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Characteristics of phospholipid vesicles enhanced by adhesion on an annular region
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Phospholipid vesicle membranes are simple models used to study the mechanical properties of cell mem-
branes. The shapes of flaccid vesicles can exhibit very diverse forms. When researching very flaccid vesicles,
axisymmetrical vesicles with the membranes adhered to an annular region can also be observed. A phase diagram
of such shapes was studied for different values of the vesicle parameters, i.e., the adhesion constant, the vesicle
volume-to-membrane ratio, the volume ratio between the polar and the equatorial parts, and the equilibrium
difference between the membrane monolayers. The energies of the annular shapes with respect to the vesicle
parameters were closely examined and compared with the energies of the discocyte and stomatocyte shapes.
The requirements for the existence of such annular shapes were also given for adhesion-free vesicle membranes.
The results show that the adhesion between the lipid bilayers stabilizes the observed shapes, which belong
to the locally stable branch of the annular vesicles. The value obtained for the adhesion constant of the SOPC
membrane is 3 × 10−9 J/m2.
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I. INTRODUCTION

The mechanical attachment between cells is an essential
feature of many biological processes, e.g., wound healing,
immune response, and cell recognition [1]. Cell adhesion
is normally a consequence of certain proteins, which can
bind only through specific ligands to surfaces that have the
appropriate receptors. These ligands can be organized in
different patterns on the membrane [2]. If the ligands are
homogeneously doped in the membrane or if a prevailing
interaction is caused by the lipid molecules, the term nonspe-
cific adhesion is often introduced to describe the membrane
adhesion [3,4], like the adhesion between red blood cells in
the presence of dextran [5]. The adhesion between two cells or
lipid vesicles can induce the formation of doublets and affects
their conformation [5–7]. Adhesion can also group together a
number of cells or vesicles into a rouleau [5,8].

Vesicles are appropriate models for studying nonspecific
adhesion [3]. Since they are prepared in the laboratory, the
composition of the membrane and the surrounding solutions
can be accurately determined. The first step of vesicle forma-
tion is usually the depletion of the lipid bilayer from the lipid
stack, i.e., the transition from the adhered or bound state to
the free state. If attractive forces prevail over repulsive ones,
the system is in the bound state [9,10]. When vesicles are
formed, their shapes depend on the membrane’s area, volume,
and composition, as well as on additional external forces. For
small reduced volumes the shapes of the vesicles can be very
diverse. The reduced volume is the ratio between the volume
of the vesicle and the volume of the sphere with the same area
as the area of the vesicle membrane. The classes of vesicle
shapes were extensively studied and arranged into phase
diagrams of axisymmetrical [11,12] and nonaxisymmetrical
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shapes, e.g., starfish vesicles [13]. Theoretically, the shapes
can be determined by an energy minimization [11,14].

Any interactions between the vesicle and the surroundings
can change the shape of vesicle. Therefore the vesicles with
low reduced volume can be used to study adhesion. A variety
of different shapes of vesicles adhered to a flat substrate have
been determined for free [3] or tethered [15] vesicles. The
conditions needed for a vesicle to be bound to a substrate also
were discussed [9].

If the substrate is elastic, there are different wrapping states
depending on the adhesion and the bending stiffnesses [16].
Since the shape of the substrate can be changed, these systems
can behave in a similar way to the adhesion between cells.
The shapes of the vesicles adhered to transparent substrate
were assessed experimentally with a confocal microscope
[17]. Using modulating adhesion of charged giant vesicles to a
planar substrate enables researchers to perform reversible sets
of experiments on the same vesicle and to compare different
methods to determine adhesion constants [17].

For reduced volumes below 0.5, parts of the vesicle’s
membrane can be in contact, which gives us the possibility
to study adhesion between parts of the inner monolayer of
the same membrane. The shape of such a vesicle is gov-
erned only by adhesion and bending energies, without any
spatial or elastic restrictions because of the substrate. In the
axisymmetrical class of shapes, such shapes are the torocyte
and codocyte [18,19]. Although the inner solution of torocytes
and codocytes adapts a toroidal shape, the membrane of such
vesicles possesses a spherical topology, so there is one volume
and one membrane.

The adhered part of the membrane can divide the vesicle
volume into two parts. The membrane material can pass
through the adhered part, but the inner vesicle solution cannot
pass through it. There is still one membrane of the vesicle,
even though there are two separate volumes. In the class of
axisymmetric shapes, the adhered regions have to be annular,
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so such vesicles can be referred to as annular vesicles. We
can define three distinct parts of the vesicle. The polar part is
surrounded by the adhered part, and the latter is surrounded
by the equatorial part.

In this paper we analyze the axisymmetrical phospholipid
vesicles with adhesion on the annular part of the membrane.
In Sec. II a description of the experimental design is given.
The relevant energy terms for the determination of the annular
shapes are given in Sec. III, while the corresponding boundary
conditions are given in Appendix A. In Sec. IV we study
the influence of the vesicle parameters and adhesion charac-
teristics on the annular shapes that are mapped in the phase
diagram. We find that the both continuous and discontinuous
shape transitions are possible. Appendix B provides deriva-
tion of the differential equations and corresponding boundary
conditions for the different adhesion characteristics.

II. EXPERIMENT

Vesicles were prepared from SOPC (1-stearoyl-2-oleoyl-
sn-glycero-3-phosphocholine), obtained from Avanty Polar
Lipids, in 0.2 M glucose solution. Lipid was used as pur-
chased. To obtain a high fraction of vesicles with low reduced
volumes the spontaneous swelling method was used [18,20].
After a foggy cloud appeared above the Teflon disk, lipid was
gently scraped off the disk with a spatula to obtain vesicles
with prolonged shapes, i.e., shapes with low reduced volume
and large difference between the outer and inner membrane
monolayer. Just before observation a small amount of vesicle
solution was mixed with isomolar glucose solution in the ratio
1:2 v/v to induce a decrease of the equilibrium area difference
[18]. This decrease is more pronounced if the lipid stock
solution was freshly prepared from the powder. The sample
was placed into a sealed chamber and observed with a phase
contrast microscope.

Shape changes due to the decrease of the equilibrium areas
difference were observed approximately 15–30 min after mix-
ing the solutions. Annular-shaped vesicles are very rare and
were found accidentally. The frequency of annular vesicles is
comparable to the frequency of toroidal vesicles. Their shapes
were not significantly changed during the period of the obser-
vation for about 30 min, therefore the shapes should be stable.
Some shape variations were noticed, which can be associ-
ated with thermal fluctuations. The most pronounced mode
changes the width of the equatorial part as indicated in Fig. 1.

The area and the volume, as well as the volume ratio
between the vesicle parts, can be determined from the image
only if the vesicle is in an appropriate orientation, assuming
that the shape is axisymmetrical (Fig. 1). The center of the
line was chosen as the membrane position. The experimental
errors were determined from the differences of the estimated
values.

III. THEORY

The shapes of the vesicles are determined by the minimum
of the mechanical energy of the membrane [22]. This energy
is composed of the membrane elastic energy and the adhesion
energy that is a consequence of the interaction between the
bilayers in the adhered part.

FIG. 1. (a) Image of the phospholipid vesicle with the adhesion
on the annular region (annular vesicle) as observed using a phase-
contrast microscope. Assuming an axial symmetry, the reduced
volume of the observed vesicle is determined to be between 0.25
and 0.27, and the ratio between the polar and the equatorial parts
of the volumes is between 0.37 and 0.42 [21]. The arrows indicate
the direction of small fluctuations of the shape. (b) A representation
of the theoretically obtained shape of the annular vesicle with the
indicated longitudinal cross section and vesicle parts.

The membrane elastic energy can be well described by
the area-difference-elasticity (ADE) model [23], within which
the relevant energy terms for the description of the vesicle
behavior are the local

Eb = kc

2

∮
(C1 + C2 − C0)2 dA (1)

and the nonlocal

Er = kr

2Ah2
(�A − �A0)2 (2)

bending terms, where kc and kr are the local and the nonlocal
bending constants, C1 and C2 are the principal curvatures,
C0 is the spontaneous curvature of the membrane, A is the
membrane area, h is the distance between the neutral surfaces
of the outer and the inner monolayers, �A is the difference
between the areas of the neutral surfaces of the two monolay-
ers, and �A0 is the corresponding equilibrium area difference.
The principal curvatures are reciprocal to the principal radii
(Cj = 1/Rj , j = 1, 2). The difference between the areas of the
monolayers depends on the vesicle shape, whereas the differ-
ence between the equilibrium areas of the two layers is deter-
mined by the number of phospholipid molecules composing
the monolayers and by the area of phospholipid molecules at
equilibrium. In the presented analysis the ratio between the
bending constants is taken to be three, i.e., kr/kc = 3 [18,24].

The interaction between the bilayers can be, for nonspecific
adhesion, taken into account by adding to the elastic energy
the energy term [3]

Ew = −wAw, (3)

where w is the adhesion constant and Aw is the area of the
double bilayer vesicle region.

Since the vesicle is divided into three parts, i.e., the polar
part, the annular part, and the equatorial part, the vesicle mem-
brane also has to be divided into the corresponding regions to
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determine the annular shape. Using the boundary conditions,
which also include the membrane adhesion, at the regions,
the system of differential equations has to be solved for each
part [Appendix A, Eqs. (A14)]. The change of the meridian
curvature of the membrane at the rim of the adhered region is
proportional to the square root of the adhesion constant.

For the sake of simplicity all vesicle dimensions are given
relative to the radius of the sphere that has the same area as
the area of the vesicle membrane R0 = √

A/4π . Similarly,
the reduced volume, the reduced equilibrium area difference,
and the reduced contact area are defined as v = 3V/4πR3

0,
�a0 = �A0/8πhR0, and aw = Aw/4πR2

0, respectively. If the
adhesion energy is comparable to the local bending energy,
it is appropriate to measure the energy terms relative to the
bending energy of the sphere (8πkc). Accordingly, the re-
duced total energy is then given by e = (Eb + Er + Ew )/8πkc.
Additionally, the reduced adhesion constant (W ) and the
reduced pressure (Mi) are introduced with the equations (see
Appendix A)

W = R2
0

2kc
w, (4)

Mi = R3
0

6kc
�pi, (5)

where �pi is the difference between the pressure in the cor-
responding vesicle part and the pressure in the surroundings.
The index i denotes the different parts of the vesicle.

The introduction of the reduced adhesion constant is con-
venient for theoretical predictions. If it is large (W � 1),
the contribution of the bending energy is almost negligible,
and the vesicle shape attains a maximal adhered area at
given geometry constraints. The main features of these vesicle
shapes are high membrane curvatures at the rim of the adhered
region whereas the membrane is tensed. If the curvatures at
the rim are small, the adhesion energy is comparable to the
bending energy and the membrane tension is small.

The visible average area of the vesicle membrane is smaller
than the total one due to the thermal fluctuations [25,26].
The hidden area depends on the membrane tension. For low
membrane tensions (lower than 2 mN/m) the changes of the
hidden area do not exceed 2% of the membrane area [26],
which is within the range of our experimental errors. As
observed annular vesicles have low membrane curvatures, the
membrane tension is low. Therefore we consider the visible
membrane area as a constant. The relative volume of the
observed vesicle corresponds to the visible membrane area.

IV. RESULTS AND DISCUSSION

A. Phase diagram

The results presented are restricted to axisymmetrical vesi-
cles involving a contact area that exists only at low values
of the reduced volume. Their shapes depend on the reduced
volume (v) and on the reduced equilibrium difference between
the membrane monolayers (�a0) for a given ratio between the
bending constants (kr/kc) and a given adhesion constant (w)
[18]. For annular vesicles the phase space of the shapes has
one additional dimension, since the adhesion on the annular
region prevents the exchange of the solution between the

FIG. 2. The ρ-�a0 phase diagram of annular phospholipid vesi-
cles as a function of the volume ratios between the polar and equa-
torial parts (ρ) and the reduced equilibrium area difference (�a0).
The left-hand boundary lines represent the limiting shapes, where the
area of the adhered ring is infinitesimally small, and the right-hand
boundary lines represent the limiting shapes with the closed neck of
the polar region. The thin lines represent a discontinuous transition of
the polar part shape. The boundary lines are presented in panel (a) for
three reduced adhesion constants [W = 0.7 (dotted lines), 1.0 (full
lines), and 1.4 (dashed lines)] at the reduced volume v = 0.25 and
in panel (b) for three reduced volumes [v = 0.2 (dashed lines), 0.25
(full lines), and 0.3 (dotted lines)] at the reduced adhesion constant
W = 1. The small circles indicate the positions in the phase diagram
for the shapes in Fig. 3.

polar and the equatorial parts of the vesicle. Namely, the ratio
between the volumes of the polar and the equatorial regions
(ρ = V1/V3) remains constant. For this reason it is reasonable
to show a phase diagram of the annular vesicles, for a given
reduced volume and the reduced adhesion constant (W ), as a
function of the ratio ρ and the area difference �a0 (Fig. 2).

The shapes with the annular adhered region exist for the
parameters between the boundary lines shown in Fig. 2.
The left-hand boundary line represents the limiting shapes,
where the area of the adhered annular region is infinitesimally
small. For any smaller �a0 at a given ratio ρ there is neither
an adhered region nor a volume separation. The right-hand
boundary line represents the limiting shapes with the closed
neck of the polar region. When the neck of the polar region
is closed, the shape of the polar part is spherical. As a
sphere has, for a given volume, the smallest area, there is
the maximum membrane area for the adhered region. On
increasing �a0 beyond the right-hand boundary, the annular
shape remains almost the same, while the membrane tension
increases. As expected, because the limiting shapes are similar
at this boundary, the influence of the adhesion constant on the
�a0 values is not significant for this limit. The influence of the
adhesion constant on the vesicle shape is more important at
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FIG. 3. Cross sections of the axisymmetrical shapes of the an-
nular vesicles presented in groups for the reduced volumes 0.3
(left panel), 0.25 (middle panel), and 0.2 (right panel). The shapes
presented in the upper, middle, and lower rows correspond to the
volume ratio ρ, equal to 0.3, 0.4, and 0.5. The shapes presented in
the columns correspond to the reduced area difference �a0, equal
to 0.55, 0.75, and 0.95. The different line patterns correspond to the
relative adhesion constant, equal to 0.7 (dotted line), 1.0 (full line),
and 1.4 (dashed line).

lower �a0 values. The larger is the adhesion constant and the
smaller is the reduced volume of the vesicle, the lower are
the �a0 values at the left-hand limit, and therefore the part of
the phase diagram where annular shapes exists is wider
(Fig. 2).

In Fig. 3 the theoretical predicted shapes of annular vesi-
cles are presented in three groups for three different reduced
volumes. Different line patterns indicate different values of
the adhesion constants. The position of a shape in a group
indicates certain values of the parameters ρ and �a0 corre-
sponding to the point in the phase diagram. The values of
the parameters are chosen in such a way that the calculated
shapes are similar to the observed one [Fig. 1(a)]. It should
be noted that some shapes (for low values of W , ρ, and �a0,
and for large values of v) are missing since the corresponding
parameters of these shapes are outside the region of the phase
diagram where the annular shapes exist.

It is clear from Fig. 3 that on increasing �a0 the equatorial
part becomes wider, whereas the polar part becomes narrower
and eventually forms a neck. The formation of the neck
depends on the values of the constant W , the volume v, and
the ratio ρ. The shape transformations and the neck formation
can be continuous for larger values of the adhesion constant
if the reduced volume and volume ratio are large. For smaller
values of these parameters (w, v, and ρ) a discontinuous trans-
formation of the shape occurs, i.e., an abrupt neck formation.
For instance, for the reduced area difference �a0 equal to
0.95 and the ratio ρ equal to 0.4, the shapes for W = 1 and
1.4 are quite different. Namely, it is evident that the shape for
W = 1 has a polar region with a neck. The exact locations of
the discontinuous shape transformations are presented in the
phase diagrams (the thin lines in Fig. 2).

Inspecting the shapes in Fig. 3 it is clear that the variation
of the adhesion constant in some regions of the phase diagram
has no significant influence on the vesicle shape, while in the

FIG. 4. (a) Dependence of the reduced total energy (e) as a
function of the reduced equilibrium area difference (�a0) at W = 1,
v = 0.25, and ρ = 0.4 for the annular and polar shape groups (solid
and dashed lines). For class illustrations the shapes for �a0 = 0.75
are shown. The annular classes are the following: the shapes with
the closed neck of the polar part and with the equatorial part having
mirror symmetry (gray line), the shapes with the closed neck of the
polar part and with the equatorial part having broken symmetry (thin
solid line), and the shapes with the open neck of the polar part (thick
solid line). The thin and the thick dashed lines represent the disco-
cytes and the stomatocytes. (b) The energy e of the annular vesicle
with the open neck of the polar part at the transition for reduced
adhesion constants (W ) equal to 0.7, 1.0, and 1.4. (c) The energies e
for different branches of the shapes at large �a0. Bifurcation points
on annular branch are indicated: (SB) broken mirror symmetry of the
equatorial part and (NO) the neck opening of the polar part.

other parts, particularly near the shape transition, the change
in the adhesion has a crucial influence on the shape.

B. Energy

For given values of the parameters, the shapes of vesicles
with the adhered area belong to different shape classes. The
representative shapes of the classes are shown in Fig. 4. The
classes are divided into two major groups, i.e., the annular
and polar groups, depending on whether the vesicle volume is
divided by the adhered region or not. The polar shape group
contains stomatocyte and discocyte vesicles with the adhered
area between the polar regions of the membrane. The annular
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shape group contains (1) the shapes with the closed neck
of the polar part and with the equatorial part having mirror
symmetry, (2) the shapes with the closed neck of the polar part
and with the equatorial part having broken symmetry, and (3)
the shapes with the open neck of the polar part.

Energies for different branches of the shapes at large �a0

are shown in Fig. 4(c). It is clear that for �a0 larger than 1.795
the energy of the annular vesicles that possess a spherical
polar part and an equatorial part having mirror symmetry
is lower than that of the discocyte vesicle. However, on
decreasing �a0 within the annular shape group, two shape
transitions occur. First, the symmetry of the equatorial part
breaks (SB) and then the neck of the polar part opens (NO).
The line describing the energies of the annular vesicles with
the open neck ends where the adhered area becomes infinitely
small (left-hand boundary on the phase diagram, Fig. 2). To
see the transition between the shape classes the energies are
presented for all classes of shapes.

The energies of the discocyte or stomatocyte shapes
are lower than the annular shapes counterparts, except for
high values of the equilibrium area difference (�a0 > 1.75).
Therefore a spontaneous transition from stomatocyte to an-
nular shape at lower area differences is not possible. We can
speculate that the annular vesicle with the open neck of the
polar part can be formed in two steps. First, a vesicle with
a low reduced volume and a large �a0 is formed, where the
vesicle volume can be divided into two parts by the adhesion
of the membrane. Second, on decreasing �a0 the vesicle
remains on the annular branch of the shapes, even though the
neck opens. As the conditions for the formation of annular
vesicles, i.e., the low v concomitantly with large �a0, are so
extreme, such vesicles are not observed frequently.

C. Neck formation

A vesicle with or without a neck is the result of a competi-
tion between the bending and the adhesion energy. The forma-
tion of the neck increases the local bending energy [Eq. (1)]
as the curvatures are higher. However, the neck formation can
also decrease the nonlocal bending energy [Eq. (2)], if the area
difference of the shape (�A) is closer to the equilibrium area
difference (�A0). During the formation of the neck the polar
part becomes more spherical, meaning that more membrane
area can be in the adhered part. A larger adhered area implies
a lower adhesion energy [Eq. (3)]. Therefore, the adhesion
favors the neck formation. For larger values of the adhesion
constant, the shapes with a neck occur at lower values of the
reduced equilibrium area difference (�a0), as can be seen in
Fig. 4(b).

Due to the competition between the bending and adhesion
energies, for a relatively small range of parameters, more
than one solution to the system of differential equations
[Appendix A, Eq. (A14)] can exist, even in the class of annular
shapes with the open necks. The range of �a0 where more
than one solution can exist is larger when the adhesion is
smaller, since to overcome the bending energy more adhered
area is needed [Fig. 4(b)]. A stable shape is the shape with the
lowest energy. The energy dependence of the annular vesicles
on �a0 suggests that the different solutions should be quite
similar in shape. However, the area of the adhered membrane

aw
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FIG. 5. Dependence of the reduced area of the adhered part
(aw = Aw/A) on �a0 for six values of the reduced adhesion constant
(W ) 1.4, 1, 0.7, 0.497, 0.015, and 0 (dashed, full, dotted, dash-three
dots, dash-two dots, and dash-dot lines) at ρ = 0.4 and v = 0.25.
The thick lines represent the dependencies for the stable annular
vesicles, i.e., shapes with the minimum total energies.

changes significantly in the same range of �a0. It experiences
a sigmoidal dependence of the adhered area on �a0 at the
transition (Fig. 5). Considering only the solutions with the
smallest energy (indicated by the thick lines in Fig. 5), a
large shape difference or discontinuous transition is predicted.
The smaller is the adhesion constant, the larger is the differ-
ence in the adhered areas and the larger is the shape change
[27]. The width of the adhered ring is almost proportional to
the adhered area since the radius of the ring does not change
significantly (Fig. 3).

For smaller adhesion constants the discontinuous transition
occurs at larger �a0 and a larger �a0 is needed for the
existence of the annular vesicle shapes [Fig. 2(b)]. Thus, for
the small adhesion constant, only the shapes with a neck in
the polar part exist.

For certain combinations of the reduced volumes and
volume ratios there is a narrow range of adhesion constant,
where more than one solution for the annular shape exists;
however, the solution without neck is not stable. In these
cases, the annular shapes with a finite area of the adhered
region exist at the left-hand boundary (Fig. 5). For example, at
the reduced volume 0.25 and the volume ratio 0.4 this range
of the adhesion constant is between 0.015 and 0.497, while
the reduced adhered area (aw) of the shapes at this boundary
varies from zero to 0.046 and the corresponding width of the
adhered region varies from zero to 0.2R0. In all other cases,
the adhered region of the limiting shapes is infinitesimally thin
at the left-hand boundary.

Any opening of the adhered ring will induce the discontin-
uous shape transition to the stomatocyte shape, as they have
lower energies than annular shapes at given �a0 values. The
energy needed to open the adhered ring is determined by the
difference between the energy of the stable vesicle at given
�a0 and the energy of the vesicle at the same �a0 attaining
the limiting shape. Comparing this energy difference to the
thermal energy (kBT with kB the Boltzmann constant and T
the temperature) gives the minimal width of the adhered ring
needed to prevent the opening. The width of the ring depends
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FIG. 6. The dependence of the reduced contact (adhered) area
(aw) on the reduced adhesion constant (W ) at �a0 = 1.4, ρ = 0.4,
and v = 0.25. The contact area is finite (aw0) even at zero adhesion
constant. The full line is obtained by solving the system of differen-
tial equations. The dashed line represents the expression aw0 + κ

√
W

where κ is adjusted to fit the theoretically obtained values at small
adhesion constants.

on the reduced adhesion constant (W ). For the values of W
equal to 0, 0.7, 1, and 1.4 the corresponding minimal values of
aw are 0.00118, 0.00277, 0.00350, and 0.00574. This increase
in aw on W is not intuitive. The ring is wider, because at a
larger adhesion constant the opening occurs at lower �a0.
Namely, for any annular shape at given adhesion constant,
�a is smaller than �a0 and their difference is larger at larger
�a0. Consequently, a smaller increase of �a0 is needed at
larger �a0 for the same energy increase [Eq. (2)]. Therefore
a smaller increase of �a0 is reflected in a smaller adhered
area and a narrower ring (Fig. 5). The demand for the finite
width of the ring affects the phase diagram since the left-hand
boundary moves to larger �a0 values. This shift is small
since the range of �a0 values, where annular vesicles exist,
is reduced for less than 5% .

D. The behavior at small adhesion

The results in Fig. 5 clearly show that at small values
of �a0 the annular shapes exist only at appropriate values
of adhesion. In contrast, at large values of �a0 the annular
shapes exist even without adhesion, i.e., at zero values of W .
The dependence of the reduced contact area on the reduced
adhesion constant at large values of �a0 in Fig. 6 shows
that the contact area continuously increases with increasing
adhesion. The question to be posed is: what is the power
law for these dependencies? The answer is in the boundary
conditions that connect the meridian membrane curvature
with the adhesion constant [Appendix A, Eqs. (A17)–(A20)].
The Taylor series for the meridian curvatures of the two
adjacent membranes close to the arc length connecting point
at zero adhesion (s0) are

cm,i = cm,0 + dcm,i

ds
(s − s0) + · · · , (6)

where cm,0 is the meridian curvature of the membrane at
the border of the annular part. Equation (6) shows that in
a first approximation the difference in the membrane curva-

FIG. 7. (a) The reduced pressure differences between the inside
and the outside of the vesicle for the polar and equatorial parts (Mi)
as a function of the volume ratio for these parts (ρ) for three values
of the adhesion constant 0.7 (dotted lines), 1 (full lines), and 1.4
(dashed lines) at �a0 = 0.75 and v = 0.25. The curves denoted by 1
and 3 correspond to the polar and equatorial parts, respectively. The
thin dash-dot lines show the limit at which the area of the annular
part is zero. (b) The reduced pressure differences between the inside
and outside of the polar vesicle part (M1) as a function of reduced
equilibrium area difference (�a0) for four values of the adhesion
constant 0 (dash-dot line), 0.7 (dotted lines), 1 (full lines), and 1.4
(dashed lines) at ρ = 0.4 and v = 0.25.

ture is proportional to the membrane’s arc length, which is
proportional to the change in the adhered area. However, on
increasing the adhesion constant, the change in the membrane
curvatures of the two adjacent membranes is proportional to
the square root of this constant. Therefore, the increase in the
adhered membrane area (aw − aw0, where aw0 is the contact
area at zero adhesion constant) is approximately proportional
to the square root of the adhesion constant. The corresponding
square root function is also shown in Fig. 6.

E. Pressure

Generally, the total volume of the closed phospholipid
membrane is constant due to the osmotic conditions. Con-
sequently, the pressure inside the vesicle is not the same
as the pressure in the vesicle’s surroundings. Because the
adhesion on the annular region disables the solvent transport
between the polar and equatorial parts of the vesicle, the
volumes of both parts are fixed. Therefore, the pressures in
these parts are generally different, whereas the membrane
lateral tension varies over the vesicle regions [28], and the
pressure difference across the membrane (�pi) is uniform at
the individual vesicle part.

Figure 7(a) shows the reduced pressures of both parts of
vesicles as a function of the volume ratio of these parts (ρ) for
different values of the reduced adhesion constant where the
total volume of the vesicle is fixed. It is clear that the pressure
inside the polar part is large for small ratios ρ, and similarly,
the pressure inside the equatorial part is large for large ratios
ρ. Concomitantly, the changes in pressure inside the larger
parts are relatively small. In addition, a larger adhesion causes
larger pressures in both vesicle parts.
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The curvatures at the vesicle poles depend on the properties
of the whole vesicle. The change in the membrane curvature at
the rim of the polar part is dependent on the adhesion constant
[Appendix A, Eqs. (A17)–(A20)]. For a small vesicle part the
change in the curvature from its value between the pole to the
rim occurs at a small distance. Also in the case of a small
equatorial part the change of membrane curvature occurs at a
small distance. As the pressure is proportional to the derivative
of the membrane curvature, the pressure in the small vesicle
part is high.

The pressure differences across the membrane also depend
on �a0. In Fig. 7(b) the pressure difference at the polar part
is shown as a function of �a0 for the same values of the
adhesion constant as in Fig. 7(a). It is evident that the pressure
difference decreases with increasing �a0.

With increasing �a0 the pressure in the polar part de-
creases, since this part becomes more spherical. Namely, the
sphere has the smallest possible area at a given volume,
and the excess of the membrane area causes the pressure
to decrease in the polar region. Similarly, the excess of the
membrane area is also reflected in the pressure decrease in the
equatorial region (not shown).

The adhesion between the membrane parts tends to in-
crease the adhered area. Therefore, the adhesion increases the
range of parameter values, e.g., the interval of the equilibrium
area difference (Figs. 2 and 7) at which the annular shapes
exist. For the same reason, besides the interval of �a0 values
the adhesion also increases the interval of the ρ values. In
addition, for larger adhesion the tendency to diminish the
membrane areas of the polar and equatorial vesicle parts
causes an increase in the lateral tension and, consequently, the
pressure inside these parts (Fig. 7).

F. Relevance of the adhesion energy

The interaction of the membrane that is in contact with
another membrane is complex. It is often assumed to be
composed by the van der Waals attraction [(H/12π )[1/Z2 −
2/(Z + DB)2 + 1/(Z + 2DB)2], with DB being the bilayer
thickness, Z being the distance between the membranes,
and H being the Hamaker parameter, typically of the order
of magnitude 10−22 to 10−21 J], the hydration repulsion
(BH e−Z/ZH with BH = 0.2 J/m and ZH = 0.3 nm), and the
effective steric interaction resulting from the thermal un-
dulations [0.42(kBT )2/kcZ2] [9,29]. The listed expressions
describe the interactions for flat tensionless membranes. The
corresponding interaction potential between the membranes
[V (Z )] is distance dependent.

To find if the shape of a vesicle adhered to a firm flat
surface significantly depends on the parameters of the inter-
action potential, we compare the predictions of the square
well potential with the predictions of the simple energy model
[expression (3)]. The square well potential V (Z ) is equal to ∞
for Z < 0, to −w̃ for 0 � Z � Z0, and to 0 for Z0 < Z where
w̃ is the potential depth and Z0 is the interaction distance
[9,30]. In this case the corresponding energy term is written
by the expression

Ew̃ = −w̃Aw̃, (7)

FIG. 8. The effect of the normalized interaction distance (Z0/R0)
of the square well potential on the shape of the vesicle for v = 0.9
and W̃ = R2

0w̃/2kc = 1. RC is the radius of vesicle footprint on
the surface, and RB is the radius of the vesicle membrane at the
interaction distance of the square well. Two representative vesicles
shapes that correspond to Z0/R0 = 0 (dashed line) and 0.1 (full line)
are also shown. The dotted line shows the reference plane of the
surface. The inset shows the enlarged part of the vesicle shapes.

where Aw̃ is the membrane area located at the distances
smaller than Z0. The system of differential equations has to
be solved in order to obtain the vesicle shape for the case,
where the corresponding boundary conditions at Z0 have to be
taken into consideration (Appendix B).

Figure 8 shows how the radius of the vesicle footprint
on the surface [RC = R(0)] and the radius of the vesicle
membrane at the interaction distance of the square well [RB =
R(Z0)] approach to the contact radius of the simple model (RS)
[expression (3)] for w = w̃. The corresponding differences
(RS − RC and RB − RS) are proportional to Z0.5

0 .
The differences between the shapes predicted by the square

well model and the simple model can be noticed in the vicinity
of the boundary of the adhered membrane as seen in the
enlarged section in Fig. 8. Since the interaction distance Z0

is in the range of nanometers and the typical size of vesicle is
several micrometers (Z0/R0 ∼ 10−3), the differences between
shapes, predicted by the models, are small. As the scope of
this work is to determine a global shape of the vesicle, a
simple model of contact adhesion can be used. It has to be
emphasized that the value of the adhesion constant used in
the simple model should be considered as an effective one,
which corresponds to the minimum of the interaction potential
[V (Z )].

G. The estimation of the adhesion constant

The most noticeable shape change that depends on the
adhesion constant is the transition between the shapes with
and without a neck. Moreover, for small or no adhesion the
annular shapes exist only at large equilibrium area differences,
where the shapes are characterized by the polar part having
a neck. As the observed shape had no neck, it follows that
the reduced adhesion constant cannot be smaller than 0.5
(Fig. 5). A more realistic estimation obtained by comparing
the observed and calculated shapes is close to 1. This leads to
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the conclusion that effective adhesion constant at the room
temperature should be close to 3 × 10−9 J/m2, considering
the values for the radius of the vesicle R0 = 8.2 μm and
the elastic bending constant kc = 1 × 10−19 J. The obtained
value of effective adhesion constant should be considered as
an estimation, as the annular vesicles are so rarely observed
that meaningful statistics cannot been made.

Similar values for the reduced adhesion constants (W =
0.4–3.5) were obtained to form flat-contact doublets [5]. It
is to be noted that the minimum adhesion needed for a
stable annular shape without neck is close to the minimum
adhesion needed for the doublet formation. Also, it is found
that DOPC/DOPG vesicles start to adhere to the flat substrate
at adhesion constant 0.8 × 10−9 J/m2 [17].

A competition between the attraction and repulsion forces
determines the transition between the bound and unbound
state of lipid membranes in a lipid stack. Slightly different
values of the parameters in the expressions for membrane
interactions lead to significantly different estimations for the
temperature at which an unbinding occurs. The unbinding
of one lipid bilayer from the lipid stack is the first step of
a vesicle formation. At room temperature the formation of
SOPC vesicles by the spontaneous swelling procedure takes
several days. If the vesicles are prepared at higher temper-
ature, the formation of vesicles occurs within hours. This
indicates that the relevant unbinding temperature is close to
the room temperature. On the other hand, theoretical studies
show that the repulsion caused by the thermal fluctuations
cannot be simply superposed to van der Walls and hydration
interactions and that the membrane tension can affect the
unbinding temperature [9,29]. The membrane of the annular
vesicle is not completely flat and tensionless, which can lead
to an energetically favorable contact between the parts of the
membrane at the room temperature. This feature is described
by the contact energy term [Eq. (3)] of the simple model,
where the model parameter (w) is the effective adhesion.

V. CONCLUSION

A class of low-volume vesicles shapes where the mem-
brane is in contact with the annular region that divides the
vesicle volume into polar and equatorial parts was observed
and theoretically determined. The shape of the annular vesicle
depends on four parameters: the ratio between the volumes
of the vesicle parts, the ratio between vesicle volume and its
membrane area, the equilibrium difference between the areas
of the membrane monolayers, and the adhesion constant. An-
nular shapes exist only for vesicles at relatively low reduced
volumes and limited values of the equilibrium area difference.
Therefore the volume division can be eliminated by a small
change in the reduced volume or by a small change in the
equilibrium area difference even at the unchanged adhesion
constant.

Three classes of annular vesicle shapes are predicted by
theory: the shapes with the closed neck of the polar part
and with the equatorial part with (1) or without (2) mirror
symmetry, and the shapes with the open neck of the polar part
(3). The observed vesicle corresponds to the last of these, i.e.,
the shape class with the lowest energy.

FIG. 9. Schematic presentation of an axisymmetric vesicle in
cylindrical coordinates (Z and R) with a double bilayer region. The
slope of the curvature is denoted by ψ . The polar, double bilayer, and
equatorial region are denoted by numerals (1, 2, and 3), whereas the
boundaries of these regions are denoted by letters (A, B, C, D, E, and
F). The shape of the membrane is given by R and Z , the values of
which are obtained by solving Eqs. (A14).

We propose a possible path for the shape development of
the observed annular vesicle shape: division of the vesicle
volume by the adhesion occurs at large �a0, and then on
decreasing �a0 the vesicle remains on the annular branch of
the shapes. Adhesion between the membrane parts increases
the range of parameter values where the annular shapes exist.
For a small adhesion between the membrane, the annular
shape can exist only for larger equilibrium area differences,
where the annular shapes are characterized by the polar part
having a neck. As the observed shape had no neck, it fol-
lows that the estimated reduced adhesion constant is close
to 1. To obtain the adhesion constant for SOPC membrane,
recalculation to the dimensional adhesion constant (w) is nec-
essary (w = 2kcW/R2

0) since the value of w depends only on
the membrane compositions, which means that the effective
adhesion constant at room temperature should be close to
3 × 10−9 J/m2. For this adhesion constant the predicted and
the observed shapes are in good agreement.
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APPENDIX A: DETERMINATION OF VESICLE SHAPES

We present a derivation of the system of differential
equations and of the corresponding boundary conditions for
the membrane shape of vesicles stuck in an annular region
(Fig. 9). The equilibrium shapes are obtained by minimizing
the mechanical energy under given conditions. It is convenient
that all the vesicle dimensions are given relative to the radius
of the sphere with the same surface area (A), R0 = √

A/4π ,
and that the energy terms are given relative to the bending en-
ergy of the sphere (8πkc). The equilibrium states of the vesicle
are the extremes of the mechanical energy (described in Sec.
III, Theory) for a given volume of the polar and equatorial
parts and the total membrane area. Therefore, the extremes
of the mechanical energy that is composed of the mem-
brane’s local and nonlocal bending terms and the adhesion
energy (Eb, Er , Ew) correspond to the stationary points of the
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functional [31]

g = eb + er + ew −
∑

Mivi + La, (A1)

where

eb = 1

4

∮
(c1 + c2 − c0)2 da (A2)

is the reduced local bending energy (eb = Eb/8πkc),

er = kr

kc
(�a − �a0)2 (A3)

is the reduced nonlocal bending energy (er = Er/8πkc),

ew = −Waw (A4)

is the reduced adhesion energy (ew = Ew/8πkc),

vi = 3Vi

4πR3
0

(A5)

is the reduced vesicle volume of the polar or equatorial part,
and

a = A

4πR2
0

= 1 (A6)

is the reduced membrane area. The total vesicle reduced
volume is given by v = �vi. The reduced difference between
the membrane monolayers (�a), the reduced area of the
annular region (aw), the reduced adhesion constant (W ), and
the reduced principal and spontaneous curvatures (c1, c2, and
c0) are defined with

�a = �A

8πhR0
, aw = Aw

A
, W = wR2

0

2kc
,

c1 = C1R0, c2 = C2R0, c0 = C0R0, (A7)

where the difference between the areas of the monolayers is
given by the expression �A = h

∮
(C1 + C2) dA, with h being

the distance between the membrane monolayers, Aw is the
adhered area, and w is the adhesion constant. The constraints
in volumes and the area are incorporated into the energy
minimization by introducing the Lagrange multipliers Mi =
R3

0�pi/6kc and L = R2
0λ/2kc, where �pi is the difference

between the pressure in the vesicle particular part and the
pressure in the vesicle surroundings, and λ describes how the
energy responds to a change in the area. The lateral tension
can be determined by the Lagrange multiplier fixing the whole
vesicle area (L) and the membrane curvatures [28].

In the stationary point, the variation of the functional g with
respect to the reduced equilibrium area difference (�a0) and
to the arbitrary shape deviation is zero. The variation with
respect to �a0 leads to the expression

N = −2
kr

kc
(�a − �a0), (A8)

where the parameter N represents the difference between the
lateral tensions of the outer and inner monolayers.

The observed vesicles are axisymmetric; therefore, we can
express the variation of the functional with respect to the
shape in terms of an integral over the axisymmetric contour.
An axisymmetric surface can be parameterized by the angle
between the normal to the contour and the symmetry axis

of the shape [ψ (s)] (Fig. 9), where s is the arc length along
the contour in reduced units. The coordinates r(s) and z(s),
which represent the distance between the symmetry axis and a
point on the contour of the vesicle membrane and the position
along the symmetry axis in reduced units, respectively, depend
on ψ through ṙ = cos ψ and ż = − sin ψ , where the dot
denotes the derivation with respect to s. The reduced principal
curvatures—the meridian and the parallel curvatures—are
expressed by cm = ψ̇ and cp = sin ψ/r.

Six points on the contour with respect to the region bound-
aries are introduced: point A is the starting point, which
lies at the pole of the vesicle; points B, C, D, and E are
at the rims of the annular region that pertains to the double
bilayer, but at two different radii and arc lengths; and point
F is the ending point, which lies at the opposite pole of the
vesicle (Fig. 9). Using integral expressions for the reduced
volume, the reduced area and the reduced difference between
the monolayer areas,

v = 3

4

∫ B

A
r2 sin ψ ds + 3

4

∫ D

C
r2 sin ψ ds + 3

4

∫ F

E
r2 sin ψ ds,

(A9)

a = 1

2

∫ B

A
r ds +

∫ C

B
r ds + 1

2

∫ D

C
r ds + 1

2

∫ F

E
r ds,

(A10)

and

�a = 1

4

∫ B

A
r

(
sin ψ

r
− ψ̇

)
ds + 1

4

∫ D

C
r

(
sin ψ

r
− ψ̇

)
ds

+ 1

4

∫ F

E
r

(
sin ψ

r
− ψ̇

)
ds, (A11)

we can express the variation of the functional g with respect
to the shape as

δg = δ

∫ B

A
L1 ds + δ

∫ C

B
L2 ds + δ

∫ D

C
L3 ds

+ δ

∫ E

D
L2 ds + δ

∫ F

E
L1 ds, (A12)

where the Lagrangian functions for the regions (Li, i = 1, 2,
and 3) can be written as

Li = r

8

(
sinψ

r
+ ψ̇

)2

− |i − 2|N sinψ + ψ̇r

4

− (1 − |i − 2|)W

2

r

2
− |i − 2|Mi

3r2 sin ψ

4
+ L

r

2

+ 
(ṙ − cos ψ ) − Fi(ż + sin ψ ). (A13)

The additional Lagrange multipliers 
(s) and Fi(s) have to
be introduced because the variables r(s), z(s) and ψ (s) are
interdependent. The index i is 1 when referring to the vesicle
polar regions; it is 2 when referring to the vesicle double
bilayer region, where parts of the membrane are in contact;
and it is 3 when referring to the equatorial region of the
vesicle. Since the double bilayer is composed of the two
oppositely oriented bilayers belonging to the same membrane,
the relative tension of one bilayer compensates for the relative
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tension of the other and the pressure is the same at both sides
of the double bilayer [Eq. (A13)].

The variation of the functional with respect to shape is
zero (δg = 0) if the Euler-Lagrange equations [∂Li/∂x j =
d
ds (∂Li/∂ ẋ j ) with x j the component of the vector of variables
x = (r, ψ, z, 
, Fi )] and the boundary conditions are fulfilled.
By performing the variation we obtain the following system
of differential equations:


̇ = 1

8

(
ψ̇2 − sin2 ψ

r2

)
− |i − 2|3Mir sin ψ

2

+ L − (1 − |i − 2|)W/2

2
− Nψ̇

4
,

ψ̈r = ṙ sin ψ

r
− ψ̇ ṙ − 3|i − 2|Mir

2 cos ψ − 4Fi cos ψ

+ 4
 sin ψ,

Ḟi = 0,

ṙ = cos ψ,

ż = − sin ψ. (A14)

The boundary conditions obtained by the minimization proce-
dure are described using the equation

−H1δs
∣∣B
A−H2δs

∣∣C
B−H3δs

∣∣D
C−H2δs

∣∣E
D−H1δs

∣∣F
E+

∑
j

∂L1

∂ ẋ j
δx j

∣∣B
A

+
∑

j

∂L2

∂ ẋ j
δx j

∣∣C
B+

∑
j

∂L3

∂ ẋ j
δx j

∣∣D
C+

∑
j

∂L2

∂ ẋ j
δx j

∣∣E
D

+
∑

j

∂L1

∂ ẋ j
δx j

∣∣F
E= 0, (A15)

where

Hi = −Li + ẋ · ∂Li

∂x
(A16)

are the Hamiltonian functions for the corresponding regions.
The Hamiltonian functions are constant and equal to zero
because the Lagrange functions [Eq. (A13)] do not depend
on s and the arc lengths of the regions are not fixed.

The Euler-Langrange equations show that Fi (i = 1, 2, and
3) are constants. Moreover, the multiplicators F1 and F2 equal
zero, because the lengths of the corresponding regions along
the symmetry axis are not fixed.

The first five terms in Eq. (A15) lead to the relations
between the curvatures at the boundaries B, C, D, and E by
taking into consideration the continuity of the Hamiltonian
functions [Eq. (A16)]. Then the corresponding boundary con-
ditions can be written in the following forms [8]:

cm|B− = cm|B+ − cm|E−
2

−
√

2W , (A17)

cm|C+ = cm|C− − cm|D+
2

−
√

2W , (A18)

cm|D− = cm|D+ − cm|C−
2

−
√

2W , (A19)

cm|E+ = cm|E− − cm|B+
2

−
√

2W , (A20)

FIG. 10. Schematic presentation of an axisymmetric vesicle
stuck to the plane because of the square well potential with Z0 being
the interaction distance. The free, interaction, and stuck regions are
denoted by numerals (1, 2, and 3), whereas the boundaries of these
regions are denoted by letters (A, B, C, and D).

where cm|B+, cm|C−, cm|D+, cm|E−, cm|B−, cm|E+, cm|C+ and
cm|D− are curvatures along the meridians at the rims of
the double bilayer region and at the rims of the polar and
equatorial regions with this region, respectively.

Since the variations δr, δψ , and δz at the boundaries of the
adhesion region are independent, Eq. (A15) leads to


|C− − 
|D+ = 
|C+ − 
|D−, (A21)


|E− − 
|B+ = 
|E+ − 
|B−, (A22)

where 
|B−, 
|C−, 
|C+, 
|D−, 
|E−, and 
|E+ are the
transfer shear forces in a radial direction. Other boundary
conditions in expression (A15) determine the smoothness and
continuity of the membrane.

The system of differential equations [Eqs. (A14)] is solved
using the shooting method. The values for Mi, L, F3, the initial
radii at points B and C, and the initial meridian curvature at
the two vesicle poles and the points B and C (10 parameters)
are tuned such that the boundary conditions are fulfilled and
the vesicle volumes, the total membrane area and equilibrium
area difference assume their given values.

APPENDIX B: THE SQUARE WELL INTERACTION FOR
THE CONFORMATION OF PHOSPHOLIPID VESICLES

By minimizing the mechanical energy, the equilibrium
shapes for the vesicle membrane considering the square well
interaction can be obtained (Fig. 10). Using the dimensionless
units (Appendix A), for a given vesicle volume and the
membrane area the extremes of the mechanical energy in this
case correspond to the stationary points of the functional

g̃ = eb + ew̃ − Mv + La. (B1)

The membrane interaction energy in relative units is given
by ew̃ = Ew̃/8πkc where Ew̃ is defined in the main text
[Eq. (7)]. The reduced local bending energy, the reduced
vesicle volume, the reduced membrane area, and the Lagrange
multipliers (eb, v, a, M, and L) are defined in Appendix A.
Using the parametrization of the contour (Appendix A) four
points on the contour with respect to the region boundaries
are introduced: point A is the starting point, which lies at the
pole of the vesicle; point B is at the rim between the free and
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interaction region; point C is at the rim between the interaction
and stuck region; and point D is the ending point, which lies
at the opposite pole of the vesicle (Fig. 10). Using integral
expressions for v and a (Appendix A), we can express the
variation of the functional g̃ with respect to the shape as

δg̃ = δ

∫ B

A
L1 ds + δ

∫ C

B
L2 ds + δ

∫ D

C
L3 ds, (B2)

where the Lagrangian functions (considering the interrelations
between the parametrization variables) can be written as

Li = r

8

(
sinψ

r
+ ψ̇

)2

− (1.5 − |i − 2.5|)W̃ r

2
− M

3r2 sinψ

4

+ L
r

2
+ 
(ṙ − cosψ ) − Fi(ż + sin ψ ). (B3)

The index i is 1, 2, and 3 when referring to the free, interac-
tion, and stuck region, respectively.

The variation of δg̃ leads to the system of the differential
equations, which is similar to Eqs. (A14). In the system the
parameter W/2 has to be replaced by W̃ since in the variation
of functional g [Eq. (A12)] the adhesion interaction is taken
into account twice. The boundary conditions obtained by the

minimization are

− H1δs
∣∣B
A−H2δs

∣∣C
B−H3δs

∣∣D
C+

∑
j

∂L1

∂ ẋ j
δx j

∣∣B
A+

∑
j

∂L2

∂ ẋ j
δx j

∣∣C
B

+
∑

j

∂L3

∂ ẋ j
δx j

∣∣D
C= 0, (B4)

where x is the vector of variables and Hi are the Hamiltonian
functions for the corresponding regions. The multiplicator F1

is zero because the distance of the pole A from the reference
plane is not fixed, whereas the value of F2 is generally a
nonzero constant because the interaction distance is fixed. Due
to the same reasons as in Appendix A, the Hamiltonian func-
tions H1 and H2 are equal to zero. Consequently, expression
(B4) leads to the boundary condition at point C:

2F2 sin ψ |C + W̃ r|C = 0, (B5)

which determines the interrelation between the adhesion and
the vesicle parameters. Large adhesion causes a large force in
the axial direction (F2). Additionally, expression (B4) deter-
mines the continuity and smoothness of the membrane, and
the continuity of the membrane curvatures and of the transfer
shear forces in a radial direction.
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