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Understanding the magnitude and structure of interneuronal correlations and their relationship to synaptic
connectivity structure is an important and difficult problem in computational neuroscience. Early studies
show that neuronal network models with excitatory-inhibitory balance naturally create very weak spike train
correlations, defining the “asynchronous state.” Later work showed that, under some connectivity structures,
balanced networks can produce larger correlations between some neuron pairs, even when the average correlation
is very small. All of these previous studies assume that the local network receives feedforward synaptic input
from a population of uncorrelated spike trains. We show that when spike trains providing feedforward input
are correlated, the downstream recurrent network produces much larger correlations. We provide an in-depth
analysis of the resulting “correlated state” in balanced networks and show that, unlike the asynchronous state, it
produces a tight excitatory-inhibitory balance consistent with in vivo cortical recordings.
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I. INTRODUCTION

Correlations between the spiking activity of cortical neu-
rons have important consequences for neural dynamics and
coding [1–3]. A quantitative understanding of how spike train
correlations are generated and shaped by the connectivity
structure of neural circuits is made difficult by the noisy
and nonlinear dynamics of recurrent neuronal network mod-
els [4–7]. Linear response and related techniques have been
developed to overcome some of these difficulties [7–15],
but their application to networks of integrate-and-fire neuron
models typically relies on a diffusion approximation that re-
quires an assumption of sparse and/or weak connectivity and
an assumption that neurons receive uncorrelated, feedforward
Gaussian white noise input. However, cortical circuits are
densely connected and receive spatially and temporally cor-
related synaptic input from outside the local circuit [16–19].

An alternative approach to analyzing correlated variability
in recurrent neuronal network models is motivated in part
by the widely observed balance between excitatory and in-
hibitory synaptic inputs in cortex [20–27]. When synaptic
weights are scaled like 1/

√
N where N is the size of a model

network, balance between excitation and inhibition arises
naturally at large network size, which defines the “balanced
state” [28,29]. A similar scaling of synaptic weights has since
been observed in cultured cortical populations [30].

Early work on balanced networks assumed sparse con-
nectivity to produce weak spike train correlations, but it
was later shown that keeping connection probabilities O(1)
naturally produces weak, O(1/N ), spike train correlations,
defining the “asynchronous state” [31]. While these extremely
weak spike train correlations are consistent with some cortical
recordings [32], the magnitude of correlations in cortex can
depend on stimulus, cortical area, layer, and behavioral or
cognitive state and can be much larger than predicted by the

*Corresponding author: Robert.Rosenbaum@nd.edu

asynchronous state [6,33–37]. This raises the question of how
larger correlation magnitudes can arise in balanced cortical
circuits. Later theoretical work showed that larger correla-
tions can be obtained between some cell pairs in densely
connected networks with specially constructed connectivity
structure [38–42], offering a potential explanation of the larger
correlations often observed in recordings.

All of these previous studies of correlated variability in
balanced networks assume that the recurrent network receives
feedforward synaptic input from an external population of un-
correlated spike trains, so feedforward input correlations arise
solely from overlapping feedforward synaptic projections. In
reality, feedforward synaptic input to a cortical population
comes from thalamic projections, other cortical areas, or other
cortical layers in which spike trains could be correlated.

We extend the theory of densely connected balanced net-
works to account for correlations between the spike trains
of neurons in an external, feedforward input layer. We show
that correlations between the feedforward synaptic input to
neurons in the recurrent network are O(N ) in this model,
but cancel with O(N ) correlations between recurrent synaptic
input to produce O(1) spike train correlations on average,
defining what we refer to as the “correlated state” in densely
connected balanced networks. This correlated state offers an
alternative explanation for the presence of moderately large
spike train correlations in cortical recordings. We derive a
simple, closed-form approximation for the average covariance
between neurons’ spike trains in the correlated state in terms
of synaptic parameters alone, without requiring the use of
linear response theory or any other knowledge of neurons’
transfer functions. We show that the tracking of excitatory
synaptic input currents by inhibitory currents is more precise
and more similar to in vivo recordings [23] in the correlated
state than in the asynchronous state. Our results extend the
theory of correlated variability in balanced networks to the
biologically realistic assumption that presynaptic neural pop-
ulations are themselves correlated.

2470-0045/2019/99(5)/052414(21) 052414-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052414&domain=pdf&date_stamp=2019-05-28
https://doi.org/10.1103/PhysRevE.99.052414


BAKER, EBSCH, LAMPL, AND ROSENBAUM PHYSICAL REVIEW E 99, 052414 (2019)

x

(a)

e i
XX

XR

RR

TT (total)

(b)

(c)

1 1.5 2
1

100

200

X
 n

eu
ro

n 
in

de
x

1 1.5 2
time (s)

1

100

200

E
 n

eu
ro

n 
in

de
x

(d)

(e)

(f)

(g)

(h)

-4 -2 0 2 4
time-averaged input current

co
un

t

network size N
104-5

0

5
m

ea
n 

in
pu

t c
ur

re
nt

0 1042
time (s)

0

5

10

15

m
ea

n 
ra

te
 (

H
z)

network size N
1040 1042

X
R
T (total)

e
i

103 104

network size N

101

m
ea

n 
in

pu
t c

ov
.

network size N

m
ea

n 
sp

ik
e 

co
un

t c
ov

.

TT (total)

ee
ei
ii

(i)

X

R

T (total)

-200

-100

0

100

200

m
ea

n 
in

pu
t c

ov
.

network size N
1040 1042

(j)

(k)

uncorrelated

103 104
10-4

10-2

(l)

103 104

external pop. size  Nx

10-4

10-3

10-2

|m
ea

n 
sp

ik
e 

co
un

t c
ov

|

104

-1

0

1

2

3

m
ea

n 
sp

ik
e 

co
un

t c
ov

10-3

external pop. size  Nx

1 2 3 4

0 50 100 150
frequency (Hz)

0

0.005

0.01

m
ea

n 
C

S
D

 (
H

z)

ee
ei
ii

FIG. 1. The asynchronous state in densely connected balanced networks. (a) Network diagram. An external population, X , of uncorrelated
Poisson processes provides feedforward input to a randomly connected recurrent network of excitatory, E , and inhibitory, I , neurons.
Feedforward input correlations are solely from overlapping projections from X . [(b), (c)] Raster plot of 200 randomly selected neurons from
population X and E respectively in a network with N = 104 and Nx = 2000. (d) Histogram of time-averaged external (X , green) recurrent
(R = E + I , purple), and total (T = X + E + I , black) input to all excitatory neurons in a network with N = 104 and Nx = 2000. Currents
here and elsewhere are reported in units CmV/s, where Cm is the arbitrary membrane capacitance. (e) Mean external (green), recurrent (purple),
and total (black) input to excitatory neurons for networks of different sizes, N . (f) Mean excitatory (red) and inhibitory (blue) neuron firing
rates for different network sizes. Solid curves are from simulations and dashed curves are from Eq. (5). (g) Mean covariance between pairs of
excitatory neurons’ external inputs (green), recurrent inputs (purple), total inputs (black), and mean covariance between the recurrent input to
one excitatory neuron and external input to the other (yellow) for different network sizes. Covariances were computed by integrating the inputs
over 250-ms windows and then computing covariances between the integrals, which is proportional to zero-frequency CSD [see Eq. (3) and
surrounding discussion]. Integrated currents have units CmmV, so their covariances have units C2

mmV2. (h) Enlarged view of black curve from
panel (e) on a log-log axis (black) and the function C/N (dashed gray), where C was chosen so that the two curves match at N = 2 × 104.
(i) Mean spike count covariance between excitatory neuron spike trains (red), between inhibitory neuron spike trains (blue), and between
excitatory-inhibitory pairs of spike trains (purple). In panels (i)–(l), solid curves are from simulations, dashed curves are from the first term
in Eq. (9), and dotted curves are from the first two terms. For the dotted curves, the {Se, Se} and {Si, Si} terms in Eq. (9) were estimated
empirically from simulations. In all panels, counts were computed over a 250-ms time windows. (j) Absolute value of mean spike count
covariances as a function of the external population size, Nx , when N = 104 and where feedforward connection probabilities were scaled
to keep pexNx = pixNx = 200 fixed as Nx was changed. Filled circles are from simulations with uncorrelated external input (representing
Nx → ∞) and open circles are from simulations with deterministic, time-constant external input (external input covariance is zero in both
cases). Asterisks and crosses are from evaluating the second term of Eq. (9) using the values of {Se, Se} and {Si, Si} estimated from the
simulations marked with filled circle and crosses respectively. (k) Same data as panel (j), but plotted on a linear axis without taking absolute
value, and enlarged to larger values of Nx . (l) Mean cross-spectral densities between neurons in the recurrent network using the parameters
from panels (b)–(d). Solid curves are from simulations, dashed are from the first term of Eq. (9), and dotted are from the first two terms of
Eq. (9) using empirically estimated power spectral densities for {Sb, Sb}( f ). Synaptic time constants were τe = 8, τi = 4, and τx = 10 ms in
all simulations. In all simulations except those in panels (j) and (k), recurrent and feedforward connection probabilities are all pab = 0.1 for
a = e, i and b = e, i, x.

II. MODEL AND BACKGROUND

We consider recurrent networks of N model neurons, Ne

of which are excitatory and Ni inhibitory. Neurons are ran-
domly and recurrently interconnected and also receive random
feedforward synaptic input from an external population of

Nx neurons whose spike trains are homogeneous Poisson
processes with rate rx [Fig. 1(a)].

The membrane potential of neuron j in population a = e, i
obeys the exponential integrate-and-fire (EIF) dynamics

Cm

dV a
j

dt
= −gL

(
V a

j − EL
) + gLDT e(V a

j −VT )/DT + T a
j (t )
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with the added condition that each time V a
j (t ) exceeds Vth, it is

reset to Vre and a spike is recorded. Our results do not depend
sensitively on the exact neuron model used or the values of
neuron parameters. We additionally set a lower bound on
the membrane potential at Vlb = −100 mV. Spike trains are
represented as a sum of Dirac δ functions,

Sa
j (t ) =

∑
n

δ
(
t − t a, j

n

)
,

where t a, j
n is the nth spike time of neuron j in population

a = e, i, x. The total synaptic input current to neuron j in
population a = e, i is decomposed as

T a
j (t ) = Ea

j (t ) + Ia
j (t ) + X a

j (t ),

where

U a
j (t ) =

Nb∑
k=1

Jab
jk

(
ηb ∗ Sb

j

)
(t ) (1)

for U = E , I, X and b = e, i, x respectively, where ∗ denotes
convolution, Jab

jk is the synaptic weight from neuron k in
population b to neuron j in population a, and ηb(t ) is a post-
synaptic current (PSC) wave form. Without loss of generality,
we assume that

∫
ηb(t ) = 1. We use ηb(t ) = τ−1

b e−t/τbH (t ),
where H (t ) is the Heaviside step function, though our results
do not depend sensitively on the precise neuron model or PSC
kernel used. For calculations, it is useful to decompose the
total synaptic input into its recurrent and external sources,

T a
j (t ) = Ra

j (t ) + X a
j (t ),

where

Ra
j (t ) = Ea

j (t ) + Ia
j (t )

is the recurrent synaptic input from the local circuit.
Local cortical circuits contain a large number of neurons

and individual cortical neurons receive synaptic input from
thousands of other neurons within their local circuit and
from other layers or areas. Densely connected balanced net-
works have been proposed to model such large and densely
interconnected neuronal networks [31,40]. In such models,
one considers the limit of large N (with Nx, Ne, and Ni

scaled proportionally) with fixed connection probabilities and
where synaptic weights are scaled like O(1/

√
N ) [29,31].

This scaling naturally captures the balance of mean excitatory
and mean inhibitory synaptic input, as well as the tracking
of excitation by inhibition, observed in cortical recordings
[31]. Recent work in cultured cortical populations shows that
similar scaling laws emerge naturally and produce network
dynamics consistent with the balanced state [30]. In particular,
we consider a random connectivity structure in which

Jab
jk = 1√

N

{
jab with probability pab

0 otherwise
, (2)

where connections are statistically independent and jab, pab ∼
O(1) for b = e, i, x and a = e, i. We furthermore define the
proportions

qb = Nb

N
,

which are assumed O(1). For all examples we consider, qe =
0.8 and qi = qx = 0.2.

We next introduce notational conventions for quantifying
the statistics of spike trains and synaptic inputs in the network.
The mean firing rates of neurons in population a = e, i, x are
defined by ra for a = e, i, x and it is useful to define the
2 × 1 vector, r = [re ri]T , where ·T denotes the transpose.
The mean is technically interpreted as the expectation over
realizations of the network connectivity, but for large N it is
approximately equal to the sample mean over all neurons the
network. Similarly, mean-field synaptic inputs to neurons in
populations a = e, i are defined by

U a = mean jU
a
j (t )

for U = E , I, X, R, T and, in vector form, U = [Ue Ui]T .
For quantifying correlated variability, we use the cross-

spectral density (CSD)〈
U a

j , Zb
k

〉
( f ) =

∫ ∞

−∞
CU a

j Zb
k
(τ )e−2π i f τ dτ

between U a
j (t ) and Zb

k (t ) for U, Z = E , I, X, S, R, T and
a, b = e, i, x, where

CU a
j ,Zb

k
(τ ) = cov

[
U a

j (t ), Zb
k (t + τ )

]
is the cross-covariance function. The argument, f , is the
frequency at which the CSD is evaluated. The CSD is a
convenient measure of correlated variability because it sim-
plifies mathematical calculations due to the fact that 〈·, ·〉
is a Hermitian operator and because most commonly used
measures of correlated variability can be written as a function
of the CSD. For example, the cross covariance is the inverse
Fourier transform of the CSD. Spike count covariances over
large time windows can be written in terms of the CSD by
first noting that the spike count is an integral of the spike train
[4],

spike count over [0, t0] =
∫ t0

0
Sa

j (t )dt .

For large t0, the covariance between two integrals is related to
the zero-frequency CSD,

lim
t0→∞

1

t0
cov

[∫ t0

0
U a

j (t )dt,
∫ t0

0
Zb

k (t )dt

]
= 〈

U a
j , Zb

k

〉
( f = 0). (3)

Hence, the spike count covariance over the interval [0, t0] is
given asymptotically by t0〈Sa

j , Sb
k 〉( f = 0) for large t0. Follow-

ing this result, we quantify covariability between spike trains
and between synaptic currents using the zero-frequency CSD,
which we estimate by taking the covariance between integrals
as in Eq. (3) using t0 = 250 ms. This provides a simple, easily
estimated quantity for quantifying covariance.

Most of our computations are performed at the level of
population averages, so we define

〈Ua, Zb〉 = mean j 	=k
〈
U a

j , Zb
k

〉
, (4)

which is a scalar function of frequency, f , for each a, b =
e, i, x and U, Z = E , I, X, S, R, T . It is also convenient to
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define the 2 × 2 mean-field matrix form,

〈U , Z〉 =
[〈Ue, Ze〉 〈Ue, Zi〉
〈Ui, Ze〉 〈Ui, Zi〉

]
,

for U , Z = E, I, X , S, R, T . We also define the recurrent and
feedforward mean-field connectivity matrices,

W =
[
wee wei

wie wii

]
and Wx =

[
wex

wix

]
,

where wab( f ) = pab jabqb̃ηb( f ) ∼ O(1) with η̃b( f ) being the
Fourier transform of ηb(t ). For the exponential kernels we
use, η̃b( f ) = 1/(1 + 2π i f τb). The zero-frequency values,
wab = wab(0) = pab jabqb, define time-averaged interactions
and mean-field connection matrices, W = W (0) and W x =
Wx(0).

This choice of notation allows us to perform computations
on mean-field spike train and input statistics in a mathemati-
cally compact way. We first review the mean-field analysis of
firing rates in the balanced state [28,29,43–45]. Mean external
input is given by X = √

N W xrx and mean recurrent input by
R = √

N W r so that mean total synaptic input is given by

T =
√

N[W r + W xrx].

In the balanced state, T ∼ r ∼ O(1), which can only be ob-
tained by a cancellation between external and recurrent synap-
tic inputs. This cancellation requires W r + W xrx ∼ O(1/

√
N )

so that [28,29,43–45]

lim
N→∞

r = −W
−1

W xrx (5)

in the balanced state. Hence, the balanced state can only be
realized when this solution has positive entries, re, ri > 0,
which requires that [28,29,43] X e/X i > wei/wii > wee/wie.

Note that the derivation of Eq. (5) relied on an assumption
that T ∼ r, i.e., that the transfer of mean input to firing rates
is O(1). The analysis of correlations in balanced networks
requires similar assumptions. Specifically, our analysis of
correlations relies on an assumption that transfer of mean-field
covariance is O(1), specifically that 〈Ta,Ub〉 ∼ 〈Sa,Ub〉 or

〈Ta,Ub〉
〈Sa,Ub〉 ∼ O(1) (6)

for U = X, S as N → ∞. A more precise and slightly weaker
assumption that is sufficient for our analysis is that

lim
N→∞

1√
N

〈Ta,Ub〉
〈Sa,Ub〉 = 0 (7)

for U = X, S, which is implied by Eq. (6). Note that this does
not imply that 〈Sa,Ub〉 cannot be much larger or smaller than
〈Ta,Ub〉, but only that their ratio does not converge to zero
or diverge to ∞ as N → ∞. The validity of this assumption
is discussed in more detail in Appendix A and at the end of
Sec. III.

Importantly, we do not need to know the value of the
fraction in Eq. (6), the fraction does not need to converge to
a limit as N → ∞, and 〈Sa,Ub〉 need not be linearly related
to 〈Ta,Ub〉, which contrasts to assumptions made by linear
response theory.

III. A REVIEW OF THE ASYNCHRONOUS
BALANCED STATE

We first review previous work on correlated variability in
balanced networks when spike trains in the external popula-
tion are uncorrelated Poisson processes [Figs. 1(a) and 1(b)],

〈Sx, Sx〉 = 0.

Since spike trains in the external population are uncorrelated,
correlations between the external input to neurons in the
recurrent network arise solely from overlapping feedforward
synaptic projections with [31,40,46] [see Eq. (A1) in Ap-
pendix A for a derivation],

〈X , X〉 = q−1
x WxrxW

∗
x ∼ O(1), (8)

where W ∗
x is the conjugate transpose of Wx.

It would at first seem that this O(1) external input cor-
relation would lead to O(1) correlations between neurons’
spike trains. In the asynchronous state, this is prevented
by a cancellation between positive and negative sources of
input correlation. In particular, correlations between neurons’
recurrent synaptic inputs, 〈R, R〉, are also positive and O(1),
but these positive sources of input correlations are canceled by
negative correlations between neurons’ recurrent and external
inputs, 〈X , R〉, in such a way that the total synaptic input
correlation is weak,

〈T , T 〉 = 〈X , X〉 + 〈X , R〉 + 〈R, X〉 + 〈R, R〉 ∼ O(1/N ),

where 〈R, X〉 = 〈X , R〉∗. In Appendix A, we review a deriva-
tion of spike train CSDs in the asynchronous state that gives
the approximation

〈S, S〉 ≈ 1

N
W −1〈X , X〉W −∗ − 1

N

[ {Se,Se}
qe

0

0 {Si,Si}
qi

]
, (9)

where {Sb, Sb}( f ) is the average power spectral density of
spike trains in population b = e, i. While the first term in
Eq. (9) arises purely from externally generated correlations,
the second term in accounts for effects of both externally and
internally generated correlations. For example, networks with
deterministic and time-constant external input have 〈X , X〉 =
0, but still generate correlated variability that is at least partly
captured by the second term in Eq. (9) [see Fig. 7(d)].

Equation (9), which is only valid when W is nonsingular,
has been previously derived for the integrate-and-fire network
models considered here (see Eq. (S.22) in the supplement
to Ref. [40]). Similar expressions have been derived for
networks of binary neuron models (see Eqs. (38) and (39)
in the supplement to Ref. [31], Eq. (38) in Ref. [46], and
Eq. (23) in Ref. [41]) and related expressions have been
derived for various models in other work [5,14,47,48]. The
expression derived in Ref. [31] is directly analogous to Eq. (9)
and was derived under an assumption that correlations are
inherited solely from external inputs whereas other studies
[5,46] contain additional terms [including terms of order
O(N−3/2)] that account for intrinsically generated correlations
and are not included in Eq. (9). Some of this previous work
has also been extended to spatially extended networks with
distance-dependent connection probabilities and to networks
with several subpopulations [40,41]. The overall finding in
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this previous work is that spike train correlations in balanced
networks are O(1/N ) when W is nonsingular. Exceptions
to this O(1/N ) scaling have been demonstrated in spatially
extended networks with distance-dependent connection prob-
abilities and in networks with singular mean-field connectivity
matrices [39–42,46], a topic to which we return in Sec. VI.

To demonstrate these results, we first simulated a network
of N = 104 randomly and recurrently connected neurons re-
ceiving feedforward input from a population of Nx = 2000
uncorrelated Poisson-spiking neurons [Figs. 1(a) and 1(b)].
As predicted, spiking activity in the recurrent network was
asynchronous and irregular [Fig. 1(c); mean spike count
correlation between neurons with rates at least 1 Hz was
5.2 × 10−4] with approximate balance between external (X )
and recurrent (R) synaptic input sources [Fig. 1(d)]. Varying
the network size, N , demonstrates the O(

√
N ) growth of

mean external (X ) and recurrent (R) synaptic input currents
that cancel to produce O(1) mean total input current (T )
[Fig. 1(e)], as predicted by the mean-field theory of balance
[Eq. (5) and surrounding discussion]. As a result, firing rates
converge toward the limiting values predicted by Eq. (5)
[Fig. 1(f)].

As predicted by the analysis of the asynchronous state,
the mean covariances between individual sources of synaptic
inputs appear O(1) [Fig. 1(g)], but cancel to produce total
input covariance and spike count covariance that vanish as
network size, N , increases [Figs. 1(g)–1(i)].

Applying the approximation in Eq. (9) requires knowledge
of neurons’ mean-field power spectral densities, {Se, Se}( f )
and {Si, Si}( f ). While numerical methods for approximating
power spectral densities in networks of integrate-and-fire
neurons have been developed using Fokker-Planck techniques
[8,9,11,12,49], these approaches require a diffusion approxi-
mation that is not justified for our model (see the discussion
section). Instead, we considered two ways to test Eq. (9) that
do not require a diffusion approximation or Fokker-Planck
techniques.

First, we noted that the first term, (1/N )W −1〈X , X〉W −∗, in
Eq. (9) only involves known parameters and does not require
knowledge of {Se, Se} or {Si, Si}. Therefore, we were able
to directly compare the exact value of this term to spike
count covariances computed from simulations, demonstrating
a relatively close match [compare solid and dashed blue in
Fig. 1(i)].

Next, we noted that the contribution of the second term
in Eq. (9) can be estimated empirically from simulations by
computing the average spike count variance in the recurrent
network [since {Sb, Sb}(0) is proportional to spike count vari-
ance over large window sizes]. This yields a semianalytical
approach to testing the accuracy of Eq. (9) with only the
O(N−3/2) term ignored. This approach improved the approxi-
mation to mean inhibitory-inhibitory spike count covariances
at large N [compare solid and dotted in Fig. 1(i)], but left some
error even at N = 2 × 104.

Previous work showed that intrinsically generated corre-
lations can dominate in large balanced networks [46], but in
our simulations external input correlations captured by the
first term in Eq. (9) dominated over a range of N values. We
conclude that the relative contribution of the three terms in
Eq. (9) can depend on model details and parameters. This is

clarified by noting that a sufficiently large reduction in the
external input covariance, 〈X , X〉, would necessarily prevent
the first term in Eq. (9) from dominating because the first
term is proportional to 〈X , X〉, but the second term should
remain nonzero even for vanishing 〈X , X〉. At the extreme,
when 〈X , X〉 = 0, the first term is zero, but the second term
is nonzero for such networks due to intrinsically generated
variability.

To demonstrate these ideas, we followed a procedure from
Ref. [46] by varying Nx while scaling feedforward connection
probabilities, pex and pix, so as to keep the average num-
ber of external inputs, pexNx = pixNx = 200, fixed. All other
parameters, including the size, N , of the recurrent network
were kept fixed. In this scenario, an increase in Nx causes
a decrease in 〈X , X〉 because it leads to fewer overlapping
external inputs (as evidenced by the appearance of q−1

x =
N/Nx in Eq. (8), but note that Wx is fixed as we change Nx). In
addition, we simulated a version of the network in which each
neuron received uncorrelated input from a private external
population so that external input had the same univariate
statistics as our previous simulations, but these external inputs
were uncorrelated, 〈X , X〉 = 0. This represents the Nx → ∞
limit of the previous simulations. Finally, we simulated a
deterministic version of the network in which external inputs
were replaced by time-constant input, X a

j (t ) = X a, which also
implies 〈X , X〉 = 0 with mean external input unchanged.

Examining these simulations, the magnitude of spike train
covariance is nonmonotonic with increasing Nx [Fig. 1(j)]
because it changes sign and becomes increasingly negative
at larger values of Nx [Fig. 1(k)]. The first term in Eq. (9)
dominates the other two terms (the dashed, solid, and dotted
curves are close) for smaller values of Nx because external
input covariance is larger in this regime. However, at larger
values of Nx, the first term no longer dominates [Fig. 1(k),
inset, the dashed curve is far from the solid curve] because
external input covariance is small. Moreover, even accounting
for the second term in Eq. (9) produces a somewhat inaccu-
rate approximation when external input covariance is small
[Figs. 1(j) and 1(k); compare dotted to solid at larger Nx],
consistent with previous findings that the O(N−3/2) term can
contribute significantly at large but finite N [46].

When external input is noisy but independent, simulations
produce weak but nonzero spike train correlations [Figs. 1(j)
and 1(k), filled circles] representing the Nx → ∞ limit of
the previous simulations [46]. In this regime, the first term
in Eq. (9) is zero, but the second term produces a rel-
atively accurate approximation to excitatory-excitatory and
inhibitory-inhibitory spike count covariances [Figs. 1(j) and
1(k); compare filled circles to asterisks], but note that the
second term in Eq. (9) is zero for excitatory-inhibitory pairs.
Similar results are observed when external input is determin-
istic and constant in time [X a

j (t ) = X a; Figs. 1(j) and 1(k);
compare open circles to crosses], but spike count variances
[and therefore the {Sb, Sb}(0) terms] are smaller when input
is deterministic. Repeating the simulation from Figs. 1(i) and
1(j) with different connectivity parameters showed similar
overall results [see Appendix B and Figs. 7(a) and 7(b)].
See Refs. [5,8–12,14,41,43,46,47] for other studies of cor-
related variability in networks with uncorrelated external
input.
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So far we have focused on spike count covariance over
large window sizes, which is proportional to low-frequency
CSD. We next computed the full spike train CSDs from
simulations with N = 104 and Nx = 2000. The first two terms
in Eq. (9) accurately capture most of the low-frequency CSD
for these parameters [Figs. 1(i)–1(l)], but simulations show a
high-frequency peak in the mean CSD that is not captured by
these terms [Fig. 1(l)].

To understand why Eq. (9) becomes inaccurate at higher
frequencies for the network considered here, recall that the
derivation of Eq. (9) relies on the assumptions made by
Eqs. (6) and (7), which posit that neural transfer is O(1).
However, for EIF and many other neuron models, sufficiently
high-frequency input fluctuations cannot be reliably trans-
ferred due to the filtering imposed by membrane potential
dynamics. More specifically,

lim
f →∞

〈Ta,Ub〉( f )

〈Sa,Ub〉( f )
= ∞.

Hence, while Eqs. (6) and (7) might be true for any fixed f , the
O(1) term on the right side of Eq. (6) diverges with f . Analo-
gously, when f is large, larger values of N must be considered
before the ratio in Eq. (7) is close to zero. Mathematically
speaking, the limit in Eq. (7) converges pointwise but not
uniformly in f . This caveat is technically inconsequential for
any fixed f in the N → ∞ limit analyzed in the derivation
of Eq. (9), but all networks are finite. For any finite-sized
network, the derivation of Eq. (9) is not justified at sufficiently
high frequencies. In Appendix A, we show that for finite N our
derivations are accurate at frequencies for which∣∣∣∣ 〈T ,U〉

W 〈S,U〉
∣∣∣∣ �

√
N (10)

for U = X , S, where the division is applied element-wise to
the matrices. As noted above, for any fixed f , this condition is
satisfied in the N → ∞ limit, but for any fixed N the condition
is violated at sufficiently large f .

The left-hand side of Eq. (10) is difficult to compute for
networks of integrate-and-fire neurons because we do not
know the values of 〈T ,U〉 or 〈S,U〉, but we next show that
linear response theory can provide a useful rough approxima-
tion.

In the context of the model considered here, linear response
theory is defined by making the approximation [6,8,50–55]

〈S,U〉 ≈ A〈T ,U〉 (11)

for U = S, T, X , where

A( f ) =
[

Ae( f ) 0
0 Ai( f )

]
and Aa( f ) is the average “susceptibility function” of neurons
in population a = e, i. Equation (11) provides an accurate
approximation of correlation transfer whenever correlations
in the network are not too strong.

Combining Eq. (10) with Eq. (11) gives the condition

|WA| � 1/
√

N,

which can be written element-wise in terms of scalars as

|wab( f )|2|Ab( f )|2 � 1/N

for a, b ∈ {e, i}. For the exponentially decaying synapses
considered here, we have |wab( f )|2 = w2

ab/(1 + 4π2 f 2τ 2
b ),

where wab = jab pabqb and τb is the synaptic time constant.
However, we do not know the susceptibility functions, Ab( f ).
Much like the power spectral densities, {Sb, Sb}( f ), the sus-
ceptibility functions, Ab( f ), in networks of integrate-and-fire
neurons are difficult to compute without a diffusion approxi-
mation that is not justified for our model (see the discussion
section). Because of the linearity of subthreshold membrane
dynamics, however, EIF neurons in a fluctuation-dominated
regime have susceptibility functions that are approximated by
|Ab( f )|2 ≈ g2/(4π2 f 2τ 2

m) at moderately large f [52,56,57],
where τm = Cm/gL is the membrane time constant and g =
Ab(0) is the gain of the neuron, i.e., the derivative of the neu-
ron’s f -I curve. Putting this all together gives the condition

4π2 f 2τbτm � g|wab|
√

N,

so we can expect that Eq. (9) is accurate for frequencies
sufficiently lower than

f0 =
√

g|wab|
2π

√
τbτm

N1/4. (12)

To obtain a conservative estimate that will be valid for all
combinations of a, b ∈ {e, i}, we chose the smallest value of
wab used in Fig. 2(l), which is wee = 2Cm mV/ms (where Cm

is the arbitrary membrane capacitance), and the largest value
of τb, which is τe = 8 ms. The membrane time constant for the
neurons used in our simulations is τm = 15 ms and N = 104 in
Fig. 1(l). The only quantity missing from Eq. (12) is the gain,
g. To obtain a rough estimate of g, we fit a rectified quadratic
function to the relationship between all neurons’ firing rates
and mean total inputs (r j and T j) and then computed the
derivative of the fitted quadratic at the mean input value.
The same approach was used in previous work [40,58] to
estimate a mean-field gain. In doing so, we obtained a gain
approximation of g = 0.014(Cm mV)−1. Combining these val-
ues gives an approximate cutoff frequency of f0 = 24 Hz.
Indeed, Fig. 1(l) shows that Eq. (9) starts to become inac-
curate somewhere just below this value of f , particularly for
excitatory-excitatory (red) and excitatory-inhibitory (purple)
neuron pairs.

In summary, when spike trains in the external population
are uncorrelated, the first two terms in Eq. (9) give an accurate
approximation to spike count covariances over long time
windows (equivalently, low-frequency CSDs), but the second
term can be difficult to compute directly and the equation loses
accuracy when evaluating the CSD at higher frequencies. We
next extend these results to networks in which spike trains in
the external population are correlated.

IV. THE CORRELATED STATE IN
BALANCED NETWORKS

Above, we reviewed the asynchronous state in which
uncorrelated spike trains in the external layer, 〈Sx, Sx〉 = 0,
produce moderate external input covariance, 〈X , X〉 ∼ O(1),
and weak spike train correlations, 〈S, S〉 ∼ O(1/N ). We next
show that moderate correlations between spike trains in the
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FIG. 2. The correlated state in densely connected balanced networks. [(a)–(i) and (k)] Same as Figs. 1(a)–1(i) and 1(l) respectively except
spike trains in the external population, X , were correlated Poisson processes with spike count correlation c = 0.1 and Eq. (19) was used for the
dashed lines in panels (i) and (k). (j) Mean spike count covariance between neurons in the recurrent network as a function of the correlation,
c, between spike trains in the external population. Dashed curves are from Eq. (19) and dotted are from Eq. (9). (l) Mean cross-covariance
functions between neurons in the recurrent network (units ms−2; N = 104). Synaptic time constants were τe = 8, τi = 4, and τx = 10 ms in
all simulations and the correlation time constant for the spike trains in the external population was τc = 5 ms. In all simulations, recurrent and
feedforward connection probabilities are all pab = 0.1 for a = e, i and b = e, i, x.

external population [Fig. 2(a)],

〈Sx, Sx〉 ∼ O(1),

leads to large covariance between neurons’ external inputs,
〈X , X〉 ∼ O(N ), and moderate correlations between spike
trains in the recurrent network, 〈S, S〉 ∼ O(1).

We outline the derivation of correlations in such networks
here and give a more detailed derivation in Appendix A. In
addition to the assumption made by Eqs. (6) and (7), all of our
derivations follow from a few simple arithmetical rules that
rely on the bilinearity of the operator 〈·, ·〉. Specifically,

〈T ,U〉 = 〈R,U〉 + 〈X ,U〉, (13)

〈R,U〉 =
√

NW 〈S,U〉, (14)

〈X ,U〉 =
√

NWx〈Sx,U〉, (15)

〈U , Z〉 = 〈Z,U〉∗ (16)

for any U , Z = E, I, X , R, S, Sx, T where A∗ is the conjugate
transpose of A and where we omit smaller order terms here
and below (the derivations in Appendix A keep track of these
terms). Equation (13) follows from the fact that total input

is composed of recurrent and external sources, T = R + X .
Equations (14) and (15) follow from the fact that recurrent
and external inputs are composed of linear combinations of
O(N ) spike trains, cf. Eq. (1), and that synaptic weights
are O(1/

√
N ). Equation (16) is simply a property of the

Hermitian cross-spectral operator.
We first derive the CSD between external inputs to neurons

in the recurrent network. Applying Eqs. (15) and (16) gives

〈X , X〉 =
√

NWx〈Sx, X〉
= NWx〈Sx, Sx〉W ∗

x

∼ O(N ).
Hence, O(1) covariance between the spike trains in the exter-
nal population induces O(N ) covariance between the external
input currents to neurons in the recurrent network. This is
a result of the effects of “pooling” on covariances, namely
that the covariance between two sums of N correlated random
variables is typically O(N ) times larger than the covariances
between the individual summed variables [31,59,60].

We next derive the CSD between spike trains and external
inputs. First, note that

〈T , X〉 = 〈R, X〉 + 〈X , X〉
=

√
NW 〈S, X〉 + 〈X , X〉 (17)
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from Eqs. (13) and (14). It follows from our assumption that
neuronal transfer is O(1) [see Eq. (6)] that 〈T , X〉 ∼ 〈S, X〉
which, combined with Eq. (17), gives

〈S, X〉 ∼
√

NW 〈S, X〉 + 〈X , X〉.
Because 〈S, X〉 appears on both sides of this equation with
a

√
N coefficient on one side and not the other, this is only

consistent if there is a cancellation between the two terms on
the right-hand side. Specifically, this cancellation implies that

〈S, X〉 = − 1√
N

W −1〈X , X〉 ∼ O(
√

N ) (18)

since 〈X , X〉 ∼ O(N ). We can now calculate the CSD be-
tween spike trains in the recurrent network. First note that

〈S, T 〉 = 〈S, R〉 + 〈S, X〉
=

√
N〈S, S〉W ∗ + 〈S, X〉

=
√

N〈S, S〉W ∗ − 1√
N

W −1〈X , X〉

which follows from Eqs. (13), (14), and (18). The assumption
of O(1) transfer from Eq. (6) implies that 〈S, T 〉 ∼ 〈S, S〉 so
we may conclude that

〈S, S〉 ∼
√

N〈S, S〉W ∗ − 1√
N

W −1〈X , X〉,

which is only consistent if there is cancellation between the
terms on the right-hand side. This cancellation can only be
realized if

〈S, S〉 = 1

N
W −1〈X , X〉W −∗

= W −1Wx〈Sx, Sx〉W ∗
x W −∗

(19)

which is O(1) and where we have omitted terms of smaller
order.

In summary, O(1) covariance between spike trains in
the external population produces O(N ) covariance between
neurons’ external inputs, but O(1) covariance between spike
trains in the recurrent network on average. We hereafter
refer to this state as the “correlated state” since it produces
moderately strong spike train correlations in contrast to the
asynchronous state characterized by extremely weak spike
train correlations. The reduction from O(N ) external input
covariance to O(1) spike train covariance arises from the
same cancellation mechanism that reduces O(1) external input
correlation to O(1/N ) spike train correlations in the asyn-
chronous state.

Notably, evaluating Eq. (19) does not require knowledge
of neurons’ power spectral densities or spike count variances
but only depends on synaptic parameters and external spike
train statistics. This is beneficial because the direct numer-
ical computation of power spectral densities or spike count
variances in networks of integrate-and-fire neurons can be
difficult (see discussion in Sec. III). This contrasts to Eq. (9)
that depends on mean power spectral densities or spike count
variance through the second term. Note that Eq. (9) is also
valid in the correlated state (see Appendix A). Specifically,
Eq. (19) can be obtained from Eq. (9) by taking 〈X , X〉 ∼
O(N ) and ignoring smaller order terms. Hence, Eq. (9) is more

accurate at finite N but requires knowledge of mean power
spectral densities whereas Eq. (19) is accurate as N → ∞ in
the correlated state.

To demonstrate these results, we simulated a network of
N = 104 neurons identical to the network from Fig. 1 except
that spike trains in the external population were correlated
Poisson processes [Figs. 2(a) and 2(b)] with

〈Sx, Sx〉( f ) = crxe−4 f 2π2τ 2
c . (20)

Here, rx = 10 Hz is the same firing rate used in Fig. 1, c =
0.1 quantifies the spike count correlation coefficient between
the spike trains in the external population over large counting
windows, and τc = 5 ms quantifies the timescale over which
these correlations occur. See Appendix C for a description of
the algorithm used to generate the spike trains.

The recurrent network exhibited moderately correlated
spike trains in contrast to spike trains in the asynchronous
state [Fig. 2(c), compare to Fig. 1(c); mean spike count
correlation between neurons with rates at least 1 Hz was
0.077 in the correlated state]. As in the asynchronous state,
external and recurrent synaptic input sources approximately
canceled [Fig. 2(d)], as predicted by balanced network theory.
Varying N demonstrates that the network exhibits the same
cancellation between O(

√
N ) mean external and recurrent

synaptic input sources and that Eq. (5) for the mean firing rates
is accurate [Figs. 2(e) and 2(f)].

As predicted by the analysis of the correlated state, the
covariance between individual sources of input currents ap-
pear O(N ) [Fig. 2(g)] but cancel to produce much smaller,
approximately O(1), total input covariance [Figs. 2(g) and
2(h)]. Mean spike count covariances also appear O(1) and
converge toward the limit predicted by Eq. (19) [Fig. 2(i)].
The timescale of correlations between neurons in the recur-
rent network is quantified by their mean cross-covariance
functions [Fig. 2(l)]. Repeating the simulation from Fig. 2(i)
with different connectivity parameters showed similar overall
results [see Appendix B and Fig. 7(c)].

We next investigated the dependence of spike count covari-
ance in the recurrent network on the magnitude, c, of spike
train correlations in the external population. The correlated
state is characterized by c 	= 0 and the asynchronous state by
c = 0. This transition is continuous in the sense that, for fixed
N , sufficiently small values of c > 0 generate correlations
similar to those in the asynchronous state. However, the
transition between asynchronous and correlated spiking with
increasing c becomes more abrupt for larger values of N .
Specifically (see Appendix A),

〈X , X〉 ∼ O(cN ) + O(1)

and

〈S, S〉 ∼ O(c) + O(1/N ).

Hence, when N is large, even very small values of c �
1/N should produce much stronger correlations than those
produced in the asynchronous state (c = 0).

Indeed, simulations in which N = 104 is fixed and c is
varied between c = 10−4 and c = 1 show that Eq. (19) is
relatively accurate for c larger than 10−3 [Fig. 2(j); com-
pare solid to dashed]. When c is so small that Eq. (19) is

052414-8



CORRELATED STATES IN BALANCED NEURONAL … PHYSICAL REVIEW E 99, 052414 (2019)

inaccurate, Eq. (9) provides a more accurate approximation
[Fig. 2(j); compare solid to dotted] but requires the empirical
estimation of power spectral densities. The approximate linear
relationship between spike train correlation and external input
correlation (at larger values of c � 1/N) is consistent with
data from cultured cortical populations [30], but those data
also show moderate spike train correlations in the absence
of external input correlation, in contrast to our model. These
could arise from pattern-forming intrinsic dynamics (see the
discussion section).

Mean CSDs between spike trains in the recurrent network
closely matched the theoretical predictions from Eq. (19) over
a range of frequencies [Fig. 2(k)] even though our theory only
strictly applies to CSDs at sufficiently low frequencies [see
Eq. (10) and surrounding discussion]. To understand why this
is the case, we again turn to linear response theory. Under
the assumption that neurons’ input CSDs are approximately
linearly transferred to their spike train CSDs [i.e., Eq. (11)],
one can derive an approximation to spike train CSDs (see
Refs. [8–14,41,46] for derivations of this and similar approx-
imations)

〈S, S〉 ≈ [A−1 −
√

NW ]−1〈X , X〉[A−1 −
√

NW ]−∗, (21)

where we recall that A( f ) is the matrix of mean-field suscepti-
bility functions. In the N → ∞ limit for any fixed f , Eq. (21)
reduces to Eq. (19). At finite N , the two equations are approx-
imately equivalent whenever

√
N |W | � |A|−1. Note that this

is equivalent to the condition in Eq. (10) and the surrounding
discussion, where it was argued that this condition is violated
for sufficiently large f because |A−1( f )| → ∞ as f → ∞.
Therefore, when f is sufficiently large, |A−1| � √

N |W | and
we can ignore the

√
NW terms in Eq. (21) to get

〈S, S〉 ≈ A〈X , X〉A∗ (22)

for sufficiently large f . In other words, at frequencies too
high (timescales too fast) for synapses to track, external input
CSD is transferred directly to spike train CSD through the
neurons’ susceptibility functions and recurrent connectivity
plays a vanishing role. For the simulations in Fig. 2(k),
〈X , X〉 ∼ e−4 f 2π2τ 2

c / f 2 at large N and f , but as discussed
in Sec. III, |A|2 ∼ 1/ f 2 for EIF neurons in the fluctuation-
dominated regime. Therefore, 〈X , X〉 decays to zero much
faster than A for large f . Hence, for the larger values of f
for which Eq. (22) is accurate, A〈X , X〉A∗ ≈ 0. This explains
why the approximation in Eq. (19) does not lose accuracy at
higher frequencies in Fig. 2(k): because 〈S, S〉 ≈ 0 anyways
for larger values of f .

V. THE CORRELATED STATE PRODUCES TIGHT
BALANCE BETWEEN EXCITATORY AND INHIBITORY

INPUT FLUCTUATIONS CONSISTENT
WITH CORTICAL RECORDINGS

We have so far considered cancellation between posi-
tive and negative sources of input correlations at the mean-
field level, i.e., averaged over pairs of postsynaptic neurons
[Figs. 1(g), 1(h) 2(g), and 2(h)]. Previously published in vivo
intracellular recordings from neurons in rat barrel cortex in
reveal that this cancellation occurs even at the level of single
postsynaptic neuron pairs [23]. Specifically, paired intracellu-
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FIG. 3. Excitatory-inhibitory tracking in vivo and in simulations.
(a) In vivo membrane potential recordings from neurons in rat barrel
cortex, reproduced from Ref. [23]. Each pair of traces are simulta-
neously recorded membrane potentials. Red traces were recorded in
current clamp mode near the reversal potential of inhibition and blue
traces near the reversal potential of excitation (with action poten-
tials pharmacologically suppressed), so red traces are approximately
proportional to excitatory input current fluctuations and blue traces
approximate inhibitory input current fluctuations. Vertical scale bars
are 20 mV. For ease of comparison with the current traces in panels
(b)–(f), the red voltage trace in the top of A was plotted above
the corresponding blue trace. [(b) and (c)] Excitatory (red) and
inhibitory (blue) synaptic input currents to two randomly selected
excitatory neurons in the asynchronous (b) and correlated (c) states.
Simulations were the same as those in Figs. 1(b)–1(d) and 2(a)–
2(d) respectively. (d) Same as panel (c), but for a second trial with the
same connection matrix. [(e), (f)] Same as panel (c), but correlations
between the external population’s spike trains changed to c = 0.03
and 0.01 respectively [from c = 0 in panel (b) and c = 0.1 in panel
(c)].

lar recordings of spontaneous neural activity were performed
between nearby neurons (distance <500 μm) in the barrel
cortex of lightly anesthetized rats in current-clamp mode.
When one neuron was clamped near its inhibitory reversal
potential and another neuron is clamped near its excitatory
reversal potential (spiking suppressed with QX-314), recorded
membrane potential fluctuations are approximately mirror im-
ages of one another [Fig. 3(a), top]. Similarly, if both neurons
are held near their excitatory reversal potential [Fig. 3(a), mid-
dle] or both near their inhibitory reversal potential [Fig. 3(a),
bottom], recorded membrane potential fluctuations are highly
correlated. This implies that fluctuations in the excitatory and
inhibitory synaptic input to one neuron are strongly correlated
with fluctuations in the excitatory and inhibitory input to
other nearby neurons (see Ref. [23] for more details and
interpretation).

To test whether this phenomenon occurred in our sim-
ulations, we randomly chose two neurons and decomposed
their synaptic input into the total excitatory (E + X ) and
the inhibitory (I) components. In the asynchronous state,
input current fluctuations were fast and largely unshared
between neurons or between current sources in the same
neuron [Fig. 3(b)], in contrast to evidence from in vivo record-
ings. Input current fluctuations in the correlated state were
larger and highly synchronized between neurons [Fig. 3(c)],
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FIG. 4. The scaling of mean and variance of excitatory and inhibitory input covariance in the asynchronous and correlated states. [(a),
(b)] Distributions of spike count covariances (a) and correlations (b) between excitatory neurons in the asynchronous state (c = 0, light gray)
and in the correlated state (c = 0.03, dark gray; c = 0.1, black). For spike count correlations, neurons with firing rates less than 1 Hz were
omitted from the analysis. (c), (d) Same as Figs. 1(g) and 2(g), except inputs were decomposed into their excitatory (E + X ), and inhibitory (I)
components instead of external and recurrent. Red curves show mean excitatory-excitatory input covariance, blue show inhibitory-inhibitory,
purple show excitatory-inhibitory, and black curves show total [same as black curves in Figs. 1(g) and 2(g)]. [(e), (f)] Histogram of input
current covariances across all excitatory cell pairs for a network of size N = 104. [(g), (h)] Same as panels (c) and (d) except we plotted the
variance of covariances across cell pairs instead of the mean. As above, integrated currents have units CmmV, so input covariances have units
C2

mmV2 and the variance of covariances have units C4
mmV4 where Cm is the arbitrary membrane capacitance. In panels (d), (f), and (h), we set

c = 0.1.

consistent with evidence from in vivo recordings. This precise
tracking of fluctuations in excitatory and inhibitory synaptic
currents is referred to as “tight balance” [61] (as opposed to
the “loose balance” of the asynchronous state). The results
would be similar if we decomposed inputs into their external
(X ) and recurrent (R = E + I) sources instead of excitatory
(E + X ) and inhibitory (I). The large fluctuations in synaptic
currents in the correlated state are shared between neurons, but
exhibit trial-to-trial variability [compare Figs. 3(c) to 3(d)],
clarifying that they represent noise correlations instead of
signal correlations.

An intuitive way of understanding the tight balance pro-
duced in the correlated state is to note that shared fluctu-
ations in neurons’ external synaptic input is O(cN ) + O(1)
and these fluctuations are inherited by the recurrent network
so that fluctuations between neurons’ excitatory (E + X ) or
inhibitory (I) synaptic inputs are also O(cN ) + O(1). Hence,
shared fluctuations are O(N ) in the correlated state (c > 0)
and O(1) in the asynchronous state (c = 0). Since connectiv-
ity in the networks is homogeneous, the strongly correlated
input current fluctuations also have a similar magnitude in
the correlated state, so they appear to track each other. In the
asynchronous state, the more weakly correlated fluctuations
are “washed out” by uncorrelated variability in the network,
so currents do not appear to closely track each other. This
implies that the transition from the loose balance of the
asynchronous state to the tight balance of the correlated state
occurs continuously as c is increased from zero, but also that
tight balance is realized at small values of c > 0 whenever N
is large [compare to the discussion of Fig. 2(j) above]. Indeed,

simulations demonstrate this continuous transition between
tight and loose balance as c is modulated [Figs. 3(b), 3(c),
3(e), and 3(f)].

Despite the striking differences between excitatory and
inhibitory synaptic currents in the correlated versus asyn-
chronous states, the distributions of spike count covari-
ances were qualitatively somewhat similar in the two states
[Fig. 4(a)]. It is more common in the literature to report
spike count correlations instead of spike count covariances
and it is common to omit neurons with low firing rates.
Therefore, we next computed the distribution of spike count
correlations between excitatory neurons with firing rates of
at least 1 Hz [Fig. 4(b)]. It is easier to distinguish between
the correlated and asynchronous states from these distribu-
tions, but the distributions are still somewhat similar. Note
especially that, despite the differences between the excitatory
and inhibitory synaptic currents between the c = 0 and c =
0.03 cases [Figs. 3(b) and 3(e)], the distributions of spike
count correlations are qualitatively similar [Figs. 4(a) and
4(b); compare light and dark gray]. The mean spike count
correlations differed by orders of magnitude across the two
states (mean correlation between excitatory neurons’ spike
trains 2.6 × 10−4, 2.4 × 10−2, 6.6 × 10−2 for c = 0, 0.03, 0.1
respectively) while the standard deviation of correlations
was similar across the states (7.4 × 10−2, 8.1 × 10−2, and
1.2 × 10−1 for c = 0, 0.03, 0.1 respectively). Hence, while
the distributions of correlations are qualitatively somewhat
similar, the asynchronous state is distinguished by having a
much larger standard deviation than mean correlation value
[31,48].
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To further quantify differences between covariances in the
asynchronous and correlated states, we first computed the av-
erage covariance between the excitatory and inhibitory input
to pairs of (excitatory) neurons in the network. These averages
have the same dependence on network size, N , as they do
when input currents are broken into external and recurrent
sources [compare Figs. 4(c) and 4(d) to Figs. 1(g) and 2(g)].
Specifically, in the asynchronous state, covariances between
individual current sources are O(1) on average, but cancel to
produce weak O(1/N ) covariance between the total synaptic
input to neurons on average [Fig. 4(c)]. In the correlated
state, the average covariance between individual input sources
is O(N ) and cancellation produces O(1) average total input
covariance [Fig. 4(d)].

Hence, despite the precise cancellation of positive and
negative sources of input covariance at the mean-field level
in the asynchronous state [Fig. 4(c)], the tracking suggested
by this cancellation is apparently not observed at the level of
individual neuron pairs [Fig. 3(c)]. To see why this is the case,
we computed the distribution of input current covariances
across all pairs of excitatory neurons. We found that these
distributions were broad and the distribution of total input
covariance was highly overlapping with the distributions of
individual input current sources [Fig. 4(e), the black distribu-
tion overlaps with the others]. This implies that cancellation
does not reliably occur at the level of individual pairs since,
for example, the total input covariance for a pair of neurons
can be similar in magnitude or even larger than the covariance
between those neurons’ excitatory inputs.

The distributions of input covariances were strikingly dif-
ferent in the correlated state. The distribution of total input
covariances was far narrower than the distributions of indi-
vidual input current sources and the distributions were virtu-
ally nonoverlapping [Fig. 4(f)]. Hence, a precise cancellation
between positive and negative sources of input covariance
must occur for every neuron pair, leading to the tight balance
observed in Fig. 3(e).

These results are better understood by computing the em-
pirical variance of input covariances across neuron pairs in
simulations as N is varied. In the asynchronous state, the em-
pirical variance of input covariances from all sources appear
to scale like O(1) [Fig. 4(g)]. Since the mean input covariance
between individual sources are also O(1) [Fig. 4(c)], the
overlap between distributions in Fig. 4(e) is expected. In the
correlated state, the empirical variances of input covariances
appear to scale like O(N ) except for the variance of the total
input covariance, which appears to scale like O(1) [Fig. 4(h)].
If the variances scale like O(N ), then the standard deviations
would scale like O(

√
N ). This, combined with the fact that

the mean input covariances between individual sources scale
like O(N ), implies that the distributions in Fig. 4(g) will be
nonoverlapping when N is large. The same conclusions would
be reached if we decomposed inputs into their external (X )
and recurrent (R = E + I) sources instead of total excitatory
(X + E ) and inhibitory (I). Note that the scaling of the vari-
ance of covariances reported here was only computed empiri-
cally and we have not derived these scalings analytically. It is
possible that, at larger N , the scaling becomes different from
how it appears from our simulations.

VI. CORRELATED VARIABILITY FROM SINGULAR
MEAN-FIELD CONNECTIVITY STRUCTURE

We have shown that O(1) spike train correlations can be
obtained in balanced networks by including correlations be-
tween neurons in an external layer (〈Sx, Sx〉 ∼ O(1)), defining
what we refer to as the “correlated state.” Previous work
shows that O(1) spike train correlations can be obtained in
the recurrent network with uncorrelated external spike trains
(〈Sx, Sx〉 = 0) when the mean-field connectivity matrix is
constructed in such a way that the recurrent network cannot
achieve the cancellation required for these states to be realized
[39–41]. This can be achieved using networks with several
discrete subpopulations or networks with distance-dependent
connectivity. We first review these previous results by consid-
ering networks with discrete subpopulations, then show that
excitatory-inhibitory tracking is similar to the asynchronous
state in this case.

The recurrent networks considered above have two statisti-
cally homogeneous subpopulations, one excitatory and one in-
hibitory, and the external population is a single homogeneous
population. Suppose instead that there are K subpopulations
in the recurrent network, with the kth population containing
Nk = qkN neurons where

∑
k qk = 1. Connectivity is random

with p jk denoting the connection probability from population
k to j, and j jk/

√
N denoting the strengths of the connections

for j, k = 1, . . . , K . All neurons in population k are assumed
to have the PSC kernel ηk (t ), which is again assumed to
have integral 1. Similarly, suppose that the external network
contains Kx subpopulations each with Nx

k = qx
kNx neurons

where
∑

k qx
k = 1. Feedforward connection probabilities and

strengths are given by px
jk and jx

jk/
√

N for j = 1, . . . , K
and k = 1, . . . , Kx. Assume that qk , p jk , j jk , qx

k , px
jk , and jx

jk
are all O(1). We then define the K × K mean-field recurrent
connectivity matrix by [W ] jk = p jk j jkqk η̃k and the mean-field
feedforward connectivity matrix by [Wx] jk = px

jk jx
jkqx

k η̃
x
k . For

all of the networks considered above, we had K = 2 and
Kx = 1.

When W is an invertible matrix, Eqs. (5), (9), and (19) are
equally valid for networks with several subpopulations as they
are for the simpler networks considered above. Hence, the
mean-field theory of firing rates and correlations extends nat-
urally to networks with several populations [40,41,43–45,58].
However, when W is singular, Eqs. (5), (9), and (19) cannot
be evaluated. Instead, Eq. (5) can be rewritten as

W r = −Wxrx. (23)

When W is singular, this equation only has a solution, r,
when X = −Wxrx is in the range or “column space” of
W . Otherwise, balance is broken. An in-depth analysis of
firing rates in such networks is provided in previous work
[44,45,58] (and extended to spatially continuous networks in
Refs. [41,43,58]), so we hereafter assume that X is in the
range of W and balance is achieved.

A similar analysis may be applied to spike train CSDs. For
simplicity, we assume here that spike trains in the external
population are uncorrelated, 〈Sx, Sx〉 = 0, since this is the case
considered in previous work and since this is the case in which
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a singular W breaks the asynchronous state. Eq. (9) can be
rewritten as

NW 〈S, S〉W ∗ + W diag({Sb, Sb}/qb)W ∗ = 〈X , X〉, (24)

where diag({Sb, Sb}/qb) is a diagonal matrix with ratio of the
mean power spectral density, {Sb, Sb}, divided by qb = Nb/N
on the diagonal, and where we have ignored smaller order
terms. When W is singular, Eq. (24) is not guaranteed to have
a solution, 〈S, S〉. More precisely, a solution can only exist
when the K × K matrix, 〈X , X〉, is in the range of the linear
operator L defined by

LU = WUW ∗.

In that case, Eq. (24) has a solution so that 〈S, S〉 ∼ O(1/N )
and the asynchronous state is still realized. However, if 〈X , X〉
is not in the range of L, the asynchronous state cannot be
realized because Eq. (24) does not have a solution.

Using Eqs. (13), (14), and (16), we can write the mean-field
total input CSD as

〈T , T 〉 = NW 〈S, S〉W ∗ +
√

N (W 〈S, X〉
+ 〈X , S〉W ∗) + 〈X , X〉. (25)

If W is not invertible, then W ∗ has a nontrivial null space. Let
v1, v2, . . . , vn be a basis for the null space of W ∗ and define

P = v1v
∗
1 + v2v

∗
2 + · · · + vnv

∗
n ,

which is a self-adjoint matrix that defines the orthogonal
projection onto the null space of W ∗. Note that P is a Hermi-
tian matrix (P = P∗) and PW = W ∗P = 0 (the zero matrix).
Define the projection A0 = PAP for any matrix A. Unless
〈X , X〉 is carefully constructed otherwise, we can expect that

〈X , X〉0 ∼ 〈X , X〉 ∼ O(1).

Then take the projection of both sides of Eq. (25) above to get

〈T , T 〉0 = 〈X , X〉0 ∼ O(1). (26)

Hence, the total input CSD is O(1) when 〈X , X〉 is not in the
range of L, even though it is 〈X , X〉/N when W is invertible
(i.e., in the asynchronous state). Moreover, the structure of
〈T , T 〉 is given to highest order in N by 〈X , X〉0 = P〈X , X〉P,
which can be computed exactly from knowledge of the struc-
ture of 〈X , X〉 and W .

When neural transfer from T to S is O(1) [see Eq. (6)
and surrounding discussion], this implies that 〈S, S〉 ∼ O(1)
so that the asynchronous state is broken when 〈X , X〉 is not
in the range of L. While we cannot be certain that 〈S, S〉 has
the same structure as 〈T , T 〉, it should have a similar structure
as long as neural transfer of correlations is similar for each
subpopulation.

Previous work [41] derived similar conditions on the
cancellation required for realizing the asynchronous state in
networks of binary neurons, extended the analysis to spatially
extended networks, and derived analytical expressions for
covariances in these networks. Other work [39,40] analyzed
singular connectivity in networks of integrate-and-fire neu-
rons and the extension to spatially extended networks, but
only showed when the asynchronous state was broken and did
not derive the structure of covariances when it was broken.

To demonstrate these results, we consider the same net-
work from above with rewired feedforward projections from
the external population. Specifically, divide the excitatory,
inhibitory, and external populations each into two equal-sized
subpopulations, labeled e1, i1, x1, e2, i2, and x2 where popu-
lation ak contains Na/2 neurons. Hence, the network has the
same total number of neurons as before, but we have simply
subdivided the populations. To distinguish this network from
the one considered in Figs. 1 and 2, we refer to the previous
network as the three-population network and to this modified
network as the six-population network.

We rewire the feedforward connections so that x1 only
connects to e1 and i1 and x2 only projects to e2 and i2.
Specifically, we set the connection probabilities to paj xk =
2pax if j = k and paj xk = 0 if j 	= k for a, b = e, i and j, k =
1, 2, where pab are the connection probabilities for the three-
population network and paj bk for the six-population network.
This rewiring assures that neurons in the recurrent network
receive the same number of feedforward connections on aver-
age from the external population. The recurrent connectivity
structure is not changed at all. Specifically, we set paj bk =
pab for a, b = e, i. All connection strengths are unchanged,
ja j bk = jab for a = e, i and b = e, i, x, and all neurons in the
external population have the same firing rate, rx, as before.
See Fig. 5(a) for a schematic of this network.

The feedforward mean-field connectivity matrix can be
written in block form as

Wx =
[
W 2×1

x 0
0 W 2×1

x

]
,

where 0 is the 2 × 1 zero matrix and W 2×1
x = [wex wix]T

is the 2 × 1 feedforward connectivity matrix for the three-
population network. Note that Wx is 4 × 2 since there are four
populations in the recurrent network and two populations in
the external population. The recurrent mean-field connectivity
matrix is

W = 1

2

[
W 2×2 W 2×2

W 2×2 W 2×2

]
,

where

W 2×2 =
[
wee wei

wie wii

]
is the 2 × 2 recurrent connectivity matrix for the three-
population network. Note that W is 4 × 4. Here, wab =
pab jabqb̃ηb are the same values used above for analyzing the
three-population network.

Even though W is noninvertible, X = Wx[rx rx]T is in the
range of W for this example, so firing rates in the balanced
state can be computed using Eq. (23), and are identical to
the firing rates for the three-population networks considered
above.

The null space of W ∗ is spanned by the orthonormal vectors

v1 = 1√
2

[1 0 −1 0]T

and

v2 = 1√
2

[0 1 0 −1]T
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FIG. 5. Correlated variability in a balanced network with singular mean-field connectivity matrix. (a) Network schematic. The recurrent
network is statistically identical to the networks considered previously, but there are two external populations that each connect to a different
half of the neurons in the recurrent network. (b) Same as Fig. 1(f), but for the multipopulation network from panel (a). (c) Same as Fig. 1(g),
but for the network in panel (a) and where input covariances are only averaged over postsynaptic neurons in the same group (both postsynaptic
cells in e1 or both in e2). The dashed gray curve shows the theoretical prediction for total input covariance (the black curve) from Eq. (27).
(d) Same as Fig. 1(i), but for the network in panel (a) and where spike count covariances are only averaged over postsynaptic neurons in the
same group (first cell in aj and second cell in bj for a, b = e, i and j = 1, 2). [(e), (f)] Same as panels (c) and (d), but covariances are computed
between cells in opposite groups (one cell in a1 and the other cell in b2).

so the projection matrix is given in block form by

P = 1

2

[
I2 −I2

−I2 I2

]
,

where I2 is the 2 × 2 identity matrix.
The external input CSD is determined by the average

number of overlapping feedforward projections to any pair of
neurons in the recurrent network (multiplied by their connec-
tion strength and rx), which gives (in block form)

〈X , X〉 = 2

[〈X , X〉2×2 0
0 〈X , X〉2×2

]
,

where 0 is the 2 × 2 zero matrix and 〈X , X〉2×2 is the exter-
nal input CSD from the three-population network, given by
Eq. (8). Therefore, by Eq. (26),

〈T , T 〉0 = 〈X , X〉0 = P〈X , X〉P

=
[ 〈X , X〉2×2 −〈X , X〉2×2

−〈X , X〉2×2 〈X , X〉2×2

]
. (27)

In other words, the mean total input CSD between excitatory
neurons in the same subgroup (two neurons in e1 or two
neurons in e2; diagonal blocks above) is positive and equal
to half the mean external input between the same neurons.
Hence, the cancellation by the recurrent network only reduces
the external input CSD by a factor of 1/2, as opposed to the
O(1/N ) reduction realized in the asynchronous state (when W
is invertible). In contrast, the mean total input CSD between

excitatory neurons in opposite subgroups (one neuron in e1

and the other in e2; off-diagonal blocks above) has the same
magnitude as for same-subgroup pairs but is negative. This
represents a competitive dynamic between the two groups
since they inhibit one another (recurrent connections are net
inhibitory in balanced networks [28,45]) but receive different
feedforward input noise. Interestingly, the average CSD be-
tween all pairs of spike trains is still O(1/N ) in this example,
but it is easy to design examples with singular W in which this
is not true.

Simulating this network for varying values of N shows that
firing rates approach those predicted by the balance equation
(23) [Fig. 5(b)], confirming that balance is realized. Pairs of
excitatory neurons in the same group (both neurons in e1 or
both neurons in e2) receive positively correlated external input
and recurrent input [Fig. 5(c), purple and green curves] that
are partially canceled by negative correlations between their
recurrent and excitatory input [Fig. 5(c), yellow curve]. Be-
cause the cancellation is only partial, the correlation between
the neurons’ total inputs is O(1) [Fig. 5(c), black curve] in
contrast to the asynchronous state [compare to Figs. 1(g) and
1(h), where cancellation is perfect at large N]. The total input
covariance agrees well with the theoretical prediction from
Eq. (27) [Fig. 5(c), dashed gray line]. As a result of this lack
of cancellation between total input covariance, spike count
covariances are also O(1) and positive between same-group
pairs [Fig. 5(d)]. For opposite group pairs (one neuron in e1

and the other in e2), cancellation is also imperfect, but this
leads to negative total input covariance, in agreement with the
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FIG. 6. Synaptic input currents in a balanced network with cor-
relations from singular mean-field connectivity. Same as Fig. 3(a) ex-
cept for the network from Fig. 5. (a) Input currents to two excitatory
neurons in population e1 (cells 1 and 2). (b) Input currents to an
excitatory neuron in population e2 (cell 3).

theoretical prediction from Eq. (27) [Fig. 5(e)], and leads to
negative spike count covariances between neurons in opposite
populations [Fig. 5(f)].

In summary, we have analyzed two mechanisms to gener-
ate O(1) spike train correlations in balanced networks. For the
first mechanism (Fig. 2), spike trains in the external popula-
tion are correlated so that external input correlations are O(N ).
Cancellation is achieved so that spike train correlations are
reduced to O(1). For the other mechanism (Fig. 5), external
input correlation is O(1), but precise cancellation cannot be
achieved so that spike trains inherit the O(1) correlations from
the input. How could these two mechanisms be distinguished
in cortical recordings? Under the first mechanism, we showed
that fluctuations of inhibitory input to individual neurons
closely tracks fluctuations of other neurons’ excitatory inputs
[Fig. 3(c)]. This should not be the case under the second
mechanism because precise cancellation is not realized. In-
deed, plotting the excitatory and inhibitory input to three
excitatory neurons (two in e1 and one in e2) shows that input
fluctuations are not closely tracked (Fig. 6). This provides a
way to distinguish the two mechanisms from paired intra-
cellular recordings. Indeed, the first mechanism (which we
refer to as the “correlated state”) appears more consistent with
the cortical recordings considered here [compare Fig. 3(a) to
Figs. 3(c) and 6].

VII. SUMMARY AND DISCUSSION

We analyzed correlated variability in recurrent, balanced
networks of integrate-and-fire neurons receiving correlated
feedforward input from an external population. We showed
that correlations between spike trains in the recurrent net-
work are small [O(1/N )] when spike trains in the external
population are uncorrelated, consistent with previous work on
the asynchronous state [31,40], but much larger [O(1)] when
spike trains in the external population are correlated, giving
rise to a “correlated state.” In both states, strong correlations
in the feedforward input are canceled by recurrent synaptic
input due to the excitatory-inhibitory tracking that arises
naturally in densely connected balanced networks. In the
correlated state, this cancellation allows for the derivation of
a concise and accurate closed-form expression for mean-field
low-frequency spike train CSDs and spike count covariances
in terms of synaptic parameters alone. Hence, spike count co-
variances in the correlated state are determined predominately

by synaptic connectivity structure, not neuronal dynamics.
The tracking of excitatory synaptic input by inhibition was
observable on a pair-by-pair basis in the correlated state, but
not the asynchronous state, suggesting that the correlated state
is more consistent with some in vivo recordings.

In our analysis of the correlated state (c > 0), we only
considered recurrent networks with two, statistically homo-
geneous neural populations: one excitatory and one inhibitory
(with the exception of the simple multipopulation model ana-
lyzed in Sec. VI). Our analysis can be extended to arbitrarily
many subpopulations as long as each subpopulation contains
O(N ) neurons, and also extends to networks with connection
probabilities that depend on distance, orientation tuning, or
other continuous quantities. This analysis has been developed
for the asynchronous state in previous work [40,41] and is
easily extended to the correlated state as well. The primary
difference is that 〈X , X〉 is O(N ) instead of O(1).

Previous work has shown that networks with multiple sub-
populations and networks with distance-dependent connectiv-
ity can break the asynchronous state in balanced networks
when the network connectivity structure is constructed in such
a way that the recurrent network cannot achieve the cancel-
lation required for the asynchronous state [39–41], leading
to O(1) correlations between some cell pairs. We showed
that the precise tracking of excitation by inhibition provides
an experimentally testable prediction for distinguishing this
mechanism from the one underlying the correlated state (see
Sec. VI).

Another alternative mechanism for achieving larger cor-
relations in balanced networks is through instabilities of the
balanced state. Such instabilities can create pattern-forming
dynamics that produce intrinsically generated spike train
correlations [42,43,62–68]. Some recordings show that local
circuit connectivity can increase correlations [69], which is
consistent with internally generated correlations, but inconsis-
tent with the mechanisms that we consider here. In cultured
populations of cortical neurons, moderate spike train corre-
lations and excitatory-inhibitory tracking emerge even in the
absence of correlated external input [30], suggesting that they
are generated intrinsically. Correlations from pattern-forming
instabilities can be distinguished from the externally produced
correlations considered here in at least two ways. Since insta-
bilities generate correlations internally, they should produce
weak correlations between activity in the recurrent network
and activity in the external population(s) providing input to
that network [42], in contrast to the mechanisms we consider
here. Also, the presence of pattern forming instabilities in
balanced networks depends on the timescale and spatial extent
of excitatory and inhibitory recurrent synaptic projections
as well as the strength of external input to the inhibitory
population [42,43,62,66,68]. In cultured populations [30],
these parameters can more easily be measured or modified
to help determine the role of pattern-forming instabilities in
generating correlations.

We considered correlations produced by near-synchronous,
correlated spiking in an external population (see Appendix
C), but the correlated state could also be generated by time-
varying firing rates in the external population. This could be
modeled, for example, by replacing the homogeneous Poisson
processes in the external population by doubly stochastic
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Poisson processed in which the rate fluctuations were shared
across cells. This would produce O(N ) external input covari-
ance to the recurrent network and O(1) spike train correlation,
so the mathematical analysis we considered applies equally
well to this model. Future work should consider ways to
distinguish correlations arising through shared rate fluctua-
tions from those generated by near-synchronous spiking in a
presynaptic layer.

In the correlated state, we found that the mean and em-
pirical standard deviation of correlations is similar in mag-
nitude, but in some recordings, mean correlations are much
smaller than standard deviations [32,35,48,70], suggesting
that those circuits were in an asynchronous state, not a cor-
related state, during recording [48]. More generally, some
recordings show very small mean correlations consistent with
the asynchronous state [32,48,70], while others show larger
correlation magnitudes [6,33,71]. Indeed, the magnitude of
mean correlations can depend on many factors [6,71], includ-
ing arousal [72], attention [42,73], stimulus [74], anesthetic
state [31,32,35,38], and cortical area and layer [34,75–78].

In summary, spike train correlations and excitatory-
inhibitory tracking likely arise from multiple mechanisms in
different cortical areas, cortical layers, and conditions. The ex-
ternal input correlations introduced in this work are one such
mechanism. Future studies should work to enumerate these
mechanisms and generate experimentally testable predictions
that distinguish them.

In the correlated state, spike train correlations in the re-
current network are essentially inherited from correlations be-
tween spike trains in the external population. Hence, the O(1)
correlations realized by this mechanism require the presence
of another local network with O(1) correlations. This raises
the question of where the O(1) correlations are originally
generated. One possibility is that they could be generated in
a presynaptic cortical area or layer through the alternative
mechanisms discussed above. Another possibility is that they
originate from a network that is not in the balanced state at
all. Nonbalanced networks can easily achieve O(1) spike train
correlations simply from overlapping synaptic projections.
While cortical circuits are commonly believed to operate in
a balanced state, correlations could originate in thalamus,
retina, or other subcortical neural populations then propagate
to cortex.

The cancellation between variances of covariances ob-
served empirically in simulations [Figs. 4(f) and 4(h)] is an
observation, but we were unable to prove it analytically. Path
integral approaches have recently been applied to compute
variances of covariances in recurrent network models with
uncorrelated external input [48]. Future work should consider
the possibility of extending their analysis to networks with
correlated external input.

Many previous studies of correlated variability in recurrent
networks rely on linear response theory. In contrast, our
derivation of Eqs. (9) and (19) used a weaker assumption that
neural transfer of covariance is O(1) [Eq. (6) and surrounding
discussion]. Despite the fact that the derivation of Eqs. (9)
and (19) do not depend on a linear response assumption, the
equations themselves are linear and are the same that one
would arrive at using linear response theory. Indeed, Eq. (9)
and similar equations have been previously derived for various

models using linear response techniques [5,14,31,41,46–48].
Hence, despite the use of neurons’ gains or susceptibility
functions in this previous work, the resulting equations for
mean-field covariance in the asynchronous state does not
depend on the gains in the large-N limit (see Eqs. (38) and
(39) in the supplement to Ref. [31] and Eq. (38) in Ref. [46]).

Even though the resulting equation is the same, our deriva-
tion of Eq. (9) is more general than derivations that rely
on linear response theory. Specifically, linear response the-
ory assumes that 〈Sa,Ub〉 ≈ Aa〈Ta,Ub〉, but our derivation
is valid when relationship between 〈Sa,Ub〉 and 〈Ta,Ub〉 is
nonlinear, as long as 〈Sa,Ub〉/〈Ta,Ub〉 ∼ O(1) as N → ∞.
Our derivation also applies when 〈Sa,Ub〉/〈Ta,Ub〉 depends
on the identity of U , e.g., it is different for U = S versus U =
X . Our derivation is also valid when nonlinear neural trans-
fer causes cross-frequency coupling, i.e., when 〈Sa,Ub〉( f0)
depends on 〈Ta,Ub〉( f ) for values of f 	= f0. This is an
interesting conclusion because frequencies are decoupled in
Eqs. (9) and (19), indicating an asymptotic linearity of the
relationship between mean-field external input covariance and
mean-field spike count covariance even in a nonlinear system.
This is possible because synapses in our model are linear and
synaptic filtering dominates the network response properties
at sufficiently large N and low frequencies [see Eqs. (6) and
(12), and surrounding discussion].

When input correlations are weak, covariance transfer for
integrate-and-fire neurons is approximately linear so linear re-
sponse approaches are justified [8,53,54], but transfer can be-
come nonlinear [but still O(1)] when correlations are stronger
[54,79,80]. Our results show that, even when the transfer of
input covariance to spike train covariance is nonlinear, the
mean-field relationship between 〈X , X〉 and 〈S, S〉 is still
linear to highest order in N and is the same relationship one
would obtain if transfer were linear. Note that this linear
relationship only applies at the mean-field level. Individual,
pairwise CSDs between spike trains might still be nonlinearly
related to their pairwise external input CSDs. Recent work has
called for looking beyond linear analysis of neuronal networks
[81]. Our analysis shows that, even in networks where neural
transfer of inputs is nonlinear, linear mean-field analysis can
still be accurate and useful.

Despite the fact that Eq. (9) does not depend on neurons’
susceptibility functions or gains, it does depend on neurons’
mean spike count variance or power spectral densities. In
contrast, Eq. (19) shows that mean-field covariance in the
correlated state does not depend (to highest order in N)
on neurons’ susceptibility functions, gains, power spectral
densities, or spike count variance, but only involves synaptic
parameters. This is similar to previous work showing that
the dominant frequencies of oscillatory activity in balanced
networks depends only on synaptic parameters [82]. Similarly,
previous work showed that correlations in binary networks of
inhibitory neurons without external drive are independent of
connection strengths in the limit of strong connectivity (see
Eq. (30) in Ref. [83] and Eq. (32) in Ref. [46]). The indepen-
dence of spike count covariance on neurons’ susceptibilities
and power spectral densities is an important conclusion be-
cause, for spiking neuron models, power spectral densities,
and susceptibility functions (or spike count variances and
gains) can depend nonlinearly on the parameters of the neuron
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model as well as first, second, and higher moments of the
neurons’ input statistics [84–87] and they can be difficult to
compute numerically.

Numerical methods for approximating power spectral den-
sities and susceptibility functions in networks of integrate-
and-fire neurons have been developed using a diffusion ap-
proximation and Fokker-Planck techniques [8,9,11,12,49,88],
but this approach assumes that neurons’ synaptic input is
dominated by or well approximated by Gaussian white noise.
Previous work satisfies this assumption by including Gaus-
sian white noise as external input and making input from
the recurrent network much weaker than this white noise
input (for example, by making recurrent connectivity weak
or sparse). In addition, instantaneous synapses [ηb(t ) = δ(t )]
can make the diffusion approximation more accurate (al-
though see Refs. [89,90]). The diffusion approximation is
not valid in our model since our external input is not well
approximated by Gaussian white noise, our recurrent input is
approximately as strong as external input, and our synapses
are not instantaneous. While some specialized approximations
have been developed to avoid the assumption of Gaussian
white noise input in various models and parameter regimes
[1,15,55,90–93], these approaches are outside the scope of
our study since our central conclusion is that these approxi-
mations are unnecessary for deriving mean-field spike count
covariance in the correlated state.

Three unproven assumptions underly our mean-field anal-
ysis of the correlated state. The first assumption is that neural
transfer is O(1) [Eq. (6) and surrounding discussion]. The
third assumption is that mean-field power spectral densities or
spike count variances {Sa, Sa} are O(1). The third assumption
is that variability connection strengths is not strongly corre-
lated with variability in individual CSD values (see comment
in derivation of Claim 2 in Appendix A). These assumptions
are made in other work, even if not stated explicitly. We have
been unable to rigorously prove these assumptions for the
model studied here, leaving an open problem for future work.

In summary, we showed that correlations in balanced
networks can be caused by feedforward input from a pop-
ulation of neurons with correlated spike trains, defining the
“correlated state.” In this state, mean low-frequency CSD or
spike count covariance is determined by a simple, closed-
form equation of known parameters, greatly simplifying the
analysis of spike count correlations in such networks. The
correlated state predicts a precise balance between the fluctu-
ations in excitatory and inhibitory synaptic input to individual
neuron pairs, consistent with some in vivo recordings [23].
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APPENDIX A: MEAN-FIELD ANALYSIS OF CORRELATED
VARIABILITY IN THE ASYNCHRONOUS AND

CORRELATED STATES

Here, we give a detailed derivation of mean-field CSDs
that applies to both the asynchronous and correlated states.
The only differences between parameters in those states is that
〈Sx, Sx〉 = 0 in the asynchronous state and 〈Sx, Sx〉 ∼ O(1) in
the correlated state. We derive CSDs in terms of 〈Sx, Sx〉 so
that the results can be applied to either state. To more clearly
organize the computation, we organize the calculation into the
derivation of several claims that are derived separately. We
start with a derivation of the mean-field external input CSD.

Claim 1. Mean-field external input CSD is given by

〈X , X〉 = NWx〈Sx, Sx〉W ∗
x + q−1

x WxrxW
∗

x

− q−1
x Wx〈Sx, Sx〉W ∗

x . (A1)

Proof. We first compute the external input CSD between
neuron j in population a = e, i and neuron k in population
b = e, i as

〈
X a

j , X b
k

〉 =
〈

Nx∑
m=1

Jax
jm

(
ηx ∗ Sx

m

)
,

Nx∑
n=1

Jbx
kn

(
ηx ∗ Sx

n

)〉

=
Nx∑

m,n=1

Jax
jmJbx

kn η̃xη̃
∗
x

〈
Sx

m, Sx
n

〉
= |̃ηx|2〈Sx, Sx〉

∑
m 	=n

Jax
jmJbx

kn

+ |̃ηx|2rx

Nx∑
m=1

Jax
jmJbx

km,

where we used the bilinearity of the Hermitian cross-spectral
operator, the fact that 〈Sx

m, Sx
n〉 = 〈Sx, Sx〉 for m 	= n, and

〈Sx
m, Sx

m〉 = rx since external spike trains are Poisson pro-
cesses. Note that the convolution with ηx(t ) turned into a mul-
tiplication by its Fourier transform, η̃x( f ), because the cross-
spectral operator, 〈·, ·〉, takes a pair of stationary stochastic
processes (in the time domain) and returns their cross-spectral
density (in the frequency domain). Averaging over j and k and
using Eq. (2), we get

〈Xa, Xb〉 = |̃ηx|2 jax pax jbx pbxqx[(Nx − 1)〈Sx, Sx〉 + rx].

Writing this in matrix form and using wax = η̃x jax paxqx gives
Eq. (A1). �

When we write 〈Sx, Sx〉 ∼ O(c) so that c = 0 in the asyn-
chronous state and c ∼ O(1) in the correlated state, Eq. (A1)
implies that

〈X , X〉 ∼ O(cN ) + O(1).

This expression helps understand the dependence of correla-
tions on both c and N .

A similar derivation gives the mean-field CSD between
neurons’ total and external inputs:
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Claim 2. The mean-field CSD between external and total
external inputs is given by

〈T , X〉 =
√

NW 〈S, X〉 + 〈X , X〉

+ 1√
N

W Q−1{S, X} + O

( 〈S, X〉√
N

)
, (A2)

where

Q =
[

qe 0
0 qi

]
,

{S, X} =
[{Se, Xe} 0

0 {Si, Xi}
]
,

and

{Sa, Xa} = avgk

〈
Sa

k , X a
k

〉
quantifies the average CSD between neurons’ spike trains and
their own external inputs.

Proof. First, break the total input into its constituent parts
T = R + X = E + I + X , so

〈T , X〉 = 〈E, X〉 + 〈I, X〉 + 〈X , X〉.
To compute the 〈E, X〉 term, we begin with

〈
Ea

j , X b
k

〉 =
〈

Ne∑
m=1

Jae
jm

(
ηe ∗ Se

m

)
, X b

k

〉

= η̃e

Ne∑
m=1

Jae
jm

〈
Se

m, X b
k

〉
.

Before taking averages, note that whenever b = e, we need
to treat the m = k term separately since it corresponds to the
CSD between the spike train of and external input to the same
neuron, which could scale differently than the case when b =
i or m 	= k. Put another way, note that the definition of the
mean-field values, 〈Ea, Xb〉 and 〈Se, Xb〉, assumes that m 	= k
or b 	= e [see Eq. (4)]. Hence, computing averages separately
for each of b = e, i gives

〈Ea, Xe〉 = η̃e jae pae√
N

(Ne − 1)〈Se, Xe〉 + {Se, Xe}

=
√

Nwae〈Se, Xe〉 + wae

qe

√
N

({Se, Xe} − 〈Se, Xe〉)

and

〈Ea, Xi〉 = η̃e jae pae√
N

Ne〈Se, Xi〉 =
√

Nwae〈Se, Xi〉.

Note that this step requires us to assume that individual
values of the random variable, Jae

jm, are not strongly correlated
with individual values of 〈Se

m, X b
k 〉, so that the expectation

of their product can be replaced by the product of their
expectations. This and similar assumptions are implicit in
derivations in other studies, but are not typically proven or
even explicitly stated.

An identical calculation for 〈Ia, Xb〉 gives

〈Ia, Xi〉 =
√

Nwai〈Si, Xi〉 + wai

qi

√
N

({Si, Xi} − 〈Si, Xi〉)

and

〈Ia, Xe〉 =
√

Nwai〈Si, Xe〉.
This allows us to write the CSD between recurrent and total
input in matrix form as

〈R, X〉 = 〈E, X〉 + 〈I, X〉

=
√

NW 〈S, X〉 + 1√
N

W Q−1{S, X}

+ O

( 〈S, X〉√
N

)
.

Now putting together 〈T , X〉 = 〈R, X〉 + 〈X , X〉 gives
Eq. (A2). �

A similar derivation gives the mean-field CSD between
neurons’ total and external inputs:

Claim 3. The mean-field CSD between spike trains and
total external inputs is given by

〈T , S〉 =
√

NW 〈S, S〉 + 〈X , S〉

+ 1√
N

W Q−1{S, S} + O

( 〈S, S〉√
N

)
(A3)

where

{S, S} =
[
{Se, Se} 0

0 {Si, Si}

]
and

{Sa, Sa} = avgk

〈
Sa

k , Sa
k

〉
quantifies the average power spectral densities of neurons’
spike trains.

Proof. The derivation is identical to the derivation of
Eq. (A2) above, but with X replaced by S. �

We now use Claim 2 to derive the asymptotic behavior of
〈S, X〉.

Claim 4. Under the assumption of O(1) transfer of mean-
field covariance (i.e., Eq. (7)) and under the assumption that
{S, S} ∼ O(1) (i.e., neurons’ mean power spectral densities
are O(1)), we have that

〈S, X〉 = 1√
N

W −1〈X , X〉 + O

( 〈X , X〉
N

)
(A4)

in the limit of large N . For finite N , this approximation is only
accurate whenever ∣∣∣∣ 〈T , X〉

W 〈S, X〉
∣∣∣∣ �

√
N, (A5)

where the division is performed element-wise.
Proof. Combining the assumption of O(1) transfer of

mean-field covariance [Eq. (6)] with Eq. (A2) gives

〈S, X〉 ∼
√

NW 〈S, X〉 + 〈X , X〉

+ 1√
N

W Q−1{S, X} + O

( 〈S, X〉√
N

)
. (A6)

More rigorously, dividing both sides of Eq. (A2) element-wise
by

√
NW 〈S, X〉 and applying Eq. (7) give Eq. (A6). At finite

N , note that this derivation of Eq. (A6) from Eq. (A2) is
accurate whenever Eq. (A5) is true.
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We do not know the exact scaling of {S, X} with N , but
applying the Cauchy-Scwartz inequality gives

|{S, X}| �
√

{S, S}{X , X} = O(
√

{X , X}), (A7)

where we used our assumption that {S, S} ∼ O(1). To com-
pute {X , X}, we can repeat the derivation in Claim 1 with
j = k to get

{X , X} = NWx〈Sx, Sx〉W ∗
x + q−1

x P−1
x WxrxW

∗
x

− q−1
x Wx〈Sx, Sx〉W ∗

x .

where

Px =
[

pex 0
0 pix

]
.

Comparing this to Eq. (A1), we may conclude that

{X , X} ∼ 〈X , X〉
and therefore [using Eq. (A7) and the fact that {X , X} � O(1)
in both the asynchronous and correlated states], we have that

{S, X} � O(〈X , X〉).

This allows us to rewrite Eq. (A6) as

〈S, X〉 ∼
√

NW 〈S, X〉 + 〈X , X〉 + O

( 〈X , X〉 + 〈S, X〉√
N

)
.

The only way that this equation can be self-consistent is if
the terms on the right-hand side cancel as N → ∞, which
implies that 〈S, X〉 ∼ 〈X , X〉/√N and, more specifically, that
Eq. (A4) is satisfied as N → ∞. �

We now derive the asymptotic values of mean-field spike
train CSDs.

Claim 5. Under the assumptions made in Claim 4, we have
that

〈S, S〉 = 1

N
W −1〈X , X〉W −∗ − 1

N
Q−1{S, S} + O

( 〈X , X〉
N3/2

)
(A8)

in the limit of large N . For finite N , this approximation is
accurate under Eq. (A5) and∣∣∣∣ 〈T , S〉

W 〈S, S〉
∣∣∣∣ �

√
N, (A9)

where the division is performed element-wise.
Proof. The proof is similar to that of Claim 4. Combining

the assumption of O(1) transfer of mean-field covariance
[Eq. (6)] with Eq. (A3) gives

〈S, S〉 ∼
√

NW 〈S, S〉 + 〈X , S〉

+ 1√
N

W Q−1{S, S} + O

( 〈S, S〉√
N

)
. (A10)

More rigorously, dividing both sides of Eq. (A3) element-wise
by

√
NW 〈S, S〉 and applying Eq. (7) give Eq. (A10). At finite

N , note that this derivation of Eq. (A10) from Eq. (A3) is
accurate whenever Eq. (A9) is true for U = S.

Taking the conjugate transpose of Eq. (A4) gives

〈X , S〉 = 〈X , S〉∗ = 1√
N

〈X , X〉W −∗ + O

( 〈X , X〉
N

)
.
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FIG. 7. Results from simulations with different connectivity pa-
rameters. [(a)–(c)] Same as Figs. 1(i), 1(j), and 2(i) respectively
except that connectivity parameters were changed to jee/Cm =
35 mV, jei/Cm = −200 mV, jie/Cm = 120 mV, jii/Cm = −300 mV,
jex/Cm = 200 mV, and jixCm = 150 mV. (d) Same as Fig. 1(i) except
external input was deterministic and time-constant (X a

j (t ) = X a) so
〈X , X〉 = 0 and only the second term in Eq. (9) is nonzero. The
dotted line shows this second term.

Plugging this into Eq. (A10) gives

〈S, S〉 ∼
√

NW 〈S, S〉 + 1√
N

〈X , X〉W −∗

+ 1√
N

W Q−1{S, S} + O

( 〈S, S〉√
N

)
+ O

( 〈X , X〉
N

)
.

The only way this equation is self-consistent is if the terms
on the right-hand side cancel as N → ∞, which implies
that 〈S, S〉 ∼ O(〈X , X〉/N + {S, S}/N ) and, more specifically,
Eq. (A8) is satisfied as N → ∞. For accuracy at finite N ,
we explicitly needed to assume Eq. (A9), but also implicitly
assumed Eq. (A5) when we used Eq. (A4). �

APPENDIX B: RESULTS FROM SIMULATIONS WITH
DIFFERENT CONNECTIVITY PARAMETERS

So far, all of our simulations used the same connec-
tivity parameters. Here, we consider results with different
parameters. Specifically, we set jee/Cm = 35 mV, jei/Cm =
−200 mV, jie/Cm = 120 mV, jii/Cm = −300 mV, jex/Cm =
200 mV, and jixCm = 150 mV. Note that jab was scaled by√

N to produce the true connection strengths, as indicated
in the results section. We then repeated the simulations from
Figs. 1(i), 1(j), and 2(i). The results, shown in Figs. 7(a), 7(b)
and 7(c), respectively, show similar overall findings to those
reported for the connectivity parameters used in the Results
section.
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APPENDIX C: GENERATION OF CORRELATED SPIKE
TRAINS FOR EXTERNAL INPUTS

To generate correlated, Poisson spike trains for the external
population in the correlated state, we used the multiple inter-
action process (MIP) method [84] with jittering. Specifically,
we generated one shared “mother” process with firing rate
rm = rx/c. Then, for each of the Nx “daughter” processes,
we randomly kept each spike in the mother process with
probability c. As a result, each daughter process is a Poisson
process with firing rate crm = rx and a proportion of c of the
spikes are shared between any two daughter processes. To
get rid of perfect synchrony between the daughter processes,
we jittered each spike time in each daughter process by a
normally distributed random variable with mean zero and
standard deviation τc = 5 ms. Upon jittering, the daughter
processes remain Poisson and the resulting CSD between
daughter processes is given by Eq. (20). Spike count correla-
tions between the daughter processes over large time windows
are exactly c. The daughter processes were used as the spike
trains, Sx

j (t ) in the external population in the correlated state.
See Ref. [84] for a deeper analysis of this algorithm.

APPENDIX D: PARAMETER VALUES AND DETAILS
OF COMPUTER SIMULATIONS

All connection probabilities were pab = 0.1 for a = e, i
and b = e, i, x. Synaptic timescales were τe = 8 ms, τi =
4 ms, and τx = 10 ms. The firing rate of the external popula-

tion was rx = 10 Hz and, in the correlated state, the correlation
was c = 0.1 with a jitter of τc = 5 ms. All covariances and
correlations were computed by counting spikes or integrating
continuous processes over a window of length 250 ms. Mem-
brane capacitance, Cm, is arbitrary so we report all current-
based parameters in relation to Cm. For convenience, one
can therefore set Cm = 1. Unscaled connection strengths were
jee/Cm = 25 mV, jei/Cm = −150 mV, jie/Cm = 112.5 mV,
jii/Cm = −250 mV, jex/Cm = 180 mV, and jixCm = 135 mV.
Note that jab was scaled by

√
N to produce the true connection

strengths, as indicated in the results section. Neuron param-
eters are gL = Cm/15, EL = −72 mV, Vth = −50 mV, Vre =
−75 mV, Vlb = −100 mV, �T = 1 mV, and VT = −55 mV.
Synaptic currents in figures are reported in units Cm V/s.
Covariances between synaptic currents are computed between
integrals of the currents (see Eq. (3) and surrounding discus-
sion), so the covariances have units C2

m mV2.
The differential equations defining the neuron model were

solved using a forward Euler method with time step of 0.1 ms.
Statistics in Figs. 1(d), 2(c), 2(d) 4(e), and 4(f) were computed
from a simulation of duration 50 s. Statistics in Figs. 1(e)–1(i),
2(e)–2(i), and 4(c), 4(d), 4(g), and 4(h) were computed by
repeating a simulation of duration 50 s over ten trials for
each value of N and then averaging over trials. For each
trial, network connectivity was generated with a different
random seed, so the statistics are averaged over time and
over realizations of the “quenched” variability of network
connectivity.
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[54] E. Shea-Brown, K. Josić, J. de la Rocha, and B. Doiron, Corre-
lation and Synchrony Transfer in Integrate-And-Fire Neurons:
Basic Properties and Consequences for Coding, Phys. Rev. Lett.
100, 108102 (2008).

[55] R. Rosenbaum, A diffusion approximation and numerical meth-
ods for adaptive neuron models with stochastic inputs, Front.
Comput. Neurosci. 10, 1 (2016).

[56] N. Fourcaud-trocme, D. Hansel, Carl Van Vreeswijk, and
N. Brunel, How spike generation mechanisms determine the
neuronal response to fluctuating inputs, J. Neurosci. 23, 11628
(2003).

052414-20

https://doi.org/10.1038/nature01616
https://doi.org/10.1038/nature01616
https://doi.org/10.1038/nature01616
https://doi.org/10.1038/nature01616
https://doi.org/10.1038/nature02116
https://doi.org/10.1038/nature02116
https://doi.org/10.1038/nature02116
https://doi.org/10.1038/nature02116
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
https://doi.org/10.1523/JNEUROSCI.5297-05.2006
https://doi.org/10.1038/nn.2105
https://doi.org/10.1038/nn.2105
https://doi.org/10.1038/nn.2105
https://doi.org/10.1038/nn.2105
https://doi.org/10.1038/nature09119
https://doi.org/10.1038/nature09119
https://doi.org/10.1038/nature09119
https://doi.org/10.1038/nature09119
https://doi.org/10.1038/nature09079
https://doi.org/10.1038/nature09079
https://doi.org/10.1038/nature09079
https://doi.org/10.1038/nature09079
https://doi.org/10.1038/nn.3701
https://doi.org/10.1038/nn.3701
https://doi.org/10.1038/nn.3701
https://doi.org/10.1038/nn.3701
https://doi.org/10.1523/JNEUROSCI.3349-13.2014
https://doi.org/10.1523/JNEUROSCI.3349-13.2014
https://doi.org/10.1523/JNEUROSCI.3349-13.2014
https://doi.org/10.1523/JNEUROSCI.3349-13.2014
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1162/089976698300017214
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1126/science.274.5293.1724
https://doi.org/10.1038/nn.4415
https://doi.org/10.1038/nn.4415
https://doi.org/10.1038/nn.4415
https://doi.org/10.1038/nn.4415
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179850
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1126/science.1179867
https://doi.org/10.1038/nn.2842
https://doi.org/10.1038/nn.2842
https://doi.org/10.1038/nn.2842
https://doi.org/10.1038/nn.2842
https://doi.org/10.1152/jn.00846.2012
https://doi.org/10.1152/jn.00846.2012
https://doi.org/10.1152/jn.00846.2012
https://doi.org/10.1152/jn.00846.2012
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1016/j.neuron.2014.02.006
https://doi.org/10.1038/nature13159
https://doi.org/10.1038/nature13159
https://doi.org/10.1038/nature13159
https://doi.org/10.1038/nature13159
https://doi.org/10.1016/j.neuron.2015.09.012
https://doi.org/10.1016/j.neuron.2015.09.012
https://doi.org/10.1016/j.neuron.2015.09.012
https://doi.org/10.1016/j.neuron.2015.09.012
https://doi.org/10.1073/pnas.1410509112
https://doi.org/10.1073/pnas.1410509112
https://doi.org/10.1073/pnas.1410509112
https://doi.org/10.1073/pnas.1410509112
https://doi.org/10.1038/ncomms7177
https://doi.org/10.1038/ncomms7177
https://doi.org/10.1038/ncomms7177
https://doi.org/10.1038/ncomms7177
https://doi.org/10.1038/nn.4433
https://doi.org/10.1038/nn.4433
https://doi.org/10.1038/nn.4433
https://doi.org/10.1038/nn.4433
https://doi.org/10.1103/PhysRevX.8.031072
https://doi.org/10.1103/PhysRevX.8.031072
https://doi.org/10.1103/PhysRevX.8.031072
https://doi.org/10.1103/PhysRevX.8.031072
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1016/j.neuron.2018.11.034
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1103/PhysRevX.4.021039
https://doi.org/10.1016/j.neuron.2016.10.027
https://doi.org/10.1016/j.neuron.2016.10.027
https://doi.org/10.1016/j.neuron.2016.10.027
https://doi.org/10.1016/j.neuron.2016.10.027
https://doi.org/10.1103/PhysRevE.93.040302
https://doi.org/10.1103/PhysRevE.93.040302
https://doi.org/10.1103/PhysRevE.93.040302
https://doi.org/10.1103/PhysRevE.93.040302
https://doi.org/10.1371/journal.pcbi.1003428
https://doi.org/10.1371/journal.pcbi.1003428
https://doi.org/10.1371/journal.pcbi.1003428
https://doi.org/10.1371/journal.pcbi.1003428
http://arxiv.org/abs/arXiv:1711.10930
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1093/cercor/7.3.237
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1016/j.physrep.2003.10.015
https://doi.org/10.1103/PhysRevE.76.021919
https://doi.org/10.1103/PhysRevE.76.021919
https://doi.org/10.1103/PhysRevE.76.021919
https://doi.org/10.1103/PhysRevE.76.021919
https://doi.org/10.1038/nature06028
https://doi.org/10.1038/nature06028
https://doi.org/10.1038/nature06028
https://doi.org/10.1038/nature06028
https://doi.org/10.1103/PhysRevLett.100.108102
https://doi.org/10.1103/PhysRevLett.100.108102
https://doi.org/10.1103/PhysRevLett.100.108102
https://doi.org/10.1103/PhysRevLett.100.108102
https://doi.org/10.3389/fncom.2016.00039
https://doi.org/10.3389/fncom.2016.00039
https://doi.org/10.3389/fncom.2016.00039
https://doi.org/10.3389/fncom.2016.00039
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003
https://doi.org/10.1523/JNEUROSCI.23-37-11628.2003


CORRELATED STATES IN BALANCED NEURONAL … PHYSICAL REVIEW E 99, 052414 (2019)

[57] N. Fourcaud-Trocmé and N. Brunel, Dynamics of the instan-
taneous firing rate in response to changes in input statistics,
J. Comput. Neurosci. 18, 311 (2005).

[58] C. Ebsch and R. Rosenbaum, Imbalanced amplification: A
mechanism of amplification and suppression from local im-
balance of excitation and inhibition in cortical circuits, PLoS
Comput. Biol. 14, e1006048 (2018).

[59] Robert J. Rosenbaum, J. Trousdale, and Krešimir Josić, Pooling
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