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D. Bazeia,1 B. F. de Oliveira,2 and A. Szolnoki3
1Departamento de Física, Universidade Federal da Paraíba, 58051-970 João Pessoa, PB, Brazil

2Departamento de Física, Universidade Estadual de Maringá, 87020-900 Maringá, PR, Brazil
3Institute of Technical Physics and Materials Science, Centre for Energy Research, Hungarian Academy of Sciences,

P.O. Box 49, H-1525 Budapest, Hungary

(Received 9 March 2019; revised manuscript received 14 April 2019; published 20 May 2019)

Rock-scissors-paper game, as the simplest model of intransitive relation between competing agents, is
a frequently quoted model to explain the stable diversity of competitors in the race of surviving. When
increasing the number of competitors we may face a novel situation because beside the mentioned unidirectional
predator-prey–like dominance a balanced or peer relation can emerge between some competitors. By utilizing
this possibility in the present work we generalize a four-state predator-prey–type model where we establish two
groups of species labeled by even and odd numbers. In particular, we introduce different invasion probabilities
between and within these groups, which results in a tunable intensity of bidirectional invasion among peer
species. Our study reveals an exceptional richness of pattern formations where five quantitatively different phases
are observed by varying solely the strength of the mentioned inner invasion. The related transition points can be
identified with the help of appropriate order parameters based on the spatial autocorrelation decay, on the fraction
of empty sites, and on the variance of the species density. Furthermore, the application of diverse, alliance-
specific inner invasion rates for different groups may result in the extinction of the pair of species where this inner
invasion is moderate. These observations highlight that beyond the well-known and intensively studied cyclic
dominance there is an additional source of complexity of pattern formation that has not been explored earlier.
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I. INTRODUCTION

To explain the diversity among competing species or states
is a fundamental problem not only in biology or ecology but
also in social sciences [1–3]. One of the possible mechanisms
that explains the stable coexistence of unequal species is the
presence of intransitive relation or, in other words, cyclic
dominance between competitors [4,5]. In game theory this
relation can be well described by the so-called rock-scissors-
paper game [6]. Paper is cut by scissors, scissors are crushed
by rock, and finally rock is wrapped by paper. In this way the
circle ends and establishes the above-described relation. In the
absence of a superior competitor all the mentioned members
can survive and hence diversity is preserved [7].

Interestingly, this relation is not a merely abstract model,
but can be directly detected in several real-life systems [8,9],
including microbes [10,11], social amoebas [12], or even plant
communities [13,14]. Significant scientific efforts have been
made in the past decade that clarified the possible conse-
quences of different variations of the basic model [15–21].
In spatially structured populations the topology of interaction
graph is proved to be a decisive factor that determines whether
an oscillatory state emerges or not [22–24]. Furthermore, the
mobility of competing species is identified as an important
factor to maintain diversity [25–29], but some research groups
also underline the nontrivial role of mutations [30–33]. Addi-
tionally, a recent work, obtained from off-lattice simulations,
revealed the critical role of density on the original problem
of maintaining diversity [34]. It is worth noting that cyclic
dominance can also emerge in systems where the values

of payoff matrix, which characterizes the basic relation of
different microscopic states or strategies, do not necessarily
predict such interaction. Instead, this relation could be the
result of a collective behavior due to the limited interactions
with neighbors in a spatial system where effective multipoint
interactions emerge [35–40].

Naturally, the number of competing species are not nec-
essarily limited to three but can be extended to four, five
[41–46], or even more species [47–52]. This makes the food-
web more complex where the relation between two members
is not restricted to a unidirectional predator-prey type, but
also a balanced or bidirectional relation can also emerge. This
chance allows new kinds of solutions, including alliances or
associations, to emerge [47,53]. Beside the topological com-
plexity of food-web an additional freedom is the heterogeneity
of invasion rates between species. In some cases the latter
fact alone is capable to change the final state significantly
[24,54–58].

In this work we follow this research avenue and general-
ize a previously introduced four-species model where every
species has two preys in a cyclic manner [59]. As a result,
some relations between species become unbiased or balanced
because these peer species mutually invade each other. This
fact allows us to distinguish the strengths of unidirectional and
bidirectional invasions and establish a tunable parameter that
characterizes the inner relations of peer species. Our key ob-
servation is the stationary pattern of the resulting evolutionary
process can be varied intensively by tuning the inner invasion
rate of peer species exclusively. The resulting phases can be
distinguished quantitatively with the help of appropriate order
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FIG. 1. Invasions between competing species. Solid arrows in-
dicate the unidirectional invasions between primary predator-prey
species which happen with probability p1, while dashed arrows
indicate bidirectional invasions between peer species that happen
with probability p2 � p1.

parameters. These observations emphasize that not only the
complex topology of a food-web but also the varying invasion
rates between related species can be the source of diverse
patterns of the stationary states.

II. THE MODEL

In the following we generalize a previously introduced
cyclically dominated May-Leonard–type model [19] of four
species [59]. Initially, empty sites, labeled by 0, and all
competing species, labeled by i = 1 . . . 4, are distributed uni-
formly on a L×L square grid where periodic boundary condi-
tions are applied. At each time step a randomly chosen active
individual interacts with one of the four nearest-neighbor
passive sites by executing the following elementary steps.

If the passive site is empty, then the active individual re-
produces by filling the empty site with probability μ. When a
motion step is applied, then the active and passive individuals
switch their positions with probability m. The last elementary
step is the so-called predation when the active predator kills
the passive prey and generates an empty site in the lattice.

Importantly, as an extension of the earlier introduced basic
model [59], we distinguish different predation probabilities
between species depending on whether their labels are odd
or even. In particular, as Fig. 1 illustrates, an active i player
predates a passive i + 1 species and generates an empty site
with probability p1. However, the predation between species
i and species i + 2 happens with probability p2. (Naturally,
labels are always considered cyclically to keep i = 1 . . . 4
interval.) In this way we can distinguish predation strength
between predator-prey pairs where invasion is unidirectional
and between peer species where bidirectional invasions can
happen. The members of latter pairs, like species 1 and 3,
or species 2 and 4, are equally strong because they can
mutually invade each other and keep a balanced relation, as
it is stressed by dashed arrows in Fig. 1. Interestingly, such
a peer pair can form a defensive alliance against an external
predator species that would dominate one of the members
of the mentioned pair otherwise. Just to give an example,
the invasion of species 2 toward species 3 can be avoided if
species 1 is present and protects peer member species 3.

Summing up our model definition, the simulation algo-
rithm can be given as follows. At each time step an active

site and a neighboring passive site are chosen randomly.
After we decide whether a mobility, a reproduction, or a
predation elementary step is executed. Their relative weights
are: m = 0.5, μ = 0.25, and p = 0.25. If the mobility step
is chosen, then the active and passive sites exchange their
positions. Note that the passive site can be any individual or
an empty space. If the reproduction step is chosen, then the
active species can duplicate itself only if the passive site was
empty. In the case of predation step we first consider the labels
of the active i species and the passive neighbor. If the label of
the passive species is i + 1, then the latter will disappear with
probability p1. Alternatively, if the label of passive species is
i + 2, then it will die out with probability p2. Evidently, if
the passive site is occupied by a predator species of the active
species, or passive and active sites are occupied by identical
species, or the active site is empty, then nothing happens.

In our generalized model the key parameter is the value of
p2, which controls the inner or bidirectional invasion between
peer species. Notably, the gradual variation of p2 allows us
to bridge two previously studied independent models [59].
More precisely, in the p2 = 0 limit we get back the so-called
I4 model where partnerships of peer species, such as {1 + 3}
or {2 + 4}, emerge and occupy different spatial regions. In the
other extreme limit, when p2 = p1 = 1 the model becomes
equivalent to the so-called II4 model where peer domains di-
minish and homogeneous spirals with four-arms characterize
the stationary state [59]. As noted, in our present work we
apply a relatively high mobility rate (m = 0.5) comparing to
the basic model of Ref. [59]. In this way emerging spirals of
invasion fronts are not suppressed by low mobility rate, as it
was observed earlier.

A full Monte Carlo step or in other words a full generation
involves N = L×L interactions or elementary steps described
above. We should stress that a sufficiently high system size
is necessary, otherwise we can easily obtain misleading re-
sults. To illustrate this we present the stationary pattern of
an 5 000×5 000 system in Fig. 2 which was obtained at
p2 = 0.005. Here species are colored in agreement with the
color-code used in model definition of Fig. 1. The snapshot of
Fig. 2 depicts large homogeneous domains whose linear size
can easily exceed an L = 300 lattice site (one of these spots
is framed by a square of latter size). This example illustrates
nicely that during the simulations we faced serious finite-size
problems [60], but luckily in the p2 > 0.01 region L = 2000
linear system size was generally enough to gain data, which
are free from finite-size problems.

III. RESULTS

We first present our main observations how the character-
istic patterns change by varying only the p2 value between
0 and 1, while p1 = 1 is kept fixed. To obtain a general
overview about the emerging patterns we provide in Ref. [61]
an animation showing the typical spatiotemporal patterns in
dependence of p2. Based on this we can identify five charac-
teristic regions as a function of invasion strength. The typical
patterns of these phases and the separated state of p2 = 0 case
are plotted in Fig. 3.

The qualitative description of different phases can be given
as follows. If p2 is large enough, shown in Fig. 3(f), then we
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FIG. 2. Stationary state of an 5 000×5 000 system after 10 000
generations obtained at p2 = 0.005. The square in the center of the
pattern shows a 300×300 homogeneous area that is occupied exclu-
sively by species 3. This example illustrates that the typical system
size used by ordinary numerical works would result in misleading
conclusions in our present model.

can observe clear four-color rotating spirals that characterizes
typical four-state systems where species dominate cyclically
each other similarly to the extended Lotka-Volterra type dy-
namics [62–64]. When we start decreasing the value of p2

the four-color vortices are replaced by three-color vortices, as
illustrated in Fig. 3(e).

By decreasing the value of p2 further we enter a phase
where domains composed by peer species first emerge. This
phenomenon is shown in Fig. 3(d). Since the relation of peer
species is balanced, therefore the borders that separate them
are not as sharp as domain walls previously observed for
unidirectional invasion. This effect becomes more pronounced
for smaller p2 values as shown in Figs. 3(a)–3(c). In parallel
the three-color vortices disappear. Such vortices are always
the source of propagating waves, hence in the absence of
them one would expect increased characteristic length of
domains. However, the effective mix of peer species (between
1 and 3 or between 2 and 4) is still intensive which prevents
typical length from growing. Both effects are weakened if
we decrease p2 even further, shown in Fig. 3(c), which
results in smooth interfaces separating domains of different
peer species. Simultaneously, homogeneous spots within such
a two-species domain become also larger. This state is il-
lustrated in Fig. 3(b), signaling an enlarged typical length.
Consequently, the densities of species fluctuate strongly in
time which may involve serious finite-size effects. For ex-
ample, when the system size is comparable to the typical
length of domains, then the actual portions of species could
be significantly different at a specific time. Such a situation
is illustrated in Fig. 3(d), where the temporary portions of
blue and green are seemingly higher than the portions of red
and yellow colors. But we can also observe reversed effect

(a) (b)

(c) (d)

(e () f)

FIG. 3. Representative patterns of different phases in depen-
dence of p2 invasion rate. The values are p2 = 0 (a), 0.02 (b), 0.06
(c), 0.12 (d), 0.25 (e), and 1 (f). Snapshots of stationary states were
taken after 10000 generations for a 500×500 system.

on Fig. 3(b), where the majority of sites are occupied by
the {1 + 3} alliance. Evidently, this contradicts to the basic
symmetry of our model, shown in Fig. 1, which can only be
restored if the system size is large enough.

As we already stressed, this enhanced characteristic length
was illustrated in Fig. 2. It is worth stressing that this low-p2

state is significantly different from the limit case of I4 model
that is shown in Fig. 3(a). In the latter case, the lack of mutual
invasion between peer species results in a perfect mixture of
these species, which makes the typical length fall again.

To allow readers to collect general impressions about the
dynamics of pattern formation for different characteristic p2

values, we provide an animation where time evolutions are
shown simultaneously in Ref. [65].

Inspired by the qualitative picture depicted above we made
quantitative measurements for a more accurate description.
First, we measure the typical length which characterizes the
stationary states of different phases. For this goal we calculate
the spatial autocorrelation function at different p2 values in the
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FIG. 4. Spatial autocorrelation functions, obtained at a 20 000 ×
20 000 system size, for different values of p2 when the system is
in the stationary state. The dashed line, drawn at C(r = �) = 0.25,
indicates the threshold value of autocorrelation which is used to
define the characteristic length scale.

long time limit when system evolved onto a stationary state.
More precisely, we measure the function

C(r) =
∑

|�r|=x+y

C(�r)

min[2N − (x + y + 1), x + y + 1]
, (1)

where x and y are the coordinates of a species in the position
�r on the lattice, while C(�r) is defined as

C(�r) = 1

C(0)

∫
S

ϕ(�r)ϕ(�r + �r ′ )d2�r ′
. (2)

Here ϕ(�r) = φ(�r) − 〈φ〉 and φ(�r) represents the species in
the position �r on the lattice in the stationary state. Naturally,
�r ′ spans the whole lattice, hence S denotes the domain of
integral. Also, in agreement with general notation, 〈φ(t )〉 rep-
resents the spatial mean value of φ when the system relaxed
into the stationary state. According to the model definition, we
use 0 for the empty sites, and 1, 2, 3, 4 for species red, blue,
yellow, and green, respectively, as also indicated in Fig. 1.

The above-defined function is plotted for some represen-
tative p2 values in Fig. 4. To estimate the typical length we
determine the critical r value for all cases where the value
of C(r) function decays below the 0.25 threshold value. For
comparison this value is also plotted by a horizontal dashed
line in Fig. 4. As these plots illustrate, the characteristic length
derived from the autocorrelation function behaves in a largely
nonmonotonous way in dependence of the invasion rate p2.

This behavior becomes more transparent in Fig. 5 where
the above-defined characteristic length is plotted for different
p2 values. We note that only the p2 < 0.5 interval is shown
here because there is no observable difference between sta-
tionary states above p2 = 0.5. In general, the characteristic
length decays by increasing p2 value, but this curve depicts
several local minimum and local maximum, which are sig-
naled by vertical dashed lines on the plot. The related p2

values are marked on the top of the figure. Importantly, these
critical values mark the transition points which separate the
different phases we described earlier.
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FIG. 5. The characteristic length, �, in dependence of control
parameter p2. The specific p2 values where the length changes the
sign of its growth tendency indicate the transition points separating
different phases whose typical patterns are illustrated in Fig. 3. These
values are marked by dashed vertical lines. To gain reliable results
we used 20 000×20 000 system size. The error bars are comparable
to the size of symbols.

Next we also measure other parameters to confirm the
importance of critical p2 values we detected regarding to
the characteristic length. First, we present the mean value of
empty sites, ρ0, which was already proved to be an insightful
quantity to characterize stationary states in previous studies
[48,59]. The results for our present model are summarized
in Fig. 6. Again, for better visibility we only show the
relevant p2 < 0.5 region here. Similar to the characteristic
length parameter, the portion of empty sites also shows a
nonmonotonous dependence as p2 is varied. Notably, the
position of the local maximum at p2 = 0.21 and the position
of the local minimum at p2 = 0.28 are in good agreement with
the critical values we found in connection to the characteristic
length parameter. However, the other two critical p2 values,
which are also marked by vertical dotted lines in Fig. 6,

0
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ρ
0
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FIG. 6. The mean value of empty space, ρ0, as a function of
p2. The critical p2 values where this quantity starts decaying (at
p2 = 0.21) or growing (at p2 = 0.28) are in good agreement with the
values obtained from the tendency change of characteristic length �

shown in Fig. 5. ρ0, however, is an insensitive parameter to sign the
transition points observed at small p2 values. For comparison they
are still marked by dotted lines in this plot.
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FIG. 7. The average of standard deviations of ρi(t ) (i = 1 . . . 4)
functions in dependence of p2. Similarly to previous plots the posi-
tions of previously detected transition points are marked by vertical
lines. The standard deviation is calculated from 10 000 generations in
the stationary state where the curve is the average of 600 independent
runs on a 2000×2000 grid size.

remain hidden through the lens of ρ0 parameter. The lack
of observable breaking points in ρ0(p2) function at small p2

values suggests that when inner bidirectional invasions of peer
species are too weak then the resulting concentration of empty
sites becomes too small to sign the transition points reliably.

As we already argued the typical length and the resulting
stationary pattern may change significantly by varying the
invasion rate between peer species. This effect can be captured
indirectly by measuring the standard deviation of ρi(t ) (i ∈
[1, . . . , 4]) functions in the stationary state. When the typical
length becomes comparable to the applied system size then the
expected symmetry of four species may be broken temporarily
which leads to high fluctuation in the time dependence of
these functions.

To reveal this effect we monitored the time dependence of
all i = 1 . . . 4 species in the stationary state and calculated
their standard deviations. The results for different p2 values
are plotted in Fig. 7. Due to the fundamental symmetry of our
model here we present only the average of standard deviations
for all species, because this quantity behaves similarly for all
four i values. This curve basically confirms our expectation,
namely, the positions of local minimum and local maximum
values are in good agreement with those obtained for other
quantities.

It is worth noting that the enhanced fluctuation in the inter-
mediate 0.04 < p2 < 0.21 region is the direct consequence of
how partnerships work between peer species. More precisely,
as we already noted, species 1 and 3 can form a sort of
alliance against species 2 and 4. If species 2 invades species
3, then a neighboring species 1 can strike back. Similarly,
the invasion of species 4 against species 1 can be weakened
by a neighboring species 3. If p2 is small, then this alliance
cannot function well and the invasion fronts become smooth
due to clear ranks between neighboring species. However, if
p2 is high enough, then we get back the previously classified
II4 model [59], where homogeneous domains form four-arm
spirals. Between these two extremes the partnership between
peer species are functioning partly, which results in highly
irregular invasion fronts and enhanced fluctuation of species.
This effect can be detected clearly in Fig. 7.

From the fact how fluctuation depends on p2 and from the
representative patterns of different phases shown in Fig. 3
we may conclude that partnerships of peer species play a
decisive role on the emergence of first two phases at small p2

values. More precisely, here the expected spirals, generated by
the cyclic dominance between even and odd labeled species,
disappear and they are replaced by the direct competition
of alliances composed by peer species. Here the yellow-red
species of {1 + 3} and the blue-green species of {2 + 4} are
equal in strength because of the symmetry of the food-web
shown in Fig. 1. This symmetry, however, can be easily broken
if we apply unequal inner invasion strengths for different
alliances. A conceptually similar effect has already been
observed for three-member alliances in multi-species systems
[40,49]. More precisely, if two cyclic dominating alliance
compete then the one in which the inner invasion is faster can
prevail and crowed out the alternative alliance where the inner
invasion is slower [54].

To confirm the possible conceptual similarity with our
present model we generalize our model further and introduce
alliance-specific inner bidirectional invasion rates in the rest
of this work. In particular, we introduce p3 �= p2 invasion
rates between peer species 2 and 4 as it is shown in the inset
of top panel of Fig. 8. Technically, we keep p3 constant while
the value of p2 is varied gradually.

As expected, the alliance of {1 + 3} species cannot survive
if p2 is too small comparing to p3 because they are dominated
by the {2 + 4} alliance where inner invasion, hence the result-
ing mix of species, is more intensive. The probability of the
extinction for different fixed p3 values is plotted in the top
panel of Fig. 8. Here an individual simulation was aborted
after 5000 steps if no extinction occurred. The plotted values
are the average of 1000 independent runs at fixed system
size. We stress that the extinction of {1 + 3} species is not
a finite-size effect in the present case, as may happen even for
the symmetric p2 = p3 model if the system size is too small.
Instead, in the present nonsymmetric case it is a straight-
forward consequence of the dominance of {2 + 4} alliance.
Naturally, the expected extinction time may depend on the
system size, but the extinction probability function converges
to a limit case as we increase the system size gradually. This
phenomenon is illustrated in the bottom panel of Fig. 8, where
we plotted the extinction probabilities for different L values at
fixed p3 = 0.25 value. This plot demonstrates that the usage
of L = 500 linear size can predict the large system size limit
qualitatively well.

As Fig. 8 suggests the critical p2 value where the orig-
inal four-species system becomes a two-species system is
decreasing as we decrease p3. In the limit case it tends to
p2 ≈ 0.07 which is the transition point between the second
and third phases in the symmetric model. This behavior
indirectly supports our previous conjecture that the patterns
characterize the low p2 value regime is principally deter-
mined by the competition of alliances composed by peer
species.

IV. DISCUSSION AND CONCLUSIONS

To maintain biological and ecological diversity is a fun-
damental challenge for mankind and this cannot be solved
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FIG. 8. Top panel shows the extinction probability of the {1 + 3}
alliance as a function of p2 for different fixed values of p3. In
this case, p3 is the inner bidirectional invasion strength between
species 2 and 4, while probability p2 still represents the similar rate
between species 1 and 3. The applied invasion rates are summarized
in the inset of top panel. These results were obtained from 1000
simulation runs for each data point in a 500×500 grid size where
every simulation run is aborted after 5000 steps if no extinction
occurs. Bottom panel depicts the extinction probabilities for different
system sizes at fixed p3 = 0.25. The applied linear sizes are shown
in the legend.

without gaining deeper insights about the basic mechanisms
that drive permanent evolution. The problem is hard be-
cause interactions among competitors can easily result in
a complicated food-web with subtle topology. For instance,
closed loops in such food-webs can provide a higher level
of complexity that cannot be observed in a system where the
food-web is characterized by a treelike graph. In particular, in
the presence of loops new kinds of solutions, like cyclic time
development of competing species, may emerge. But beyond
topological obstacles an additional difficulty can also emerge
when the intensities of interaction are significantly different
among competing species or agents [53].

In this work we followed the latter research path by
generalizing a previously established model of four interact-
ing species with intransitive relations [59]. Our main mo-
tivation was to distinguish the bidirectional inner invasion
rate between peer species and the unidirectional invasions
characterize primary predator-prey partners. In this way the
resulting mixing between peer species, who form a protective
alliance against external species, can be tuned via a single
parameter.

According to our key observation the strength of inner
invasion within an alliance of peer species can play a decisive
role on the resulting stationary state and several quantitatively
different characteristic patterns can be detected as the related
control parameter is varied. In these phases the microscopic
mechanisms which are responsible for the emerging pattern
can be different. Rather counterintuitively the primary uni-
directional predator-prey type invasions become dominant
when the mutual invasions within peer species are intensive,
while the competition of alliances acts as the leading pattern
formation process when this inner bidirectional invasion is
moderate.

In dependence of the mentioned p2 control parameter
we have observed five distinct phases where the emerging
spatiotemporal patterns are different. The related transition
points which separate these phases can be detected accurately
by introducing appropriate order parameters. The character-
istic length, which is calculated from the spatial autocorre-
lation function, is proved to be the most sensitive parameter
which signals all emerging transition points. The measuring
of standard deviation of time-dependent density functions of
competing species is also proved to be an effective quantity
to detect these transition points. The breaking points of latter
parameter agree with those predicted by the p2 dependence
of characteristic length. For the sake of completeness we
have also measured the mean value of empty sites, which
was reported as a useful parameter to quantify stationary
states in earlier studies [48,59]. The p2 dependence of this
quantity signals some of these transition points at the same
positions as they were marked by the previously mentioned
quantities. This parameter, however, becomes ineffective to
sign transition points when its average value is too small due
to the moderate inner invasion between peer species.

We have generalized our model further by introducing
alliance-specific inner invasion strengths, hence the resulting
effective mixture between species 1 and 3 become different
from the inner mixture of species 2 and 4. In this way we
can break the fundamental symmetry between competing
alliances and demonstrate that it has a decisive role on the final
outcome if the strengths of inner invasion rates are different
enough. Indirectly, the latter observation also supports our ar-
gument that in the low p2 value region the leading mechanism
which determines the pattern formation is the competition of
alliances formed by peer species.

From these observations we can conclude that the diverse
invasion strengths between predator-prey partners may play
an important role on the final state similarly to the pure
topology of food-web. Therefore, the classification of stable
solutions based solely on the geometry of interactions is
not satisfactory and more careful investigations are necessary
when we try to predict the final stable solutions of a multi-
species interacting system.
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