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In large neuronal networks, it is believed that functions emerge through the collective behavior of many
interconnected neurons. Recently, the development of experimental techniques that allow simultaneous recording
of calcium concentration from a large fraction of all neurons in Caenorhabditis elegans—a nematode with
302 neurons—creates the opportunity to ask whether such emergence is universal, reaching down to even the
smallest brains. Here, we measure the activity of 50+ neurons in C. elegans, and analyze the data by building
the maximum entropy model that matches the mean activity and pairwise correlations among these neurons. To
capture the graded nature of the cells’ responses, we assign each cell multiple states. These models, which are
equivalent to a family of Potts glasses, successfully predict higher statistical structure in the network. In addition,
these models exhibit signatures of collective behavior: the state of single cells can be predicted from the state
of the rest of the network; the network, despite being sparse in a way similar to the structural connectome,
distributes its response globally when locally perturbed; the distribution over network states has multiple local
maxima, as in models of memory; and the parameters that describe the real network are close to a critical surface
in this family of models.
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I. INTRODUCTION

The ability of the brain to generate coherent thoughts,
percepts, memories, and actions depends on the coordinated
activity of large numbers of interacting neurons. It is an old
idea in the physics community that these collective behaviors
in neural networks should be describable in the language
of statistical mechanics [1–3]. For many years it was very
difficult to connect these ideas with experiment, but new op-
portunities are offered by the recent emergence of methods to
record, simultaneously, the electrical activity of large numbers
of neurons [4–9]. In particular, it has been suggested that
maximum entropy models [10] provide a path to construct a
statistical mechanics description of network activity directly
from real data [11], and this approach has been pursued in
the analysis of the vertebrate retina as it responds to natural
movies and other light conditions [11–14], the dynamics of
the hippocampus during exploration of real and virtual envi-
ronments [15–17], and the coding mechanism of spontaneous
spikes in cortical networks [18–20].

Maximum entropy models that match low order features of
the data, such as the mean activity of individual neurons and
the correlations between pairs, make quantitative predictions
about higher order structures in the network, and in some
cases these are in surprisingly detailed agreement with experi-
ment [14,17]. These models also illustrate the collective char-
acter of network activity. In particular, the state of individual
neurons often can be predicted with high accuracy from the
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state of the other neurons in the network, and the models that
are inferred from the data are close to critical surfaces in their
parameter space, which connects with other ideas about the
possible criticality of biological networks [13,21–23].

Thus far, almost all discussion about collective phenomena
in networks of neurons has been focused on the vertebrate
brain, with neurons that generate discrete, stereotyped action
potentials or spikes [24]. This discreteness suggests a nat-
ural mapping into an Ising model, which is at the start of
the maximum entropy analyses, although one could imagine
alternative approaches. What is not at all clear is whether
these approaches could capture the dynamics of networks
in which the neurons generate graded electrical responses.
An important example of this question is provided by the
nematode Caenorhabditis elegans, which does not have the
molecular machinery needed to generate conventional action
potentials [25].

The nervous system of C. elegans has just 302 neurons,
yet the worm can still exhibit complex neuronal functions:
locomotion, sensing, nonassociative and associative learning,
and sleep-wake cycles [26–29]. All of the neurons are “identi-
fied,” meaning that we can find the cell with a particular label
in every organism of the species, and in some cases we can
find analogous cells in nearby species [30]. In addition, this
is the only organism in which we know the entire pattern of
connections among the cells, usually known as the (structural)
connectome [31]. The small size of this nervous system,
together with its known connectivity, has always made it a
tempting target for theorizing, but relatively little was known
about the patterns of electrical activity in the system. This
has changed dramatically with the development of genetically
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FIG. 1. Schematics of data acquisition and processing. (a) Examples of the raw images acquired through the 10× (scale bar equals 100 μm)
and 40× (scale bar equals 10 μm) objectives. The body of the nematode is outlined with light green curves. As an example, we show for
one neuron that (b) the intensity of the nuclei-localized fluorescent protein tags—the calcium-sensitive GCaMP and the control fluorophore
RFP—are measured as functions of time. Photobleaching occurs on a longer timescale than the intracellular calcium dynamics, which allows us
to perform photobleaching correction by dividing the raw signal with its exponential fit, resulting in the signals of panel (c). (d) The normalized
ratio of the photobleaching-corrected intensity, f , is a proxy for the calcium concentration in each neuron nuclei (dark gray). As described
in the text, this signal is discretized using the denoised time derivative ḟ ; we use three states, marked as red, blue, and black after smoothing
(lightly offset for ease of visualization). (e) The time derivative ḟ , extracted using total-variation regularized differentiation.

encodable indicator molecules, whose fluorescence is mod-
ulated by changes in calcium concentration, a signal which
in turn follows electrical activity [32]. Combining these tools
with high resolution tracking microscopy opens the possibility
of recording the activity in the entire C. elegans nervous
system as the animal behaves freely [7–9].

In this paper we make an attempt at the analysis of experi-
ments in C. elegans using the maximum entropy methods that
have been so successful in other contexts. Experiments are
evolving constantly, and in particular we expect that recording
times will increase significantly in the near future. To give
ourselves the best chance of saying something meaningful, we
focus on subpopulations of up to fifty neurons, in immobilized
worms where signals are most reliable. We find that while
details differ, the same sorts of models, which match mean
activity and pairwise correlations, are successful in describing
this very different network. In particular, the models that
we learn from the data share topological similarity with the
known structural connectome, allow us to predict the activity
of individual cells from the state of the rest of the network,
and seem to be near a critical surface in their parameter space.

II. DATA ACQUISITION AND PROCESSING

Following methods described previously [7,8], nematodes
Caenorhabditis elegans were genetically engineered to ex-
press two fluorescent proteins in all of their neurons, with
tags that cause them to be localized to the nuclei of these
cells. One of these proteins, GCaMP6s, fluoresces in the green
with an intensity that depends on the surrounding calcium

concentration, which follows the electrical activity of the cell
and in many cases is the proximal signal for transmission
across the synapses to other cells [32]. The second protein,
RFP, fluoresces in the red and serves as a position indicator of
the nuclei as well as a control for changes in the visibility of
the nuclei during the course of the experiment. Parallel control
experiments were done on worms engineered to express GFP
and RFP, neither of which should be sensitive to electrical
activity. Although our ultimate goal is to understand neural
dynamics in the freely moving animal, as a first step we study
worms that are immobilized with polystyrene beads, to reduce
motion-induced artifacts [33].

As described in Ref. [7], the fluorescence is excited using
lasers. A spinning disk confocal microscope and a high-speed,
high-sensitivity Scientific CMOS (sCMOS) camera records
red- and green-channel fluorescent image of the head of the
worm at a rate of 6 brain volumes per second at a magnifica-
tion of 40×; a second imaging path records the position and
posture of the worm at a magnification of 10×, which are used
in the tracking of the neurons across different time frames. As
shown in Fig. 1(a), the raw data thus are essentially movies.
By using a custom machine-learning approach [8], we are able
to reduce the data to the green and red intensities for each
neuron i, Ig

i (t ) and Ir
i (t ). The data are described in more detail

in [34].
As indicated in Fig. 1(b), the fluorescence intensity under-

goes photobleaching, fortunately on a much longer timescale
than the calcium dynamics. Thus, we can extract the pho-
tobleaching effect by modeling the observed fluorescence

052418-2



SEARCHING FOR COLLECTIVE BEHAVIOR IN A SMALL … PHYSICAL REVIEW E 99, 052418 (2019)

intensity with an exponential decay:

Ig(t ) = Sg(t )(1 + ηg)(e−t/τg + Ag),

Ir(t ) = Sr(t )(1 + ηr )(e
−t/τr + Ar ). (1)

Here, Sg(t ) and Sr(t ) are the true signals corresponding to
the calcium concentration, ηg and ηr are stochastic variables
representing the noise due to the laser and the camera, τg and
τr are the characteristic time for photobleaching of the two
fluorophores, and Ag and Ar represent nonnegative offsets due
to a population of unbleachable fluorophores, or regeneration
of fluorescent states under continuous illumination.1

For each neuron, we fit the observed fluorescence inten-
sities to Eqs. (1) with Sg(t ) = S0

g and ηg = 0, and similarly
for Sr(t ). As shown by the black lines in Fig. 1(b), this
captures the slow photobleaching dynamics; we then divide
these out to recover normalized intensities in each channel
and each cell, Ī g

i (t ) and Ī r
i (t ). Finally, to reduce instrumental

and/or motion induced artifacts, we consider the ratio of
the normalized intensities as the signal for each neuron, i.e.,
fi(t ) = Ī g

i (t )/Ī r
i (t ) [Fig. 1(d)]. In this normalization scheme,

if the calcium concentration remains constant, then fi(t ) = 1.
Our goal is to write a model for the joint probability

distribution of activity in all of the cells in the network. One
approach to construct the distribution is to directly use the
continuous normalized fluorescence ratio fi(t ) as the micro-
scopic degrees of freedom. However, it is not clear how to
select the class of probability distributions for continuous vari-
ables, especially because the number of independent samples
is relatively small due to the large temporal correlation in
the data, and because the one-point and two-point marginal
distributions of the data are manifestly non-Gaussian. To stay
as close as possible to previous work, at least in this first try,
it makes sense to quantize the activity into discrete states.
One possibility is to discretize based on the magnitude of
the fluorescence ratio fi(t ). But this is problematic, since
even in “control” worms where the fluorescence signal should
not reflect electrical activity, variations in different cells are
correlated; this is illustrated in Fig. 2(a), where we see that
the distribution of mutual information between fi(t ) and f j (t ),
across all pairs (i, j), is almost the same in control and exper-
imental worms. A closer look at the raw signal suggests that
normalizing by the RFP intensity is not enough to correct for
occasional wobbles of the worm; this causes the distribution
of the fluorescence ratio to be nonstationary, and generates
spurious correlations. This suggests that (instantaneous) fluo-
rescence signals are not especially reliable, at least given the
current processing methods and the state of our experiments.
An alternative is to look at the derivatives of these signals,
which are still biologically meaningful as they capture the
net calcium ion flux of the cell, and by definition suffer from

1One may worry that a constant “background” fluorescence should
be subtracted from the raw signal, rather than contributing to a
divisive normalization. In our data, this background subtraction leads
to strongly nonstationary noise in the normalized intensity after
the photobleaching correction, in marked contrast to what we find
by treating the constant as a contribution from unbleachable or
regenerated fluorophores.
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FIG. 2. Comparison of pairwise mutual information distribu-
tion for the calcium-sensitive GCaMP worms and the GFP control
worms. Mutual information is estimated using binning and finite-
sample extrapolation methods as described in [35] for all pairs of
neurons. For the normalized fluorescence ratio, f , the distribution
of the mutual information, P(MI ( fi; f j )), exhibits little difference
between the calcium-sensitive GCaMP worm and the GFP control
worm [panel (a)]. In comparison, for the time derivative of the
normalized fluorescence ratio, ḟ , the distribution of the mutual
information, P(MI ( ḟi; ḟ j )), is peaked around zero for the GFP con-
trol worm, while the distribution is wide for the calcium-sensitive
GCaMP worm [panel (b)]. This observation suggests that the time
derivative of the fluorescence ratio, ḟi, is more informative than its
magnitude, fi.

the global noise only at a few instances; now there is very
little mutual information between ḟi(t ) and ḟ j (t ) in the control
worms, and certainly much less than in the experimental
worms, as seen in Fig. 2(b).

To give ourselves a bit more help in isolating a meaningful
signal, we denoise the time derivatives. The optimal Bayesian
reconstruction of the underlying time derivative signal u(t )
combines a description of noise in the raw fluorescence
signal f (t ) with some prior expectations about the signal u
itself. We approximate the noise in f as Gaussian and white,
which is consistent with what we see at high frequencies,
and we assume that the temporal variations in the derivative
are exponentially distributed and only weakly correlated in
time. Then maximum likelihood reconstruction is equivalent
to minimizing

F (u) = τ f

σ f

∫ T

0
dt |u̇| + 1

2σ 2
n τn

∫ T

0
dt |Au − f |2, (2)

where A is the antiderivative operator, the combination σ 2
n τn

is the spectral density of noise floor that we see in f at
high frequencies, while σ f is the total standard deviation of
the signal and τ f is the typical timescale of these variations;
for more on these reconstruction methods see Refs. [36,37].
We determine the one unknown parameter τ f by asking that,
after smoothing, the cumulative power spectrum of the residue
Au − f have the least root-mean-square difference from the
cumulative power spectrum of the extrapolated white noise.

As an example, Fig. 1(e) shows the smooth derivative of the
trace in Fig. 1(d). After the smooth derivative u is estimated,
we discretized the smooth estimate of the signal, Au, into three
states of “rise,” “fall,” and “flat,” depending on whether the
derivative u exceeds a constant multiple of σn/τ f , the expected
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FIG. 3. Discretization of the empirically observed fluorescence signals. (a) Heat map of the normalized fluorescence ratio between
photobleaching-corrected GCaMP fluorescence intensity and RFP fluorescence intensity, f , for each neuron as a function of time. (b) Heat
map of the neuronal activity after discretization based on time derivatives of f . Green corresponds to a state of “rising,” red “falling,” and white
“flat.”

standard deviation of the smooth derivative extracted from a
pure white noise. The constant is chosen to be σn/τ f = 5, such
that the GFP control worm has almost all pairwise mutual
information being zero after going through the same data
processing pipeline. An example of the raw fluorescence and
final discretized signals is shown in Fig. 3.

III. MAXIMUM ENTROPY MODEL

After preprocessing, the state of each neuron is described
by a Potts variable σi, and the state of the entire network
is {σi}. As in previous work on a wide range of biological
systems [11,14,17,38–40], we use a maximum entropy ap-
proach to generate relatively simple approximations to the
distribution of states, P({σi}), and then ask how accurate these
models are in making predictions about higher order structure
in the network activity.

The maximum entropy approach begins by choosing some
set of observables, Oμ({σi}), over the states of the system, and
we insist that any model we write down for P({σi}) matches
the expectation values for these observables that we find in the
data, ∑

{σi}
P({σi})Oμ({σi}) = 〈Oμ({σi})〉expt. (3)

Among the infinitely many distributions consistent with these
constraints, we choose the one that has the largest possible
entropy, and hence no structure beyond what is needed to
satisfy the constraints in Eq. (3). The formal solution to this
problem is

P({σi}) = 1

Z
exp

[
−

∑
μ

λμOμ({σi})

]
, (4)

where coupling constant λμ must be set to satisfy Eq. (3), and
the partition function Z as usual enforces normalization. Note
that although the maximum entropy model is mathematically
equivalent to the Boltzmann distribution, and hence can be
analyzed by well-developed tools in equilibrium statistical
mechanics, the model is a probability distribution for the
one-time statistics of the data and does not assume the system
to be in thermodynamic equilibrium, or that the underlying
dynamics obeys detailed balance (see below).

Following the original application of maximum entropy
methods to neural activity [11], we choose as observables
the mean activity of each cell, and the correlations between
pairs of cells. With neural activity described by three states,
“correlations” could mean a whole matrix or tensor of joint
probabilities for two cells to be in particular states. We will see
that models that match this tensor have too many parameters
to be inferred reliably from the data sets we have available,
and so we take a simpler view in which “correlation” mea-
sures the probability that two neurons are in the same state.
Equation (4) then becomes

P(σ ) = 1

Z
e−H(σ ), (5)

with the effective Hamiltonian

H(σ ) = −1

2

∑
i �= j

Ji jδσiσ j −
∑

i

p−1∑
r=1

hr
i δσir . (6)

The number of states p = 3, corresponding to “rise,” “fall,”
and “flat” as defined above. The parameters are the pairwise
interaction Ji j and the local fields hr

i , and these must be set to
match the experimental values of the correlations

ci j ≡ 〈
δσiσ j

〉 = 1

T

T∑
t=1

δσi (t )σ j (t ), (7)
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and the magnetizations

mr
i ≡ 〈

δσir
〉 = 1

T

T∑
t=1

δσi (t )r . (8)

Note that the local field for the “flat” state, hp
i , is set to zero by

convention. In addition, the interaction Ji j can be nonzero for
any pairs of neurons i and j regardless of the positions of the
neurons (both physical and in the structural connectome); i.e.,
the equivalent Potts model does not have a predefined spatial
structure.

The model parameters are learned using coordinate descent
and Markov chain Monte Carlo (MCMC) sampling [41–43].
In particular, we initialize all parameters at zero. For each
optimization step, we calculate the model prediction ci j and
mr

i by alternating between MCMC sampling with 104 MC
sweeps and histogram sampling to speed up the estimation.
Then, we choose a single parameter from the set of parameters
{Ji j, hr

i } to update, such that the increase of likelihood of the
data is maximized [41]. We repeat the observable estimation
and parameter update steps until the model reproduces the
constraints within the experimental errors, which we estimate
from variations across random halves of the data. This training
procedure leaves part of the interaction matrix Ji j zero, while
the model is able to reproduce the magnetization mr

i and the
pairwise correlation ci j within the experimental errors (Fig. 4).

Because of the large temporal correlation in the data, the
number of independent data in the recording is small com-
pared to the number of parameters. This makes us worry about
overfitting, which we test by randomly selecting 5/6 of the
data as a training set, inferring the maximum entropy model
from this training set, and then comparing the log likelihood
of both the training data and the test data with respect to the
maximum entropy model. No signs of overfitting are found for
subgroups of up to N = 50 neurons, as indicated by that fact
that the difference of the log likelihood is zero within error
bars (Fig. 5; details in Appendix A). This is not true if we try
to match the full tensor correlations (Appendix B), which is
why we restrict ourselves to the simpler model.

IV. DOES THE MODEL WORK?

The maximum entropy model has many appealing features,
not least its mathematical equivalence to statistical physics
problems for which we have some intuition. But this does
not mean that this model gives an accurate description of the
real network. Here we test several predictions of the model.
In practice we generate these predictions by running a long
Monte Carlo simulation of the model, and then treating the
samples in this simulation exactly as we do the real data.
We emphasize that, having matched the mean activity and
pairwise correlations, there are no free parameters, so that
everything that follows is a prediction and not a fit.

Since we use the correlations between pairs of neurons in
constructing our model, the first nontrivial test is to predict
correlations among triplets of neurons,

Ci jk =
p∑

r=1

〈(
δσir − 〈

δσir
〉)(

δσ j r − 〈
δσ j r

〉)(
δσkr − 〈

δσkr
〉)〉

. (9)
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FIG. 4. Model construction: Learning the maximum entropy
model from data. (a) Connected pairwise correlation matrix, Ci j ,
measured for a subgroup of 50 neurons. (b) The inferred interaction
matrix, Ji j . (c) Probability of neuron i in state r (green circles for
the “rise” state, red crosses for the “fall” state, and black dots for the
“flat” state), for the same group of 50 neurons as panel (a). (d) The
inferred local field, hr

i . (e) Model reproduces pairwise correlation
(unconnected) within variation throughout the experiment. Error bars
are extrapolated from bootstrapping random halves of the data. (f)
Same as panel (e), but for mean neuron activity mr

i .

More subtly, since we used only the probability of two neu-
rons being in the same state, we can try to predict the full
matrix of pairwise correlations,

Crs
i j ≡ 〈

δσirδσ j s
〉 − 〈

δσir
〉〈
δσ j s

〉
; (10)

note that the trace of this matrix is what we used in building
the model. Scatter plots of observed vs predicted values for
Ci jk and Crs

i j are shown in Figs. 6(a) and 6(c). In panels (b)
and (d) of that figure we pool the data, comparing the root-
mean-square differences between our predictions and mean
observations (model error) with errors in the measurements
themselves. Although not perfect, model errors are always
within 1.5× the measurement errors, over the full dynamic
range of our predictions.

Turning to more global properties of the system, we con-
sider the probability of k neurons being in the same state,
defined as

P(k) ≡
〈

p∑
r=1

1∑N
i=1 δσi r=k

〉
, (11)

where 1 is the indicator function. It is useful to compute this
distribution not just from the data, but also from synthetic data
in which we break correlations among neurons by shifting
each cell’s sequence of states by an independent random time.
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FIG. 5. (a) No signs of overfitting are observed for pairwise
maximum entropy models with up to N = 50 neurons, measured
by the difference of per-neuron log likelihood of the data under the
pairwise maximum entropy model for training sets consisting of 5/6
of the data and test sets. Clusters around N = 10, 15, 20, . . . , 50
represent randomly chosen subgroups of N neurons. Error bars are
the standard deviation across 10 random partitions of training and
test samples. The dashed lines show the expected per-neuron log-
likelihood difference and its standard deviation calculated through
perturbation methods (see Appendix A). (b) The difference between
log likelihood of the training data and of the test data is greater than 0
(the red line) within error bars for maximum entropy models on N =
10, 20, . . . , 50 neurons with pairwise correlation tensor constraint
(see Appendix B), which suggests that this model does not generalize
well.

We see in Fig. 7(a) that the real distribution is very different
from what we would see with independent neurons, so that in
particular the tails provide a signature of correlations. These
data agree very well with the distributions predicted by the
model.

Our model assigns an “energy” to every possible state
of the network [Eq. (6)], which sets the probability of that
state according to the Boltzmann distribution. Because our
samples are limited, we cannot test whether the energies of
individual states are correct, but we can ask whether the
distribution of these assigned energies across the real states
taken on by the network agree with what it predicted from
the model. Figure 7(b) compares these distributions, shown
cumulatively, and we see that there is very good overlap
between theory and experiment across ∼90% of the density,
with the data having a slightly fatter tail than predicted. The
good agreement extends over a range of �E ∼ 20 in energy,
corresponding to predicted probabilities that range over a
factor of exp(�E ) ∼ 108.

The maximum entropy model gives the probability for the
entire network to be in a given state, which means that we can
also compute the conditional probabilities for the state of one
neuron given the state of all the other neurons in the network.
Testing whether we get this right seems a very direct test of the
idea that activity in the network is collective. This conditional
probability can be written as

P(σi|{σ j �=i}) ∝ exp

[
p−1∑
r=1

gr
iδσir

]
, (12)
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FIG. 6. Model validation: The model predicts unconstrained
higher order correlations of the data. Panel (a) shows the comparison
between model prediction and data for the connected three-point
correlation Ci jk for a representative group of N = 50 neurons. All
19 800 possible triplets are plotted with the blue dot. Error bars are
generated by bootstrapping random halves of the data, and are shown
for 20 uniformly spaced random triplets in red. Panel (b) shows the
error of three-point function �Ci jk as a function of the connected
three-point function Ci jk , binned by its value predicted by the Ci jk

model. The red curve is the difference between data and model
prediction. The blue curve is the standard error from mean of Ci jk

over the course of the experiment, extracted by bootstrapping random
halves of the experiment. Panels (c) and (d) are the same as panels
(a) and (b), but for the connected two-point correlation tensor Crs

i j .

where the effective fields are combinations of the local field
hr

i and each cell’s interaction with the rest of the network:

gr
i = hr

i +
N∑

j �=i

Ji j
(
δσ j r − δσ j p

)
. (13)

Then the probabilities for the states of neuron i are set by

P(σi = r)

P(σi = p)
= egr

i , (14)

where the last state p is a reference. In Figs. 7(c) and 7(d) we
test these predictions. In practice we walk through the data,
and at each moment in time, for each cell, we compute effec-
tive fields. We then find all moments where the effective field
falls into a small bin, and compute the ratio of probabilities
for the states of the one cell, collecting the data as shown.
The agreement is excellent, except at extreme values of the
field that are sampled only very rarely in the data. We note
the agreement extends over a dynamic range of roughly two
decades in the probability ratios.2

2The claim that behaviors are collective requires a bit more than
predictability. It is possible that behaviors of individual cells are
predictable from the state of the rest of the network, but that most of
the predictive power comes from interaction with a single strongly
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FIG. 7. Model validation: Comparison between model prediction
and data for observables not constrained by the model. The neuron
network has N = 50 neurons. (a) Probability of k neurons being
in the same state. Blue dots are computed from the data. Yellow
dash-dotted line is the prediction from a model in which all neurons
are independent, generated by applying a random temporal cyclic
permutation to the activity of each neuron. Purple line is the predic-
tion of the pairwise maximum entropy model. (b) Tail distribution of
the energy for the data and the model. All error bars in this figure are
extrapolated from bootstrapping. (c), (d) Probability ratio of the state
of a single neuron as a function of the effective field gr

i , binned by
the value of the effective field. Error bars are the standard deviation
after binning.

V. WHAT DOES THE MODEL TEACH US?

A. Energy landscape

Maximum entropy models are equivalent to Boltzmann
distributions and thus define an energy landscape over the
states of the system, as shown schematically in Fig. 8(a). In
our case, as in other neural systems, the relevant models have
interactions with varying signs, allowing the development of
frustration and hence a landscape with multiple local minima.
These local minima are states of high probability, and serve
to divide the large space of possible states into basins. It is
natural to ask how many of these basins are supported in
subnetworks of different sizes.

To search for energy minima, we performed quenches from
initial conditions corresponding to the states observed in the
experiment, as described in [14]. Briefly, at each update, we
change the state of one neuron such that the decrease of
energy is maximized, and we terminate this procedure when
no single spin flip will decrease the energy; the states that
are attracted to local energy minimum α form a basin of
attraction 	α . As shown in Fig. 8(c), the number of energy
minima grows subexponentially as the number of neurons
increases. Note that this approach only gives us the states
that the animal has access to, rather than all metastable states,

coupled partner. We have checked that the mutual information
I (σi; gr

i ) is larger than the maximum of I (σi; σk ), in almost all cases.

whose number is approximated by greedy quench along a long
MCMC trajectory. Nonetheless, the probability of visiting a
basin is similar between the data and the model, shown by the
rank-frequency plot [Fig. 8(d)].

Whether the energy minima correspond to well-defined
collective states depends on the heights of the barriers be-
tween states. Here, we calculate the barrier height between
basins by single-spin-flip MCMC, initialized at one minimum
α and terminating when the state of the system belongs to
a different basin 	β ; the barrier between basins 	α and
	β is defined as the maximum energy along this trajectory.
This sampling procedure is repeated 1000 times for each
initial basin to compute the mean energy barrier. As shown in
Fig. 8(b), the distribution of barrier energies strongly overlaps
the distribution of the energy minima, which implies that the
minima are not well separated.

Further visualization of the topography of the energy land-
scape is performed by constructing metabasins, following
Ref. [44]. Here, we construct metabasins by grouping the
energy minima according to the barrier height; basins with
barrier height lower than a given energy threshold, �E , are
grouped into a single metabasin. This threshold can be varied:
at high enough threshold, the system effectively does not see
any local minima; at low threshold, the partition of the energy
landscape approaches the partition given by the original basins
of attraction. If the dynamics were just Brownian motion
on the landscape, states within the same metabasin would
transition into one another more rapidly than states belonging
to different metabasins. As shown in Fig. 8(e), there is a
transition at �E ≈ 1.2 from single to multiple metabasins for
all N = 10, 20, and 30. Since the dynamics of the real system
do not correspond to a simple walk on the energy landscape
(Appendix C and Fig. 12), we cannot conclude that this is
a true dynamical transition, but it does suggest that the state
space is organized in ways that are similar to what is seen in
systems with such transitions.

B. Criticality

Maximum entropy models define probability distributions
that are equivalent to equilibrium statistical physics problems.
As these systems become large, we know that the parameter
space separated into distinct phases by critical surfaces. In
several biological systems that have been analyzed, including
the neural networks in the salamander retina and mouse
hippocampus, the diversity of the human B cell repertoire,
and the spontaneous flocking of European starlings, there
are signs that these critical surfaces are not far from the
operating points of the real networks [13,23,39,40], although
the interpretation of this result remains controversial [21,22].
Here we ask simply whether the same pattern emerges in
C. elegans.

One natural slice through the parameter space of models
corresponds to changing the effective temperature of the sys-
tem, effectively scaling all terms in the log probability up and
down uniformly. Concretely, we replace H(σ ) → H(σ )/T
in Eq. (5). We monitor the heat capacity of the system, as
we would in thermodynamics; here the natural interpretation
is of the heat capacity as being proportional to the variance
of the log probability, so it measures the dynamic range of

052418-7



CHEN, RANDI, LEIFER, AND BIALEK PHYSICAL REVIEW E 99, 052418 (2019)

E

(a) (b)

(c) (d)

E

N = 10
N = 20
N = 30

(e)

basin

metabasin

barrier

local min.

probability density

rank

frequency

model

data

N

Nbasin Nmetabasin

E - E0

104

102

100

100

10-5

100 102 10-1 100 101

102

10010-5

100

20 40

0

5

10

15

20

25
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corresponding basin 	α , 	β . Colored in light blue is the metabasin formed at the given energy threshold, �E . (b) Typical distribution of the
value of the energy minima and the barriers of a maximum entropy model on N = 30 neurons. The global energy minimum, E0, is subtracted
from the energy, E . (c) The number of energy minima increases subexponentially as number of neurons included in the model increases.
Error bars are the standard deviation of 10 different subgroups of N neurons. (d) The rank-frequency plot for frequency of visiting each basin
matches well between data and model for a typical subgroup of 40 neurons. (e) The number of metabasins, grouped according to the energy
barrier, diverges when the energy threshold �E approaches 1 from above.

probabilities that can be represented by the network. Results
are shown in Fig. 9, for randomly chosen subsets of N =
10, 20, . . . , 50 neurons. A peak in heat capacity often signals
a critical point, and here we see that the maximum of the heat
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FIG. 9. The heat capacity is plotted against temperature for mod-
els with different number of neurons, N . The maximum of the heat
capacity approaches the operational temperature of the C. elegans
neural system T0 = 1 from below as N increases. Error bars are the
standard error across 10 random subgroups of N neurons.

capacity approaches the operational temperature T0 = 1 from
below as N becomes larger, suggesting that the full network is
near criticality.

C. Network topology

The worm C. elegans is special in part because it is
the only organism in which we know (essentially) the full
pattern of connectivity among neurons. Our models also have
a “connectome,” since only a small fraction of the possible
pairs of neurons are linked by a nonzero value of Ji j . The
current state of our experiments is such that we cannot identify
the individual neurons, and so we cannot check whether the
effective connectivity in our model is similar to the anatomical
connections. But we can ask statistical questions about the
connections, and we focus on two global properties of the
network: the clustering coefficient C, defined as the fraction
of actual links compared to all possible links connecting
the neighbors of a given neuron, averaged over all neurons,
and the characteristic path length L, defined as the average
shortest distance between any pair of neurons. As shown in
Fig. 10, the topology of the inferred networks for all three
worms that we investigated differs from random Erdős-Rényi
graphs with the same number of nodes (neurons) and links
(nonzero interactions). Moreover, as we increase the number
of neurons that we consider, the clustering coefficient C and
the characteristic path length L approach those found in the
structural connectome [45].
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D. Local perturbation leads to global response

How well can the sparsity of the inferred network explain
the observed globally distributed pairwise correlation? In
particular, we would like to examine the response of the net-
work to local perturbations. This test is of particular interest,
since its predictions can be examined experimentally, as local
perturbation of the neural network can be achieved through
optogenetic clamping or ablation of individual neurons.

The maximum entropy model can be perturbed through
both “clamping” and “ablation.” By definition, the only pos-
sible state in which we can clamp a single neuron is the all
“flat” state, σk = p. Following the maximum entropy model
[Eq. (6)], the probability distribution for the rest of the net-
work becomes

P̃k (σ) ≡ P(σ1, σ2, . . . , σN−1|σk = 3) = 1

Z̃k
e−H̃k (σ), (15)

where the effective Hamiltonian is

H̃k (σ) = −1

2

∑
i �= j �=k

Ji jδσiσ j −
∑
i �=k

Jikδσi p −
∑
i �=k

p−1∑
r=1

hr
i δσir .

(16)

On the other hand, ablation of neuron k means the removal
of neuron k from the network, which leads to an effective
Hamiltonian

Ĥk (σ) = −1

2

∑
i �= j �=k

Ji jδσiσ j −
∑
i �=k

p−1∑
r=1

hr
i δσir . (17)

We examine the effect of clamping and ablation by Monte
Carlo simulation of these modified models. We focus on the
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FIG. 11. Local perturbation of the neural network leads to global
response. (a), (b) For a typical group of N = 50 neurons, the inferred
interaction matrix J is sparse. Here, the neuron indexes i and j are
sorted based on mflat

i , as in Fig. 4. (c), (d) When neuron k is clamped
to a constant voltage, the Kullback-Leibler divergence (in bits) of the
marginal distribution of states for neuron i is distributed throughout
the network. (e), (f) When neuron k is ablated, the DKL is also
distributed throughout the network, but is smaller than in response
to clamping.

response of individual neurons i to perturbing neuron k, which
is summarized by change in the magnetizations, mr

i → m̃r
i .

But since these also represent the probabilities of finding the
neuron i in each of the states r = 1, . . . , p, we can measure
the change as a Kullback-Leibler divergence,

DKL =
p∑

r=1

mr
i log2

(
mr

i

m̃r
i

)
bits. (18)

As shown in Fig. 11, the response of the network to the
local perturbation is distributed throughout the network for
both clamping and ablation. However, clamping leads to much
larger DKLs, suggesting that the network is more sensitive
to clamping, and perhaps robust against (limited) ablation.
Interestingly, this result echoes the experimental observa-
tion that C. elegans locomotion is easily disturbed through
optogenetic manipulation of single neurons [46,47], while
ablation of single neurons has limited effect on the worms’
ability to perform different patterns of locomotion [48–50],
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although further experimental investigation is needed to test
our hypotheses on network response.

VI. DISCUSSION

Soon it should be possible to record the activity of the
entire nervous system of C. elegans as it engages in reasonably
natural behaviors. As these experiments evolve, we would like
to be in a position to ask questions about collective phenom-
ena in this small neural network, perhaps discovering aspects
of these phenomena that are shared with larger systems, or
even (one might hope) universal. We start modestly, guided
by the state of the data.

We have built maximum entropy models for groups of
up to N = 50 cells, matching the mean activity and pairwise
correlations in these subnetworks. Perhaps our most important
result is that these models work, providing successful quanti-
tative predictions for many higher order statistical structures
in the network activity. This parallels what has been seen in
systems where the neurons generate action potentials, but the
C. elegans network operates in a very different regime. The
success of pairwise models in this new context adds urgency
to the question of when and why these models should work,
and when we might expect them to fail.

Beyond the fact that the models make successful quanti-
tative predictions, we find other similarities with analyses of
vertebrate neural networks. The probability distributions that
we infer have multiple peaks, corresponding to a rough energy
landscape, and the parameters of these models appear close to
a critical surface. In addition, we have shown that the inferred
model is sparse, and has topological properties similar to that
of the structural connectome. Nevertheless, global response is
observed when the modeled network is perturbed locally, in a
way similar to experimental observations.

With the next generation of experiments, we hope to extend
our analysis in four ways. First, longer recording will allow
construction of meaningful models for larger groups of neu-
rons. If coupled with higher signal-to-noise ratios, it should
also be possible to make a more refined description of the
continuous signals relevant to C. elegans neurons, rather than
having to compress our description down to a small number
of discrete states.

This alternative description will be mathematically equiv-
alent to a Boltzmann distribution of soft spins, constrained by
the one- and two-point functions as well as a family of higher
order correlations specified by the data. Second, registration
and identification of the observed neurons will make it possi-
ble to compare the anatomical connections between neurons
with the pattern of interactions in our probabilistic models.
Being able to identify neurons across multiple worms will
also allow us to address the degree of reproducibility across
individuals, and perhaps extend the effective size of data sets
by averaging. Third, optogenetic tools will allow local per-
turbation of the neural network experimentally, which can be
compared directly with the theoretical predictions in Sec. V D
above. Finally, improvements in experimental methods will
enable constructions of maximum entropy models for freely
moving worms, with which we can map the relation between
the collective behavior identified in the neuronal activity and
the behavior of the animal.
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APPENDIX A: PERTURBATION METHODS
FOR OVERFITTING ANALYSIS

To test whether our maximum entropy model overfits, we
partition the samples into a set of training data and a set of test
data. The difference of the per-neuron log likelihood for the
training data and the test data is used as a metric of whether
the model overfits: if the two values for the log likelihood are
equal within error bars, then the model generalizes well to the
test data and does not overfit. Here, we outline a perturbation
analysis that uses the number of independent samples and the
number of parameters of the model to estimate the expectation
value of this log-likelihood difference.

Consider a Boltzmann distribution parametrized by
g = g1, g2, . . . , gm acting on observables φ1, φ2, . . . , φm.
The probability for the N spins taking the value σ =
σ1, σ2, . . . , σN is

P(σ |g) = 1

Z (g)
exp

(
−

m∑
i=1

giφi(σ )

)
, (A1)

where Z is the partition function. Then, the log likelihood of
a set of data with T samples under the Boltzmann distribution
parametrized by g is

L(σ 1, σ 2, . . . , σ T |g) = 1

T

T∑
t=1

ln P(σ t |g)

= − ln Z (g) −
m∑

i=1

gi

(
1

T

T∑
t=1

φt
i

)
. (A2)

Now, let us assume that a set of true underlying parameters,
{g∗}, exists for the system we study, which leads to a true ex-
pectation value of f ∗

i = fi(g∗). However, we are only given a
finite number of observations, σ 1, σ 2, . . . , σ T , from which we
construct a maximum entropy model, i.e., infer the parameters
{ĝ} by maximizing the likelihood of the data. Our hope is that
the difference between the true parameters and the inferred
parameters is small, in which case we can approximate the
inferred parameters using a linear approximation

gi = g∗
i + δgi, (A3)

where

δgi ≈
∑

j

∂gi

∂ f j
δ f j = −

∑
j

χ̃i jδ f j . (A4)
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Here, χ̃ is the inverse of the susceptibility matrix χi j =
−∂ fi/∂g j = 〈φiφ j〉 − 〈φi〉〈φ j〉, and δ f j is the difference be-
tween empirical mean and the true mean of φ j ,

δ f j = 1

T

T∑
t=1

φ j (σ
t ) − f ∗

j . (A5)

For convenience, we will use shorthand notation φi(σ t ) = φt
i

to indicate the value of the observable φi at time t .

Let the number of samples in the training data be T1, and
the number of samples in the test data be T2. For simplicity,
assume that all samples are independent. We maximize the
entropy of the model on only the training data to obtain
parameters {ĝ}, and we would like to know how well our
model generalizes to the test data. Thus, we quantify the
degree of overfitting by the difference of likelihood of the
training data and the test data:

Ltest − Ltrain =
[
− ln Z (ĝ) −

m∑
i=1

ĝi

(
1

T2

T2∑
t ′=1

φt ′
i

)]
−

[
− ln Z (ĝ) −

m∑
i=1

ĝi

(
1

T1

T1∑
t=1

φt
i

)]

=
m∑

i=1

⎡⎣g∗
i −

∑
j

χ̃i j

(
1

T1

T1∑
t=1

φt
j − f ∗

j

)⎤⎦(
1

T1

T1∑
t=1

φt
i − 1

T2

T2∑
t ′=1

φt ′
i

)
. (A6)

For simplicity of notation, let us write

α
(1)
i = 1

T1

T1∑
t=1

φt
i − f ∗

i , α
(2)
i = 1

T2

T2∑
t=1

φt
i − f ∗

i . (A7)

By the central limit theorem, α
(1)
i and α

(2)
i are Gaussian

variables. Terms that appear in the likelihood difference
[Eq. (A6)] have expectation values〈

α
(1)
i

〉 = 0,
〈
α

((1)
i α

(1)
j

〉 = 1

T1
χi j . (A8)

In addition, because we assume that the training data and the
test data are independent, the cross-covariance between the
training data and the test data is〈

α
((1)
i α

(2)
j

〉 = 0. (A9)

Combining all the above expressions, we obtain the expec-
tation value of the likelihood difference [Eq. (A6)],

〈Ltest − Ltrain〉 =
〈

m∑
i=1

⎛⎝g∗
i −

∑
j

χ̃i jα
(1)
j

⎞⎠(
α

(1)
i − α

(2)
i

)〉

= −
m∑

i=1

m∑
j=1

χ̃i j
〈
α

(1)
i α

(1)
j

〉
= − 1

T1

m∑
i=1

m∑
j=1

χ̃i jχi j

= − m

T1
. (A10)

Note that the difference of likelihood is only related to the
number of parameters in our model and the number of inde-
pendent samples in the training data.

Similarly, we can evaluate the variance of the likelihood
difference to be

〈(Ltest − Ltrain)2〉 =
∑
i,k

g∗
i g∗

kχik

(
1

T1
+ 1

T2

)

+ 1

T 2
1

(m2 + 2m) + m

T1T2
(A11)

using Wick’s theorem for multivariate Gaussian variables and
chain rules of partial derivatives.

In order to test whether perturbation theory can be ap-
plied to the maximum entropy model learned from the real
data, we estimate the number of independent samples using
Nind. sample ∼ T/τ , where T is the length of the experiment and
τ is the correlation time. The correlation time is extracted as
the decay exponent of the overlap function, defined to be

q(�t ) =
〈

1

N

N∑
i=1

δσi (t )σi (t+�t )

〉
t

. (A12)

In our experiment, the correlation time is τ = 4 ∼ 6 s. For
a typical recording of 8 minutes, the number of independent
samples is between 80 and 120.

In Fig. 5, we compute the perturbation results using the
number of nonzero parameters after the training and the num-
ber of independent samples estimated from the data. The
prediction is within the error bar from the data, which suggests
that the inferred coupling is within the perturbation regime of
the true underlying coupling. Note that the plotted difference
is computed for the per-neuron log likelihood, ltest − ltrain =
(Ltest − Ltrain)/N .

APPENDIX B: MAXIMUM ENTROPY MODEL WITH
THE PAIRWISE CORRELATION TENSOR CONSTRAINT

To fully describe the pairwise correlation between neurons
with p = 3 states, the equal-state pairwise correlation ci j =
〈δσiσ j 〉 is not enough; rather, we should constrain the pairwise
correlation tensor, defined as

crs
i j ≡ 〈

δσirδσ j s
〉
. (B1)

Here, we constrain the pairwise correlation tensor crs
i j together

with the local magnetization mr
i ≡ 〈δσir〉. Notice that for each

pair of neurons (i, j), the number of constraints are p2 + 2p =
15, but these constraints are related through normalization
requirements,

∑
r mr

i = 1 and
∑

s crs
i j = mr

i , which leads to
only 7 independent variables for each pair of neurons. Because
of this dependence, choosing which variables to constrain is
a problem of gauge fixing. Here, we choose the gauge where
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we constrain the local magnetization mr
i for states “rise” and

“fall,” and the pairwise correlations cr
i j ≡ crr

i j ; in this gauge the
parameters can be compared meaningfully to the equal-state
maximum entropy model above. The corresponding maxi-
mum entropy model has the form

P(σ ) ∝ exp

⎛⎝−1

2

∑
i �= j

3∑
r=1

Jr
i jδσirδσ j r −

∑
i

2∑
r=1

hr
i δσir

⎞⎠.

(B2)

Note that the equivalence between constraining the equal-
state correlation for each state and constraining the full pair-
wise correlation tensor only holds for the case of p = 3. For
p > 3 states, one needs to choose more constraints to fix the
gauge, and it is not obvious which variables to fix.

We train the maximum entropy model with a tensor con-
straint [Eq. (B2)] with the same procedure as the model with
equal-state correlation constraint, described in the main text.
The model is able to reproduce the constraints with a sparse
interaction tensor J . However, as shown in the bottom panel
of Fig. 5, the difference between ltrain, the per-neuron log
likelihood of the training data (randomly chosen 5/6 of all
data) and ltest, the per-neuron log likelihood of the test data,
is greater than zero within error bars. This indicates that the
maximum entropy model with tensor constraint overfits for all
N = 10, 20, . . . , 50.

APPENDIX C: MAXIMUM ENTROPY MODEL FAILS TO
PREDICT THE DYNAMICS OF THE NEURAL NETWORKS

AS EXPECTED

By construction, the maximum entropy model is a static
probability model of the observed neuronal activities. No con-
straint on the dynamics was imposed in building the model,
and infinitely many dynamical models can generate the ob-
served static distribution. The simplest possibility corresponds
to the dynamics being like the dynamics of Monte Carlo
itself, which is essentially Brownian motion on the energy
landscape. To test whether this equilibrium dynamics can
capture the real neural dynamics of C. elegans, we compare
the mean occupancy time of each basin, 〈τα〉, calculated using
the experimental data and using MCMC. The mean occupancy
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FIG. 12. Equilibrium dynamics of the inferred pairwise max-
imum entropy model fails to capture the neural dynamics of C.
elegans. The mean occupancy time of each basin of the energy
landscape, 〈τα〉, is plotted against the fraction of time the system
visits the basin, Pα . For 10 subgroups of N = 10 (in dots) and N =
20 (in asterisks) neurons, the empirical dynamics exhibits a weak
power-law relation between 〈τα〉 and Pα . The striped patterns are
artifacts due to finite sample size. In contrast, equilibrium dynamics
extracted from a Monte Carlo simulation following detailed balance
shows an inverse logarithmic relation between 〈τα〉 and Pα , which
can be explained by random walks on the energy landscape. Error
bars of the data are extracted from random halves of the data. Error
bars of the Monte Carlo simulation are calculated using correlation
time and standard deviation of the observables.

time is defined as the average time a trajectory spends in a
basin before escaping to another basin. For equilibrium dy-
namics, the mean occupancy time is determined by the height
of energy barriers according to the transition state theory, or
by considering random walks on the energy landscape, which
gives the relation τ ∼ −p2/2e ln(Pα ), where p = 3 is the
number of Potts states and Pα is the fraction of time the system
visits basin α. As shown in Fig. 12, the mean occupancy time
〈τMC

α 〉 found in the Monte Carlo simulation can be predicted
by this simple approximation. In contrast, the empirical neural
dynamics deviates from the equilibrium dynamics, as we
might have expected. The dependence between 〈τ data

α 〉 and

Pdata
α is weak; a linear fit gives 〈τ data

α 〉 ≈ Pdata
α

0.5±0.027
.
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