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Driven transport on a flexible polymer with particle recycling:
A model inspired by transcription and translation
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Many theoretical works have attempted to coarse grain gene expression at the level of transcription and
translation via frameworks based on exclusion processes. Usually in these models the three-dimensional
conformation of the substrates (DNA and mRNA) is neglected, and particles move on a static unidimensional
lattice in contact to an infinite reservoir. In this work we generalize the paradigmatic exclusion process and study
the transport of particles along a unidimensional polymerlike flexible lattice immersed in a three-dimensional
particle reservoir. We study the recycling of particles in the reservoir, how the transport is influenced by the
global conformation of the lattice, and, in turn, how particle density dictates the structure of the polymer.
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I. INTRODUCTION

Since their first formulation at the end of the 1960s [1],
driven lattice models drew the attention of the scientific com-
munity for both their relevance in nonequilibrium statistical
mechanics, the novelty of their theoretical approaches, and
their powerful applications in transport processes [2].

Historically, the prototypical model of unidimensional traf-
fic, the totally asymmetric simple exclusion process (TASEP),
has been developed and then extended to describe the collec-
tive movement of biological “active particles” such as ribo-
somes, RNA polymerases, or motor proteins, on their respec-
tive unidimensional substrates (mRNA, DNA, microtubules,
or actin filaments). Most of state-of-the-art models describing
the gene expression stages of transcription and translation
exploit implicitly or explicitly this class of models [3–6];
despite their coarse-grained nature, these frameworks are able
to capture the main features of the biological processes.

Although it is incontestable that strands of mRNA or
DNA molecules are dynamical objects with complex three-
dimensional conformations, common models approximate
those tracks with unidimensional unstructured lattices and ne-
glect their polymerlike nature. The interdependence between
the lattice conformation and the transport process, however,
should be considered when focusing on quantitative modeling
aimed to compare experimental data and extract information
on the molecular mechanisms. For instance, spatial clustering
of genes in transcription factories [7] suggests an interplay
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between structural conformation of the DNA, gene expres-
sion, and local recycling of polymerases. Similar effects,
including the importance of local ribosome concentrations,
can also be expected in translation since the ribosomes are
not uniformly distributed in the cytoplasm [8]. Furthermore,
different conformations assumed by the transcript can explain
the gene length-dependence of mRNA translation, as we have
recently addressed [9]. Although there are a few models con-
sidering the effects of the transport on the substrate dynamics
[10] or on local structures [11], its impact on the overall
three-dimensional conformation of the lattice has not been
explored.

In this work we propose a nonequilibrium model of trans-
port on a polymerlike substrate, which is immersed in a three-
dimensional reservoir of diffusing particles. In our derivation
we implicitly consider that the timescales of transport and
polymer dynamics are well separated [12]: Polymerases or
ribosomes move at a speed of ∼10 nm/s, while the dynamics
of structural elements of nucleotide chains is orders of magni-
tude faster [12]. In the case of mRNA, for instance, the ribo-
somes advances roughly 10 persistence lengths of the polymer
chain (which is roughly 10 × 1 nm) in a second. Hence, it is
reasonable to assume that the polymer can equilibrate after
each particle step, and the local polymer conformation does
not affect the motion of particles. We thoroughly explain the
assumptions of the model in Appendix A.

We investigate (i) how the three-dimensional structure of
the lattice affects the particle recruitment and the transport
process, as well as (ii) how the driven lattice gas impacts, via
the particle density, global features of the polymer. We start
with a short review of the well known TASEP results, then we
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FIG. 1. Scheme of the standard exclusion process (a) and its
phase diagram (b), where we emphasized in each phase a typical
configuration of the lattice. The same process on a polymer, studied
in this paper, is shown in panel (c), where R is the end-to-end
distance. Particles are represented by small discs, while large discs
represent the reaction volume of the entrance and exit sites (first and
last site).

couple the system to a three-dimensional diffusive reservoir
of particles, and eventually study the interplay between the
local concentration of particles, the lattice conformation and
the transport process.

A. Reminder of TASEP results

In its simplest formulation the TASEP consists of a discrete
lattice of L sites where particles are injected from one end
with rate α, move from one site to the following one—if
empty—with rate p, and are eventually removed from the
last site with rate β, as illustrated in Fig. 1(a). The system
is usually studied by varying the dimensionless parameters
ᾱ := α/p and β̄ := β/p, and the phase diagram of the system
is known exactly [13]. This is a rich model showing three
different regimes (LD, low density; HD, high density; MC,
maximal current), as well as first and second-order phase
transitions. The LD-HD transition line shows a coexistence
between the two phases, and it is often named SP (shock
phase). The phase diagram is sketched in Fig. 1(b), and each
phase is characterised by a density of particles ρ (average
number of particles per site) and current J (particles passing
through a site per unit time). Mean-field approaches give the
steady-state correct results, which we report in Table I, in the
thermodynamic L → ∞ limit.

We emphasize that, practically, exact densities and currents
of lattices with a few tenths of sites can be reliably approxi-
mated with the mean-field expressions provided in Table I.

TABLE I. Summary of the TASEP mean-field results.

Phase Limits Density Current

LD ᾱ < β̄, ᾱ < 1/2 ρ = ᾱ J = pᾱ(1 − ᾱ)
HD ᾱ > β̄, β̄ < 1/2 ρ = 1 − β̄ J = pβ̄(1 − β̄ )
MC ᾱ, β̄ � 1/2 ρ = 1/2 J = p/4

II. RESULTS

A. Coupling TASEP on a polymer and a diffusive reservoir

In the standard TASEP, the lattice is immersed in an infinite
reservoir of particles for which the density determines the en-
try rate α; the system can also be coupled to a finite reservoir
of particles, and the effects of competition and depletion of
a homogeneous reservoir without spatial extension has been
tackled previously [14]. Here instead we assume that the
entry rate depends on the local concentration of particles c
in a reaction volume Va of radius a around the first site, see
Fig. 1(c):

ᾱ = α0

p

1

Va

∫
Va

c(r)d3r , (1)

where c(r) is the concentration of particles in the reservoir
at the position r, and α0 plays the role of the reaction rate
constant. In other words, particles are recruited in the lattice
with a certain probability if they are at a distance smaller
than a from the entry site. For what concerns the lattice,
in a wormlike chain polymer with persistence length lp, the
relation between its length L and the mean-square of the
end-to-end distance R is given by [15]

R =
[

2l2
p

(
L

lp
− 1 + e− L

lp

)] 1
2

∼ √
2lpL, (2)

where we have approximated Eq. (2) since L � lp in many
practical cases. For instance, a typical mRNA of length L =
300 codons has a persistence length of ∼1 codon ∼1 nm
[16]. Although R is a fluctuating variable, in what follows we
limit ourselves to its mean-square value. The study of the role
of fluctuations in this system goes beyond the scope of this
paper. We briefly address this issue in Appendix A. Other
polymer models (like with self-avoiding monomer interac-
tions) can also be implemented, as the reader can appreciate in
Appendix F. This, however, does not change the conclusions
of our work and the physics of the system.

For practical reasons we consider that the origin of the
coordinate reference system coincides with the center of the
reaction volume surrounding the entry site.

To couple the transport process and the reservoir of parti-
cles we need to compute c(r) inside Va, which can be done by
solving the diffusion equation with a sink centered at position
0 (S−) and a source at position R (S+):

D∇2c(r) = S+(r) − S−(r) , (3)

where D is the diffusion coefficient of the particles
in the reservoir. The sink and the source, respectively,
describe the depletion, where particles are injected in the first
site of the lattice, and their appearance around the last site
where they abandon the unidimensional track. We exploit
the steady-state condition, and considering for the sake of
simplicity that the reaction volumes of sink and source are the
same, we have S±(r) := ±J/Va. This connects the diffusion
Eq. (3) to the TASEP currents in the three different phases
(see Table I). We notice that the source S+ term in Eq. (3)
introduces a spatial feedback, which we also refer to as
particle recycling, as particles leave the end site and, via
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diffusion, contribute to the local concentration inside the sink
S−.

The Poisson Eq. (3) is the same holding in electrostatics
to compute the potential V (r) in a system with two spherical
and homogeneous distributions of charges [17,18]. For an
individual S±, the concentration c(x) at a distance x from the
center of each sphere can then be written as

c(x) =
{

± J
4πD|x| outside S±

± J
8πDa3 (3a2 − x2) inside S±.

(4)

By exploiting the linearity of the diffusion equation and fixing
the density far away from the lattice to be c∞, we construct the
expression of c(r) used to compute the entry rate. Solving the
integral in Eq. (1), we obtain the expression for the injection
ᾱ as a function of the current J and the distance R between the
entry and exit sites:

ᾱ = ᾱ∞ + J

p
� , (5)

where ᾱ∞ := α0c∞/p corresponds to the injection parameter
usually considered in standard TASEP-based models (i.e.
without particle recycling and reservoir depletion), and

� :=
{

α0
4πDa

(
1

2d − 6
5

)
for d � 1

α0
4πDa d2

[
3
2 d − 1

5 d3 − 2
]

for d < 1 ,
(6)

where d := R/2a. For the derivation of the previous equations
we refer to Appendix B. We recover the standard TASEP
when � = 0, i.e., when D → ∞ and we can neglect the spatial
inhomogeneities in the reservoir.

Coupling Eq. (5) to the particle current in the LD, HD,
and MC phases shows how these different regimes affect the
spatial feedback and thus the injection ᾱ. Equation (5) will
therefore take different forms according to the phase of the
TASEP (see Table I):

ᾱ =
⎧⎨
⎩

ᾱ∞ + ᾱ(1 − ᾱ) � (LD)
ᾱ∞ + β̄(1 − β̄ ) � (HD)
ᾱ∞ + �/4 (MC).

(7)

Only in the LD phase we need to solve a second order equation
to find ᾱ and obtain

ᾱLD = (� − 1) ±
√

(1 − �)2 + 4ᾱ∞�

2�
. (8)

We recall that the solution ᾱLD is relevant only if ᾱ < β̄ and
ᾱ < 1/2 (otherwise, the system is in HD or MC); we always
find only one physical solution ᾱLD.

The phase boundaries given in Table I can be rewritten in
terms of the new parameters and in Fig. 2(a) we show the
phase diagram of the system in the {ᾱ∞, β̄} plane for different
values of �. As expected from Eq. (5), if � = 0, then we
recover the phase diagram of the TASEP (black lines) with ᾱ∞
playing the role of the entry rate of the standard TASEP. This
situation is also met when the reaction volumes of the entrance
and exit sites match, i.e., for a fully circularised lattice sup-
pressing the depletion of the reservoir [19]. The dimensionless
parameter � is otherwise always negative, and it weights the
interplay between particle recycling and depletion around the
entrance site of the lattice, which is proportional to J . When

FIG. 2. (a) Phase diagram of the TASEP coupled with the dif-
fusive reservoir in the {ᾱ∞, β̄} plane for different values of �, and
(b) phase diagram of the TASEP on a flexible polymer for different
values of �0, fixing a = 1.5, � = 1, lp = 0.1, and L = 25 (giving
R0 � 2.24). All lengths are expressed in lattice-site units. We plug
Eqs. (12) in (7) to compute the transition lines; when the lattice is
compact d < 1 we use dashed lines and a full line otherwise. The
shaded areas in between the LD → SP and HD → SP transition lines
highlight the extended coexistence region.

� < 0 the MC regime is reached for increasingly larger values
of ᾱ∞.

B. Coupling polymer conformation and transport

In the previous sections we assumed that the transport process
does not interact with the lattice conformation. Here we
impose that the particle density stiffens the polymer and
hence controls the global configuration of the lattice. In turn
this will have a repercussion on the particle recycling that
depends on R.

If the persistence length of the lattice lp is larger than
the particle’s footprint �, then the transport process does
not affect the end-to-end distance. Instead, if �/2 � lp,
then the presence of a particle on the lattice flattens the
region of the lattice corresponding to its footprint; as a con-
sequence, the particle density ρ influences the end-to-end
distance, changing the features of particle recycling. To com-
pute the effective persistence length leff of a lattice covered
with particles we consider a freely jointed chain composed
by fragments of polymers with two different Kuhn lengths: �

that corresponds to a particle footprint, and 2lp for the empty
lattice. In the limit L much greater than the Kuhn length one
recovers the results for the end-to-end distance Eq. (2) of the
wormlike chain model mentioned in Sec. II A, with a Kuhn
segment equal to twice the persistence length. Knowing that
the portion of the lattice occupied by particles is ρ�, and
that the portion of the empty lattice is (1 − ρ�), we obtain
leff = ρ �2

2 + (1 − ρ�)lp, assuming orientation independence
between particle-occupied and free-chain fragments. This re-
lation, which, for the sake of clarity we derive in Appendix C,
is valid only when �/2 � lp, and otherwise leff = lp. We can
then redefine

R :=
√

2leffL = R0Fρ, (9)

where

R0 := √
2lpL, (10)
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FIG. 3. Entry parameter ᾱ (a) and density ρ (b) as a function
of the lattice length L, with ᾱ∞ = 0.5, a = 1.5, � = 1, lp = 0.1 and
α0/(4πDa) = 2.25, β̄ = 0.2 (indicated by the dashed line). When
ᾱ > β̄ (ᾱ < β̄) the system is in HD (LD); other values of L (shaded
area) correspond to the extended coexistence region of the phase
diagram [Fig. 2(b)].

Fρ :=
[

1 + ρ�

(
�

2 lp
− 1

)] 1
2

, �/2 � lp. (11)

Here R0 is the mean end-to-end distance of an empty polymer
and Fρ = R/R0 � 1 is a measure of how much the polymer is
flattened by the particle occupancy. We use either R or Fρ as
proxies for the polymer conformation. The parameter � then
reads

� =
{

�0 + α0
4πD

1
R0

(
1−Fρ

Fρ

)
d � 1[

�0 + α0d3
0

4πDa

[
3
2 (Fρ − 1) − 1

5 d2
0

(
F 3

ρ − 1
)]]

F 2
ρ d < 1,

(12)

where �0 is obtained by calculating the parameter � from
Eqs. (6) by setting R = R0 and d0 := R0/2a. We emphasize
that we recover the results of the previous section when �/2 �
lp and therefore the transport process and polymer properties
are decoupled. We can still use Eqs. (7) to compute the entry
parameter in the different phases, although, this time, � is a
function of ρ, which also depends on the phase as given in
Table I. For instance, to find the value of ᾱ in LD, now we
need to solve ᾱ = ᾱ∞ + ᾱ(1 − ᾱ)� with � from Eq. (12)
computed with ρ = ᾱ (values for HD are calculated using
the respective values of density and current, see Table I).
By solving those equations it is possible to determine the
phase boundaries of the three TASEP phases, now considering
the feedback that the polymer conformation dictates on the
exclusion process. We show this phase diagram in Fig. 2(b) for
different values of �0 and for parameters that could represent
ribosome translating an mRNA (see Appendix D).

This phase diagram shows a remarkable new feature, i.e.,
the presence of an extended LD-HD coexistence region,
emerging by the competition between particle recycling and
stiffening of the polymer. When coupling transport and poly-
mer conformation, entering the SP from LD or from HD
generates two different transition lines since � in Eqs. (7)
depends on the density as in Eqs. (12). In the extended SP we
expect on average ᾱ = β̄, and hence � will be fixed to meet
this condition.

Figure 3 illustrates how transport is affected by the length L
of the lattice, via the coupling between particle recycling and
the substrate’s conformation. We show how ᾱ and ρ change
with the system-size and compare the theoretical prediction

FIG. 4. Transport effects on polymer conformation. Panel
(a) shows Fρ = R/R0 as a function of ᾱ∞, with the shaded region
indicating the extended SP. In panel (b), a color map of the end-to-
end distance R (in lattice-site units) in the {ᾱ∞, β̄} plane. The hori-
zontal lines correspond to β̄ = 0.3 (magenta, dark gray) and β̄ = 0.6
(green, light gray), for which Fρ is shown in panel (a) maintaining the
same color code. In both panels �0 = −2.5 and the other parameters
correspond to the ones used in Fig. 2(b). Red (dark thin) lines
correspond to the theoretical phase diagram. In the upper left and
bottom right corners of panel (b) we sketch cartoons of the polymer
configurations with particles (small discs) on it corresponding to
those regions of the diagram: stretched polymers (large R) are found
in the TASEP HD phase, while more compact lattices are expected
in the LD (compare phases of the standard TASEP phase diagram
shown in Fig. 1).

(lines) to the outcome of numerical simulations running a
TASEP with a particle injection rule given by Eq. (5). This
length-dependence is absent in the standard TASEP, where
steady-state quantities are independent of the system size.
Details of the simulations are summarised in Appendix E.

C. Polymer conformation as a proxy for transport regimes

The density of particles ρ thus impacts the typical polymer
conformation as given in Eq. (9). As shown in Fig. 4(a),
obtained by numerically solving Eq. (11), with increasing ᾱ∞,
we observe that the polymer conformation undergoes a transi-
tion from a compact to a more flattened shape (Fρ > 1) driven
by the accumulation of particles on it. We emphasize that
ᾱ∞ is proportional to the particle concentration, meaning that
features of the polymer conformation will vary by changing
the particle concentration c∞.

In Fig. 4(b) we show how regimes of the polymer confor-
mation coincide to the different phases of the exclusion pro-
cess. We can appreciate that R follows the different dynamical
TASEP phases: when the system is in LD, the polymer is in
its compactest shape, while the ends get separated in the MC
and the polymer becomes more and more stretched deep in the
HD phase, as sketched in Fig. 4(b).

III. DISCUSSION

We have developed an approach to study the interdepen-
dence between transport on a unidimensional substrate (the
exclusion process) and the three-dimensional conformation
of the lattice on which the particles move. We propose a
coupling between driven transport and polymer dynamics
that influences the three-dimensional conformation of the
polymer, and thus particle recycling. Our model then couples
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active transport in 1D and passive transport in 3D, expanding
previous investigations on purely 1D systems [20].

In our approach the physical properties of the unidimen-
sional lattice thus play a fundamental role. We show that, in
this perspective, features of the lattice such as its length or
persistence length cannot be overlooked—as usually done in
coarse grained modeling—to provide a complete description
of the transport process. The conformational state of the
polymeric lattice becomes informative of the properties of the
transport occurring on it. Thus, the lattice conformation could
be exploited to estimate regimes of transport. For instance,
there is evidence that typical structures of polysomes (mRNAs
with active ribosome translating) depend on the transport
process and in particular on the ribosome recruitment [21]
(this effect can be experimentally achieved by antibiotics,
which effectively decrease the amount of ribosomes c∞ [22]).
Furthermore, coupling between particle transport and polymer
conformation might also be important in DNA transcription
factories, where the local concentration of polymerases and
their recruitment are relevant.

The role of mRNA circularisation in determining gene
expression is still largely unknown. The full circularisation
of eukaryotic transcripts is assisted by molecular partners
promoting the interaction between their ends; when this in-
teraction is disrupted the translation efficiency strongly de-
creases [23]. This is consistent with our model, which predicts
optimal ribosome recycling with full circularisation (� = 0).
The formation of the circularised state, however, competes
with the stiffening of the polymer induced by high density
translation, which reinforces the importance of considering
the process on a flexible substrate.

Finally, by considering particle recycling, and the interplay
between transport and polymer conformation, we show an ex-
tended coexistence region in the phase diagram, a feature that
is not present in the standard TASEP. Due to its similarity with
the phase diagrams shown in Refs. [14,24], we hypothesize
that in this regime, to maintain ᾱ = β̄, a pinned domain wall
might emerge in the lattice to adapt the density, and hence
allow � to satisfy the constraint.

Dynamical effects that could be present in the LD-HD
coexistence region may be addressed by Molecular Dynamics
simulations. Future works might also explore extensions to
inhomogeneous TASEP [25], finite resources [14], TASEP
with extended particles [26], or particles that modify local
curvature differently from the flattening that we considered.
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APPENDIX A: SUMMARY OF THE
APPROXIMATIONS USED

In this section we summarize the approximations behind
the modeling framework we have developed. For the sake of

FIG. 5. Current J (t ) for a TASEP in LD (α = 0.3 s−1, β =
0.8 s−1) and in MC (α = 0.7 s−1, β = 0.7 s−1). For both cases, p =
1 s−1 and L = 25 (codons). Currents are computed every time inter-
val τ = 60 s or τ = 250 s.

clarity we explain the assumptions made in the two sections
of the main text were we developed the theory.

1. Coupling TASEP on a polymer and a diffusive reservoir

In the corresponding section of the main text we have
assumed the validity of mean field for the concentration field
c(r). This holds when the sources S± do not show large
fluctuations in time or can be considered to produce and
absorb a constant number of particles per unit time. In fact,
this can be verified with simulations of the TASEP. Since J (t )
is obtained as an average over time windows, fluctuations are,
however, strongly depend on the size τ of the time window
chosen. This can be qualitatively examined in Fig. 5, for τ =
60 s and 250 s. Fluctuations, of course, increase for decreasing
values of τ and in the limit τ → 0 fluctuations are maximal,
when measurements of the current would give a straight line
at 0 and spikes at 1 when particles exit.

To avoid the arbitrariness of the value of τ used to compute
the observables, we use another discriminant to determine the
validity of our approximation. We consider the passage time
between two leaving particles. The idea is that if two particles
exit too close, the reservoir and the diffusion in the reservoir
will not be able to absorb strong fluctuations of the current,
and hence δc ∼ c (δc being the fluctuations in the density).
A lower bound for the passage time should be fixed by the
diffusion timescale τD, set as the average time for a particle
to diffuse a distance equivalent to the average end-to-end
distance of the transcript. Thus, if couples of particles have
average passage times smaller than τD, fluctuations in the
concentration field are likely to be relevant and the mean-
field approximation is less likely to hold. Figure 6 shows
the histograms of passage times for two different phases
of the TASEP. Average passage times in both phases are
around 4–5 s. However, we estimate τD for translation of
being of the order 10−3 s (τD = R2/6D = 2Llp/6D, and the
diffusion coefficient of ribosomes D = 0.04 μm2/s [8]). For
transcription, τD might be obtained in a similar fashion.

Thus, with an average passage time orders of magnitude
larger than the diffusion timescale, we expect that fluctuations
in the concentration might not play a significant role and that,
therefore, our approximation is likely to hold.
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FIG. 6. Histograms of passage times (in seconds) between two
consecutive particles leaving the lattice (same parameters of Fig. 5).
The vertical lines represent the measured 1/J values, giving the
timescale of the current.

We have also implicitly assumed that the timescale of
diffusion of the polymer position and of its ends is smaller
than particle diffusion, otherwise the reservoir will be closer
to a well-mixed assumption: coupling polymer and transport
would still be meaningful but recycling could be neglected.

To avoid misunderstanding, we remind that diffusion is
modeled as continuous process in 3D, and transport is de-
scribed on a 1D lattice following standard TASEP rules; the
two systems are coupled as explained above and in the main
text, and the 1D lattice does not interfere with diffusion.

2. Coupling polymer conformation and transport

In that section of the main text we couple transport and
polymer conformation, and in particular we study how particle
density can affect the end-to-end distance of the lattice.

As we mentioned in the Introduction section, we consider
that locally the polymer moves much faster than the particle
hopping, and we can then decouple the dynamics. Substan-
tially the polymer equilibrates faster after each particle step.
In this work we have focused on this regime. Other regimes,
although might hide interesting dynamical effects, are out of
the scope of this work.

This approximation also allows us to neglect fluctuations
in the end-to-end distance R, that could be taken into ac-
count in extensions of the model. For instance one could
modify Eq. (5) of the main text and compute 〈J�〉, where
the brackets represent the average over time. In our approx-
imation, thanks to the timescale separation we have implic-
itly assumed 〈J�〉 ∼ 〈J〉〈�〉 = J �. This means that we can
decouple TASEP and polymer dynamics, and that the average
end-to-end distance R, Eq. (2), is representative of the distance
between entry and exit sites.

We want to stress that, with this assumption, we can relate
ρ and R. That is also possible thanks to the steady-state
assumption. This implies that fluctuations are small compared
to the average, and then the approximations used in this work
generally hold. However, we bring to the reader’s attention
that at the transition between LD and HD phases (often named
Shock Phase, SP), the average density fluctuates in time [13]:
a domain wall in the density profile is present and links the LD
and HD density that coexist in the lattice when this first-order

FIG. 7. Density of particles as a function of time for LD and MC
phases and the SP regime, with τ = 250 s. For the SP regime α =
β = 0.1 s−1, and the other parameters are the same as the ones used
in Fig. 5.

transition occurs. Interestingly, in the standard TASEP the
position of the domain wall makes a random walk on the
lattice, which should generate large fluctuations in the lattice
conformation. In Fig. 7 we include plots of the simulated ρ(t )
in the LD, MC phases and SP regime, showing that only in
the SP large fluctuations can constitute important dynamical
effects. Hence, the identification of the transition lines might
become inaccurate and the SP region might become even
larger if fluctuations dominate. Instead, if in the extended
region a pinned domain wall is present, fluctuations will de-
crease and the theoretical location of the phase boundaries will
be precise. However, a deeper investigation of this region and
of fluctuations is out of the scope of this paper, and they could
be addressed with explicit simulations of polymer dynamics.

Moreover, we consider the case in which the particle
hopping is not influenced by the polymer state. For instance
we do not consider local secondary structures of the lattice,
assuming that the particles can efficiently unfold them or that
folding competes with the particle flow [11] (as in the case of
ribosomes moving on the mRNA).

FIG. 8. Sketches of two intersecting spheres with varying dis-
tance R between the centers.

052409-6



DRIVEN TRANSPORT ON A FLEXIBLE POLYMER WITH … PHYSICAL REVIEW E 99, 052409 (2019)

APPENDIX B: DERIVATION OF INITIATION RATE

1. Nonintersecting reaction spheres (R > 2a)

As stated in the main text, the entry rate α is given by the integral of the concentration of particles (considered as point
particles) over the reaction volume Va, centered at the initiation site:

α = α0
1

Va

∫
Va

c(r)d3r. (B1)

By the principle of superposition, taking the concentration terms of Eq. (4) of the main text, the concentration inside the
reaction volume S− will be given by

c(r) = c∞ + J

4πDa

(
a

|r − R| + |r|2
2a2

− 3

2

)
. (B2)

Equation (B2) can be readily integrated to calculate α following Eq. (B1). With the reaction volume S− centered at the origin,
we have

α = α0
1

Va

∫
S−

[
c∞ + J

4πDa

(
a

|r − R| + |r|2
2a2

− 3

2

)]
d3r,

α = α0
1

Va

∫ 2π

0

∫ π

0

∫ a

0

[
c∞ + J

4πDa

(
a√

r2 + R2 − 2rRcosθ
+ r2

2a2
− 3

2

)]
r2 sin θdrdθdφ. (B3)

The solution of the integral Eq. (B3) gives

α = α0

[
c∞ + J

4πD

(
1

R
− 6

5a

)]
. (B4)

2. Intersecting reaction spheres (R < 2a)

When R < 2a, there is an intersection between the source (reaction volume centered at the termination site, S+) and the sink
(centered at the initiation site, S−). The main issue to solve is how to calculate the integral given by Eq. (B1).

By the superposition of the solutions of the Laplace equation, with the origin at the center of the region S−, we have

c(r) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cout(r) = c∞ + J
4πDa

(
a

|r−R| + |r|2
2a2 − 3

2

)
in S− outside the intersection

cint(r) = c∞ − J
8πDa3 [R2 − 2(r · R)]

in S− inside the intersection.

(B5)

To obtain the last line of Eq. (B5) we added the terms of S− and S+ inside the respective reaction volumes:

cint(r) = c∞ − J

8πDa3
(3a2 − r2) + J

8πDa3
(3a2 − |r − R|2) = c∞ − J

8πDa3
[R2 − 2(r · R)], (B6)

where − J
8πDa3 (3a2 − r2) and J

8πDa3 (3a2 − |r − R|2) are the contributions by the sink and the source, respectively, to the
concentration in the intersection region.

The integral in Eq. (B1) can then be computed as it follows:

α = α0
1

Va

∫
Va

c(r)d3r = α0
1

Va

{∫
Va

cout(r)d3r +
∫

Vint

[−cout(r) + cint(r)]d3r
}
. (B7)

Note that, by symmetry, the integral over the intersection volume of the contributions of source and sink cancel out. Thus,∫
Vint

cint(r)d3r =
∫

Vint

c∞d3r.

Equation (B7) will then be given by

α = α0
1

Va

{∫
Va

cout(r)d3r +
∫

Vint

[−cout(r) + cint(r)]d3r
}

= α0
1

Va

{∫
Va

cout(r)d3r −
∫

Vint

[cout(r) − c∞]d3r
}

= α0
1

Va

{∫
Va

(cout(r) − c∞ + c∞)d3r −
∫

Vint

[cout(r) − c∞]d3r
}
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= α0
1

Va

{∫
Va

(cout(r) − c∞)d3r +
∫

Va

c∞d3r −
∫

Vint

[cout(r) − c∞]d3r
}

= α0
1

Va

{∫
Va

c∞d3r +
∫

Va−Vint

[cout(r) − c∞]d3r
}

= α0c∞ + α0
1

Va

{∫
Va−Vint

[cout(r) − c∞]d3r
}
, (B8)

where Va − Vint corresponds to the region inside S− excluding the intersection region.
Aligning the z axis in the direction of the vector R, which gives the position of the center of the source (S+), the limits of

integration for Eq. (B8) present three cases of interest: a
√

2 < R < 2a [Figs. 8(a) and 8(b)], a < R < a
√

2 [Fig. 8(c)], and R < a
[Fig. 8(d)]. Integration in spherical coordinates for each of these cases is discussed below.

a. Case a
√

2 < R < 2a

From the equation of the sphere of the source we have

x2 + y2 + (z − R)2 = a2, x2 + y2 + z2 − 2zR + R2 = a2,

but since r2 = x2 + y2 + z2 and z = r cos θ , we have

r2 − (2R cos θ )r + (R2 − a2) = 0, r− = R cos θ −
√

R2 cos2 θ − (R2 − a2) (B9)

(note that since R > a for each value of θ there are two values: r+ and r−; the “+” solution corresponds to the larger value of r).
The polar angle θ0 corresponds to the maximum aperture in the intersection region [Figs. 8(a) and 8(b)] and is given by

cos θ0 = R

2a
, (B10)

since the line passing through the center of the intersection crosses the z axis at z = R/2. For the region of the sphere outside the
intersection we then have∫

Va−Vint

(cout(r) − c∞)d3r = J

4πDa

{∫ 2π

0

∫ θ0

0

∫ r−

0

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ

+
∫ 2π

0

∫ π

θ0

∫ a

0

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ

}
. (B11)

b. Case a < R < a
√

2

From Fig. 8(c) we see that

r2
t + a2 = R2 �⇒ rt =

√
R2 − a2 (B12)

and also

cos θt = rt

R
=

√
R2 − a2

R
=

√
1 − a2

R2
. (B13)

Then, for the integral we have∫
Va−Vint

(cout(r) − c∞)d3r = J

4πDa

{∫ 2π

0

∫ θt

0

∫ r−

0

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ

+
∫ 2π

0

∫ θt

θ0

∫ a

r+

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ

+
∫ 2π

0

∫ π

θt

∫ a

0

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ

}
, (B14)

where r± = R cos θ ±
√

R2 cos2 θ − (R2 − a2).

c. Case R < a

For the case R < a [Fig. 8(d)], we have

R2 + r2
s − 2rR cos θ = a2, r2

s − (2R cos θ )r + (R2 − a2) = 0, ⇒ rs = R cos θ +
√

R2 cos2 θ − (R2 − a2). (B15)
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Thus, we have for the integral

∫
Va−Vint

[cout(r) − c∞]d3r = J

4πDa

∫ 2π

0

∫ π

θ0

∫ a

rs

(
a

|r − R| + |r|2
2a2

− 3

2

)
r2 sin θdrdθdφ. (B16)

The integrals in Eqs. (B11), (B14), and (B16) yield the same result. Thus, the entry rate for R < 2a, Eq. (B8), is given by

α = α0c∞ + α0
J

4πDa

[
−R2(−30a2R + R3 + 80a3)

160a5

]

= α0c∞ + α0
J

4πDa

[
3

2

(
R

2a

)3

− 1

5

(
R

2a

)5

− 2

(
R

2a

)2
]

= α0c∞ + α0
J

4πDa

(
R

2a

)2
[

3

2

(
R

2a

)
− 1

5

(
R

2a

)3

− 2

]
. (B17)

APPENDIX C: DERIVATION OF leff

The total unfolded length L of an ideal polymer is given
by L = sN , where s is the Kuhn length and N is the number
of (noninteracting) monomers. From this model one can com-
pute the mean of the squared end-to-end distance, i.e.,

〈R2〉 = s2N. (C1)

When considering a polymer composed of two different
kinds of monomers, N1 with Kuhn length s1 and N2 with Kuhn
length s2, one can write

〈R2〉 = s2
1N1 + s2

2N2 . (C2)

Considering now the problem addressed in this work, s1 = 2lp

corresponds to the Kuhn length of the polymer that is not
covered by particles, while s2 = � is to the particle footprint.
We constrain the total unfolded length of the polymer to be
constant (the substrate does not change length if particles are
on it): L = 2lpN1 + �N2. The number N1 is given by N1 =
L

2lp
− n�

2lp
, while N2 = n, where n = ρL is the total number of

particles on the lattice. Plugging those relations into Eq. (C2)
we obtain

√
〈R2〉 =

√
2L

[
lp(1 − ρ�) + ρ

�2

2

] 1
2

, (C3)

hence the definition of leff = lp(1 − ρ�) + ρ �2

2 used in the
main text.

APPENDIX D: PARAMETERS RELATED TO
mRNA TRANSLATION

In the main text we mention that the parameters used in Fig. 3
can roughly represent the translation of a typical mRNA. Due
to the length constrain of the main text, we explain here the
choice of the parameters used.

The typical length L in codons of a gene is ∼300, and
the size of the ribosome footprint � is around 10 codons.
Moreover, the persistence length of a mRNA is �1 codon.
The radius of the reaction volume a is related to the size of the
ribosomes and to the 5′ untranslated region (5′UTR) upstream
the START codon (that could be though of as a landing
platform for the ribosome). Parameter a is then assumed to

be between 1 and 2 ribosome sizes. It will also get larger
according to the size of the untranslated region upstream
the START codon. We then rescaled all the distances by �,
obtaining the parameters of the order of magnitude used to
plot Fig. 3.

We are aware that this rescaling procedure does not re-
produce exact rescaled elongation dynamics (since now each
ribosome step corresponds to translocation through � codons
per step). However, this approximation shows that the ef-
fects of our framework could be important when considering
biologically reasonable parameters, while still keeping the
system algebraically and computationally tractable using the
standard TASEP. More refined quantitative comparisons to
biological systems will be considered when extending the
model to the �-TASEP [19].

APPENDIX E: LATTICE SIMULATIONS—COUPLING
POLYMER CONFORMATION AND TRANSPORT

A simulation scheme can be introduced to obtain the
physical quantities of interest in a system where polymer
conformation and transport are coupled, as we vary the size L
of the lattice. We obtain this with the following self-consistent
method:

(i) We initialize the system with an arbitrary small value
of α = α(init), let the system evolve until the steady state is
reached and then evaluate the current J (init) and the density
ρ (init);

(ii) Compute R as in Eq. (9) and update α = α(fin) accord-
ing to Eq. (5), with � given by Eq. (12), and current J (init) and
density ρ (init) computed in (i);

(iii) If |α(fin) − α(init)|/α(fin) < 0.01, then stop the itera-
tion. If not, then give a small increment to α(init) and repeat
steps (i) and (ii) until convergence;

(iv) The converging value of α is then used to obtain the
final densities and currents.

Thus, for a given choice of the parameters (see Fig. 3 in
the main text), we can obtain the steady-state density ρ and
initiation rate α, which vary with the length L of the lattice,
considering the contributions of transport (here including par-
ticle recycling and finite-size effects) and the conformational
state of the polymer.
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Since the agreement with the model is excellent, this
simulation scheme is also a proof that the finite-size effects,
which are intrinsic to the numerical simulations, are not a
dominating process.

APPENDIX F: PHASE DIAGRAMS WITH SELF-AVOIDING
POLYMER MODEL

Throughout the text we used an ideal polymer model with
R ∝ √

L. We decided to use that relation for the sake of
simplicity, bearing in mind that other choices of how R scales
with L should be used when trying to quantitatively compare
this model to experimental data. However, the physics behind
the phenomenology does not change with other choices, as we

FIG. 9. Phase diagrams (equivalent of Fig. 2 of the main text)
computed with a self-avoiding polymer model R ∝ L0.588.

show in Fig. 9 (equivalent to Fig. 2 of the main text) where we
used a self-avoiding polymer R ∝ L0.588.
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