11 (external curve)
and f̃ = 8 (internal curve). (c) Numerical estimate of the equilibrium
phase diagram in the (Ca, f̃ ) plane. The transition line (gray circles)
between the straight-braid and the plectonemic phases has been
determined as the set of point at which the order parameter 〈Lpl〉/L0

deviates from zero. Note that the range of forces considered was cho-
sen as this leads to better plectoneme detection. For braids made up
by two double-stranded DNA molecules of thickness 2.5 nm, these
values correspond to ∼10–20 pN, larger than in normal experiments
[6]. Note that we cannot directly compare our phase diagram with
that of the previous numerical work in Ref. [11], as the value of d/L0

and the range of values of f are different in the two cases.

determining a plectoneme: In this case our method of counting
plectonemes can provide Nb plectonemes for the blue chain
and Nr �= Nb plectonemes for the red one. To avoid an over-
estimate of the number of plectonemes, we assume that this
number is given by min(Nb, Nr ).

III. RESULTS

A. Equilibrium phase diagram

The results obtained for different (Ca, f̃ ) pairs are summa-
rized in Fig. 3. In thermodynamic equilibrium, and over the
range of parameters we analyze, the braided polymers can be
in one of two phases [Fig. 3(c)]. Either the chains wind around
each other without coiling in 3D [straight-braid phase, see
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FIG. 4. Plectoneme statistics. (a) Equilibrium distribution of the
relative length of a single plectoneme P(�pl/L0 ) (L0 = 250σ ), re-
ferring to different points of the phase diagram: (Ca = 31, f̃ = 6),
lower red point of the inset, distribution on the right, and (Ca =
31, f̃ = 7), upper green point of the inset, distribution on the left.
(b) Distribution of �pl/L0 as a function of the number of plectonemes
Npl. The statistics is based on 200 trajectories.

snapshot in Fig. 3(c), left] or they end up in a configuration
where some of the twist is converted into writhe, leading to a
shrinking of the braid along the z direction and the formation
of a plectoneme where the backbone of the braid writhes
around itself [plectonemic phase, see snapshots in Fig. 3(c),
right].

To determine the boundary between the straight-braid and
plectonemic phases, the standard approach is to record the
end-to-end distance of the chains along the z direction as a
function of Ca—the point at which the slope changes abruptly
then corresponds to the transition point [Fig. 3(b)] [6,11].
Here we instead look at the statistics of plectonemes by using
the algorithm described in Sec. II and define an overall plec-
tonemic length, Lpl. The braid is in the plectonemic phase if
the order parameter 〈Lpl〉/L0—the “plectonemic fraction”—is
>0. The plectonemic fraction as a function of Ca for different
values of f̃ is shown in Fig. 3(a).

To gain more insight on the nature of the transition, we look
at the statistics of both the length �pl of single plectonemes and
their number Npl in steady state. We find that the distribution
of plectoneme length is multimodal [Fig. 4(a)] and that con-
figurations with multiple plectonemes are possible [Fig. 4(b)].
Close to the critical point, plectonemes are short and the
length distribution is relatively narrow. Deeper in the plec-
tonemic phase, the distribution widely broadens; additionally,
plectonemes are longer and more numerous. Multimodality

in the length distribution here is much more enhanced and is
due to the presence in the population of different classes of
configurations, mainly those with a single plectoneme or two
or three plectonemes [Fig. 4(b)]. Interestingly, multimodality
in the plectonemic phase was recently reported in a combined
experimental and theoretical study but with respect to distri-
bution of braid end-to-end distance [6].

B. Near-equilibrium dynamics of plectonemes

We now discuss the near-equilibrium dynamics
of the system after a quench from the straight-braid phase into
the plectonemic one by instantly reducing the pulling force.
The kinetics depends on the value of Ca and f̃ .

Following the quench into the plectonemic phase, the twist
soon converts into writhe, with the latter initially localized
close to the top plane (where the pulling force is applied).
Then plectonemes can grow until they reach their equilib-
rium size. The kymograph in Fig. 5 monitors the kinetics of
plectonemes in the system when (Ca, f̃ ) = (31, 6). In our BD
simulations, we observe a number of possible kinetic events.
First, plectonemes diffuse slowly along the chain once they
are formed. Second, there are fission [Figs. 5(A) to 5(B)] and
fusion [Fig. 5, after 5(B)] events, where a plectoneme splits
into two or two close plectonemes merge into one. Third,
plectonemes may “hop” from one place to another along
the braid, as writhe unravels in one region and reappears in
another one [see snapshots from Figs. 5(C) to 5(D)]. Finally,
we observe Ostwald ripening events [Figs. 5(E) to 5(F)],
where a small plectoneme is absorbed by a larger one, without
touching.

Within the context of DNA supercoiling, plectonemic dif-
fusion was observed in experiments [12] and simulations
[18] and hopping only in experiments [12]. Inspection of
our BD simulation [19] suggests that hopping events are
actually preceded by a fluctuation resulting in the moderate
shrinkage of an initially large plectoneme. The extra rope
length gained allows nucleation of new small plectonemes,
at random positions along the chain, which compete with the
original plectoneme for braid length. If one of these outgrow
the original plectoneme, then the resulting kymograph records
a hopping. As hopping requires nucleation, its frequency
should strongly depend on noise—this is the case in our simu-
lations and arguably also in experiments [12]. It is then worth
noting that fission and fusion events balance in steady state to
yield a finite average size for plectoneme. This is similar to
liquid-gas phase separation in 1D, where fluctuations inhibit
coarsening beyond the correlation length of the system [20].
The plectoneme dynamics when the quench is deep in the
plectonemic phase, compared to the one close to the transition,
is very different. This is apparent in Fig. 6, where we contrast
the trajectories for quenches to the point (Ca, f̃ ) = (32, 8)
[Fig. 6(a)] and for (Ca, f̃ ) = (32, 6) [Fig. 6(b)]. One can
notice that both trajectories follow a fast relaxation to equi-
libration dynamics in which the observable Z/L0 (blue line)
drops abruptly [this is particularly apparent in Fig. 6(b)]. This
fast decay is due to the sudden reduction of the pulling force at
t = 0, leading to the transition from a straight braid to a braid
where plectonemes nucleate.
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FIG. 5. Plectoneme dynamics at equilibrium. Kymograph of a pair of braided polymers, each of length L0 = Nσ = 250σ , with a fixed
catenation number Ca = 31 and subject to a stretching force f̃ = 6. On the x axis one finds the time in Lennard-Jones units, while n/N on the
y axis gives the relative position along the braid (n/N = 0 and 1 correspond to the bottom and top of the chains, respectively). Plectonemes
are visible as yellow (light gray) regions bounded by red (dark gray) points and they always form within the two dashed lines representing the
upper and the lower forks of the braid. The snapshots in panels (A)–(F) correspond to specific events occurring in the plectoneme dynamics.
First, we observe the growth of a single plectoneme which can diffuse but also go through fission [between (A) and (B)] and fusion events
[after (B)]. A plectoneme can also hop from a position along the braid to another one far away [(C) to (D)]. There is also evidence of 1D
Ostwald ripening dynamics [(E) to (F)].

FIG. 6. Comparison between dynamics of plectonemes at equilibrium. (a) Kymograph of a simulation taken at the point (Ca, f̃ ) = (32, 8).
In the phase diagram this point is located close to the transition line. On the left y axis the normalized plectonemic position n/N is reported:
Yellow (light gray) points correspond to beads within a plectoneme, while the red (dark gray) ones indicate its extremities. The solid blue curve
describes the time evolution of the normalized end-to-end distance, Z/L0 (see the right y axis). One can notice the formation of a gas of small
plectonemes where each domain is enclosed within the lower and the upper forks of the braid (see black dotted lines). (b) This kymograph
refers to a trajectory simulated at (Ca, f̃ ) = (32, 6), i.e., well inside the plectonemic phase. In this case larger and more stable plectonemes are
present. Notice events such as fission [(A) to (B)] and fusion [(C) to (D)] between plectonemes.
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FIG. 7. Plectoneme coarsening. BD simulations [(a) and (b)] and
stochastic field-theoretical model [(c) and (d)] allow us to moni-
tor the growth of plectonemes at intermediate times. (a) Variation
of the number of plectonemes Npl over time following a quench from
the straight-braid phase with f̃ = 9 into the plectonemic phase with
f̃ = 6. The value of Ca is kept fixed at value Ca = 67 (upper green
line), Ca = 64 (middle blue line), and Ca = 61 (lower red line).
(b) Log-log plot of 〈�pl〉/L0 (L0 = Nσ = 500σ ) versus t/τLJ for the
quenches of panel (a) [order of curves is as in (a)]. Curves of panels
(a) and (b) are averaged over 250 trajectories. (c) Time evolution of
the mean length of a plectoneme obtained through the stochastic field
theory (average over 50 simulations). Parameters were Dt = 2, Dw =
0.1, α = β = 0.1, γ = 0.07, κ = 0.01, ση = 0.003, L0 = 500. This
simulation and the associated power-law behavior are representative
of the typical behavior of the system. (d) Kymograph corresponding
to a simulation of the stochastic field theory with parameters as in
(c), except for ση = 0.087 and L0 = 100.

Close to the plectonemic transition a gas of plectonemes
appears: Numerous domains nucleate between the lower and
the upper fork, but they do not merge as their lifetime is too
short. The braid end-to-end distance is weakly influenced by
the formation of domains and only occasionally is its decrease
clearly visible due to the presence of plectonemes.

Deep in the plectonemic phase, instead the system prefers
to form longer plectonemes. While the total length of plec-
tonemes is practically constant their number varies. As in
Fig. 5, we find events which are typical of liquid-gas phase
separation, such as fission [Figs. 6(b)(A) to 6(b)(B)] and fu-
sion [Figs. 6(b)(C) to 6(b)(D)]. Also in this case the extension
of the braid is not strongly influenced by the nucleation of
plectonemes and the size of fluctuations is similar to the one
seen close to the transition.

C. Coarsening dynamics

To characterize more quantitatively the dynamics of plec-
tonemic coarsening following a quench, we analyze in Fig. 7
how the average plectoneme size and number depends on
time. The number is nonmonotonic with a maximum that is
reached at very early times and whose values increase with
Ca [see Fig. 7(a)]. This behavior is due to the formation
of numerous plectonemes just after the quench and to the
following process of coarsening. That the number is larger

than 1 in steady state is consistent with arrested coarsening.
The intermediate time behavior is well fitted by a power
law tω, with ω � 1/3; to a good approximation this is true
irrespective of the value of Ca and f̃ [Fig. 7(b)].

IV. STOCHASTIC FIELD THEORY

The phase separation kinetics between straight and plec-
tonemic phases can rationalized via a simple stochastic field
theory, based on two coupled reaction-diffusion equations for
the evolution of local twist (Tw) and centerline writhe (Wr)
[21], inspired by our BD simulations. These equations read as
follows (see the Appendix for more details):

∂Tw

∂t
= Dt

∂2Tw

∂x2
− g(Tw, Wr)

∂Wr

∂t
= Dw

∂2Wr

∂x2
− κ

∂4Wr

∂x4
+ g(Tw, Wr)

g(Tw, Wr) = αTw − βWr + γ θ (|Tw + Wr| − σ0)Wr

+ σηη(x, t ), (9)

where Dt and Dw are the diffusion coefficients of twist and
(local) writhe, respectively, while κ > 0 is a surface tension-
like parameter. The reaction terms ±g are equal and opposite
in the two equations to ensure global conservation of the
“local catenation” number, σ = Tw + Wr, at all times. The
parameters α, β, and γ describe interconversion between
twist and writhe—we choose α � β � γ > 0 to locally fa-
vor formation of a plectoneme for σ > σ0; we also include
a noise term, where ση denotes noise strength and η(x, t )
is a Gaussian white noise, uncorrelated in space and time.
Equation (9) (with no noise) is familiar in the literature on
Turing pattern formation [22,23], where a sufficiently large
difference in the diffusivity of the fast and slow fields (here
twist and writhe, respectively) leads to an instability of the
uniform phase (Fig. 8 and the Appendix). (In our context,
the instability corresponds to phase separation and formation
of one or more plectonemes in the braid.) For Dt = Dw, the
linking number obeys a simple diffusion equation, and hence
is uniform in steady state. Figure 7(c) shows the evolution
of the average plectoneme size in numerical solutions of our
stochastic field theory. Due to the global conservation of σ we
expect Eq. (9) to be in the same universality class of model B
dynamics for liquid-gas phase separation (this is proved in the
Appendix), for which we expect a growth exponent ω = 1/3
[24], as we find numerically in both BD and field theory
[Figs. 7(b) and 7(c)]. More generally, numerical solutions of
our field theory show instances of all dynamical processes
seen in simulations. Thus, the kymograph in Fig. 7(d) shows
examples of Ostwald ripening and fusion, whereas in steady
state we find hopping and fission if ση is sufficiently large
(Fig. 9).

V. CONCLUSIONS

In summary, we have studied the dynamics of polymer
braids under tension by numerical simulations. By varying
the applied force and the catenation (linking) number between
the two chains, we mapped out the transition between the
straight-braid and plectonemic phases. Our main result is the
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characterization of dynamical events and kinetic regimes deep
in the plectonemic phase. We find that plectoneme formation
shares some features of phase separation in liquid-gas systems
and proceeds via a combination of Ostwald-like ripening and
fusion events. At late times, there is a balance of merging and
breakup of plectonemes which leads to arrest of coarsening
with selection of a typical plectoneme size. We also pro-
vide evidence of plectonemic hopping, where writhed regions
seemingly unravel at one location to appear somewhere else
along the braid. We showed that our numerical data can be
explained by a stochastic field theory which models twist
and writhe interconversion in our polymer braid. This theory
suggests that the growth of plectonemes can be described by a
power law, where the exponent is ∼1/3, as befits diffusive
phase separation in a liquid-gas system. It also reproduces
hopping and concurs with our BD simulations in finding that
sufficiently strong noise (i.e., proximity to the transition) is
crucial to observe this dynamical mechanism. Both BD and
field theory suggest that this phenomenon is due to stochastic
nucleation of an additional plectoneme and subsequent com-
petition between the nascent plectoneme and another one in
the chain. As the latter unravels, the result is an apparent
hopping.

From a theoretical point of view, in the future it would
be desirable to extend our Brownian dynamics simulations
to study longer braids and to investigate how electrostatic
interactions [25] affect the dynamics, either qualitatively or
quantitatively. Experimentally, it would also be of interest to
use methods such as those in Ref. [26] to quantify plectonemic
length and study via single molecule techniques the dynamics
and growth laws of plectonemes in DNA and polymer braids.
This would experimentally test whether the diffusive liquid-
gas phase separation outlined here is confirmed experimen-
tally.
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APPENDIX

In this Appendix we discuss the details of the continuum
reaction-diffusion model whose results have been described
in the text. The model consists of two coupled dynamical
equations for twist and writhe, which we write down here
again for convenience,

∂Tw

∂t
= Dt

∂2Tw

∂x2
− g(Tw, Wr)

∂Wr

∂t
= Dw

∂2Wr

∂x2
− κ

∂4Wr

∂x4
+ g(Tw, Wr)

g(Tw, Wr) = αTw − βWr + γ�(|Tw + Wr| − σ0)Wr

+ σηη(x, t ). (A1)

In Eq. (A1), Dt and Dw are the effective diffusion coeffi-
cients of twist and writhe, respectively; θ (x) is the Heaviside
function; while κ > 0 introduces a surface tension in writhed
domains. The reaction terms, called g and −g in the equations
for twist and writhe, are equal and opposite so that the

FIG. 8. Phase separation in a reaction-diffusion model for plec-
toneme formation. Plot showing the curve corresponding to g = 0
(solid red line), together with the straight line Dt Tw + DwWr =
C (dashed blue line). The intersection between the two identifies
possible stationary points, of which the two magenta filled circles
correspond to stable solutions (these are binodal points in phase
separation theory). The dot-dashed black line corresponds to the line
Tw + Wr = 1. The existence of two stable solutions signifies that the
system phase separates into a highly writhed (“plectonemic”) and a
weakly writhed (“straight”) phase to keep the total linking number
conserved. Parameters for this diagram are as follows: α = β = 0.1,
γ = 0.07, σ0 = 1, C/Dt = 0.38, Dw/Dt = 0.05.

linking number, or local catenation number σ (x, t )—equal to
Tw(x, t ) + Wr(x, t )—is globally conserved at all times. We
considered α � β � γ � 0, while σ0 is the local linking or
catenation number at which plectonemes appear. Finally, ση

controls the strength of noise, and η(x, t ) is a white noise with
zero mean and variance equal to

〈η(x, t )η(x′, t ′)〉 = δ(x − x′)δ(t − t ′), (A2)

where 〈·〉 denotes averaging over different noise realizations.
In the following calculations we set κ = 0 for simplicity—this
does not affect our analytical treatment. Let us now assume
that Eq. (A1) admits a stationary solution, where twist and
writhe are constant in steady state. This solution will be
such that the reaction term vanishes, g = 0. Additionally, by
summing the two equations we obtain

∂ (Tw + Wr)

∂t
= ∂

∂x

[
Dt

∂Tw

∂x
+ Dw

∂Wr

∂x

]
. (A3)

Consequently, for a stationary solution, and if there is no
twist or writhe flux at the boundaries (i.e., ∂Tw

∂x = ∂Wr
∂x =

0 there), we obtain that Dt Tw + DwWr = C, where C is
a constant which is determined by the initial condition at
t = 0. Intersecting the curve g = 0 with the straight line
Dt Tw + DwWr = C gives the possible stationary solutions of
the system. Notably, for a range of values of C the straight line
Dt Tw + DwWr = C intersects g = 0 in three points, and the
two filled circles in Fig. 8 denote the two stable points–these
are the analog of binodal points for a phase-separating system.
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FIG. 9. Kymographs for the reaction-diffusion model [(a) and (b)]. Kymographs showing two realization of the dynamics of plectonemes
in the continuum model when noise strength is larger than in the main text. A hopping event in (a) is highlighted by a box. The values of the
parameters used for these realizations are Dt = 2, Dw = 0.01 α = β = 0.1, γ = 0.07, σ0 = 1, κ = 0.01, ση = 0.104, L0 = 100.

(Note that we work in the quadrant with Tw > 0 and Wr > 0
without loss of generality, as the rest of the behavior can be
obtained using symmetry.) The presence of two distinct stable
stationary points means that the system will phase separate
into two (or more) domains, with a different stable point in
each pair of neighboring domains, and where domain size is
set by the global constraint that the total linking number is
globally conserved. This argument is the same as that used in
Ref. [23] to demonstrate the formation of spatially varying
stationary patterns in MinD protein systems in bacteria. It
is important to note that in order for two stable solutions to
exist—equivalently, in order for phase separation to arise—we
need Dt > Dw, which is the case for DNA. It is also instructive
to write down an effective equation for the local linking or
catenation number, σ = Tw + Wr, which corresponds to a
globally conserved variable. To this end, we can add and
subtract the equations for twist and writhe in Eq. (A1) to
obtain

∂σ

∂t
= Dt + Dw

2

∂2σ

∂x2
+ Dt − Dw

2

∂2δ

∂x2

∂δ

∂t
= Dt − Dw

2

∂2σ

∂x2
+ Dt + Dw

2

∂2δ

∂x2
+ 2g, (A4)

where we called δ = Tw − Wr. Now we perform a gradient
expansion in the second equation to express δ as a function of
σ . To zeroth order in the gradients, the relation between δ and
σ is obtained by setting g = 0, namely

δ = β − α − γ�(|σ | − σ0)

β + α − γ�(|σ | − σ0)
σ. (A5)

Plugging this into the equation for σ , we find that it can be
written as an effective “model B” dynamics (in the terminol-
ogy of Ref. [27]), which is the relevant equation of motion for
a globally conserved order parameter. The equation explicitly

reads as follows:

∂σ

∂t
= M

∂2μeff

∂x2
≡ M

∂2

∂x2

(
∂ feff

∂σ

)
, (A6)

where M is mobility (which we assume constant), μeff an
effective chemical potential, and feff an effective free energy
density. The latter is given by:

M feff = A +
[

Dt + Dw

2
− Dt − Dw

2

α − β

α + β

]
σ 2

≡ A + C1σ
2 if σ < σ0, (A7)

M feff =
[

Dt + Dw

2
− Dt − Dw

2

α − β + γ

α + β + γ

]
σ 2

≡ C2σ
2 if σ > σ0. (A8)

In Eq. (A7), A is a constant to ensure continuity of feff at
σ = σ0, whereas given the choices of α, β, γ C1 > C2 > 0.
Therefore the effective free energy is piecewise quadratic,
with a singularity at σ0. This function is nonconvex so that
a common tangent construction predicts phase separation,
in line with our previous analysis of the reaction-diffusion
model. We note that an effective free energy with the same
functional form was proposed by Marko [28] to study the ther-
modynamics of plectoneme formation in supercoiled DNA
under tension. While our system of equations leads to phase
separation and while we can compute the value of the twist
and writhe of the coexisting states, a linear stability analysis
as in Ref. [23] shows that the only point where the sys-
tem undergoes spinodal decomposition is σ = Tw + Wr =
σ0, which can also be seen in our effective free energy,
as ∂2 feff

∂x2 is always positive except at σ = σ0—this is due
to the choice of a singular reaction term (or, equivalently,
effective free energy). As shown in Fig. 7, the dynamics
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of the continuum model is similar to that of our molecular
dynamics simulations. Additional kymographs are shown in
Fig. 9 for larger noise strength. These show some examples
of hopping. The mechanism leading to these is similar to

that identified in the molecular dynamics simulations, with a
plectoneme nucleating approximately at the same time when
one of similar size disappears—the combined effect is an
apparent hopping of the plectoneme along the chain.
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