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Cortical circuits operate in an inhibition-dominated regime of spiking activity. Recently, it was found that
spiking circuit models in this regime can, despite disordered connectivity and asynchronous irregular activity,
exhibit a locally stable dynamics that may be used for neural computation. The lack of existing mathematical
tools has precluded analytical insight into this phase. Here we present analytical methods tailored to the
granularity of spike-based interactions for analyzing attractor geometry in high-dimensional spiking dynamics.
We apply them to reveal the properties of the complex geometry of trajectories of population spiking activity in a
canonical model of locally stable spiking dynamics. We find that attractor basin boundaries are the preimages of
spike-time collision events involving connected neurons. These spike-based instabilities control the divergence
rate of neighboring basins and have no equivalent in rate-based models. They are located according to the
disordered connectivity at a random subset of edges in a hypercube representation of the phase space. Iterating
backward these edges using the stable dynamics induces a partition refinement on this space that converges
to the attractor basins. We formulate a statistical theory of the locations of such events relative to attracting
trajectories via a tractable representation of local trajectory ensembles. Averaging over the disorder, we derive
the basin diameter distribution, whose characteristic scale emerges from the relative strengths of the stabilizing
inhibitory coupling and destabilizing spike interactions. Our study provides an approach to analytically dissect
how connectivity, coupling strength, and single-neuron dynamics shape the phase space geometry in the locally

stable regime of spiking neural circuit dynamics.
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I. INTRODUCTION

Dynamics is determined by the geometry of trajectories in
its associated phase space. In high-dimensional models of dis-
ordered neural circuits, for example, trajectories from phases
of locally stable dynamics are structured around a large set
of coexisting attractors dispersed throughout the phase space.
Using a highly idealized model, Hopfield demonstrated how
to construct a version of this neural dynamics that implements
a high-capacity error-correcting code [1], in which corrupted
versions of the stable states are corrected by the locally stable
dynamics, endowing it with robustness to noise. Could such a
model be at work in the brain? Since many model details can
be suppressed when describing collective behavior, system
idealization need not compromise the veracity of the descrip-
tion. However, models aiming to capture collective dynamics
should qualitatively capture the activity statistics of the regime
under study and, since collective states of many-body systems
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typically depend strongly on the form of the interactions
between the bodies, do so using a faithful representation of
the type of interaction. In this regard, Hopfield-like construc-
tions relying on local stability in models more faithful to the
underlying neurobiology have proved elusive.

While a continuously interacting rate dynamics admits
powerful statistical methods through which results like Hop-
field’s have been well understood [2—4], neurons rather inter-
act at a discrete set of spike times [5]. Despite proving compu-
tationally powerful [6], the granular character of spikes makes
many of these methods inadmissible, complicating the anal-
ysis of spiking dynamics. Further complication arises since
spiking dynamics deviates from the expectations of smooth
dynamical systems theory. As a salient example, we consider
asynchronous, irregular spiking activity that is reminiscent
of chaotic dynamics but surprisingly does not preclude local
stability. Indeed, a locally stable phase of spiking dynamics
has been found in a variety of models [7-10] operating in the
inhibition-dominated regime exhibited by cortical circuit ac-
tivity [11,12], achievable with O(1/ VK ) interaction strength.
In our current state of knowledge, weak [O(1/K)] and strong
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[O(1)] interaction strengths give only temporally regular and
vanishing or exploding spiking activity, respectively, and are
thus unsuitable for modeling cortex. Moreover, and in contrast
to rate-based encoding schemes employing the local stability
of fixed points or limit cycles, cortical circuits rather en-
code inputs using time-varying intrinsically generated activ-
ity. While chaos produces such activity and emerges rather
generically with sufficient sampling of a disordered connec-
tivity in both rate and spiking models, its error-amplifying
nature appears to negate the kind of error-correcting schemes
required for robust encoding.

Spiking dynamics in the locally stable phase, by contrast,
can partition the phase space into a large set of tube-shaped
basins of attraction, termed flux tubes, each enclosing a single
attracting trajectory [13,14] and together in principle provid-
ing an error-correcting encoding useful for neural computa-
tion. Whether described by the state sequence at spike times
or the index sequence of spiking neurons, flux tube attractors
thus reflect the activity statistics of cortical activity and do so
using a more faithful representation of the interaction.

Reference [14] significantly advanced our understanding
of the geometry of this locally stable phase, with numerical
scaling results for the divergence rate and average diameter
of flux tube attractor basins. This advance stopped short,
however, of providing a picture of the phase space geometry
associated with these attractors, the topic of the present study,
for three important reasons. First, the analysis of Ref. [14]
only considered a single time slice of phase space around
these attractors. The time-varying nature of the attractors
strongly suggests a time-varying basin diameter. Second, the
analysis of Ref. [14] never precisely located the attractor
boundaries and so never accessed the discrete nature of the
boundary, leaving the putative instability responsible for the
boundary unexplained. These two missing pieces not only
are fundamental to the phenomenology, but likely also pro-
vide important insights into the overall attractor geometry.
Without them, Ref. [14] employed a numerical approach that,
as a third gap, left the scaling dependences unexplained (the
experiments also omitted the dependence on the strength of
neural interactions). Thus, Ref. [14] provided limited mech-
anistic insight into the phenomena, e.g., into how the model
ingredients contribute and why. Since the constraints that dy-
namics places on computation and the capacity of any putative
neural code are ultimately controlled by these dependences, a
theory is needed in which they are jointly derived and can be
understood in terms more naturally related to the dynamics.

Here we provide these missing pieces of the phenomenol-
ogy and use them to build a theory with which we provide a
more complete understanding of the phase space geometry of
flux tubes in the networks considered in [14]. We first present
a simulation study of flux tubes, uncovering the temporal
variation of the attractor basins. Our analysis of this exact
shape builds on the intuition that the discrete nature of the
spike and the index sequence play a role in determining the at-
tractor boundaries and suggest that a combinatorics of discrete
events underlies the enumeration of attractors. Representing
the activity using the spike interval sequence, we find that the
attractor boundary is formed by preimages of destabilizing
events realized when an input and an output spike collide.

The properties of these collision events allow us to derive
the rate of the mutual divergence of neighboring tubes. We
develop a disorder-averaging scheme for trajectory ensem-
bles and apply it to the boundary trajectories to obtain the
distribution of flux tube diameters. Assembling these results,
we provide a construction of the phase space organization
based on a dynamics-induced partition refinement seeded by
the disordered connectivity. Finally, we discuss the results,
their generality, and applications of this ensemble averaging
method. The proposed approach to revealing attractor struc-
ture from spiking activity informs how coupling strength,
connectivity, single-neuron dynamics, and population activity
control a circuit’s sensitivity to perturbations. This is knowl-
edge that can guide the burgeoning experimental approaches,
such as bidirectional neural implants, that investigate neural
computation by perturbing neural dynamics.

II. MODEL DEFINITION

N neurons are connected by an Erd6s-Rényi graph with ad-
jacency matrix A = (A, ). Here A,,, = 1 defines a connection
from neuron n to m, realized with probability p. The neurons’
membrane potentials V,, € (—o0o, Vi,] are governed by leaky
integrate-and-fire (LIF) dynamics

tV,(t) = =V,(t) + RL,(t) (1

for n € {1,..., N} (x is the time derivative of x). Here 7 =
RC is the membrane time constant for a membrane with
capacitance C and resistance R and I,,(¢) is the synaptic current
received by neuron n; when V,, reaches a threshold Vi, neuron
n spikes and V, is reset to Vis. Without loss of generality
and for convenience, the voltage has been nondimensionalized
so that the reset is Vs = —1 and Vi, = 0, which zeros the
offset of the spike rate as a function of external current. At
the spike time #; the spiking neuron n, delivers a current
pulse of strength J to its O(K := pN) postsynaptic neurons
{m | A, = 1}, with spike index s. The total synaptic current
is

L) =T+ 1] Y A8t — 1), )

where I > 0 is a constant external current and J < O is
the recurrent coupling strength. An O(1/+/K) scaling of J
maintains finite current fluctuations at large K and implies that
the external drive is balanced by the recurrent input. As a con-
sequence, firing in this network is robustly asynchronous and
irregular [15-18]. Setting Iy, = v/Kly, with I > 0, and J =
—Jo/ VK, with Jo > 0, the corresponding stationary mean-
field equation for the population-averaged firing rate ¥ reflects
a balance of the external drive and recurrent inhibition [14]

br = I—°+0<L> 3)
o VK]

It is convenient to map the voltage dynamics to a pseu-
dophase representation [14,19] with

T In Iext - Vres , (4)
Tfree Iext - Vn (t)

Ou(t) =
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where Ty is the oscillation period of a neuron driven only by
L« Here ¢, (t) evolves linearly in time,

ou(t) = Ty, (5)

between spike events, i.e., t ¢ {t;}, and undergoes shifts given
by the phase response curve Z(¢) across input spike times. Its
argument ¢ is the state at spike reception. In the large-K limit,
Tiee and Z(¢) simplify to

T
Thee ~ 7— = (VKJp)™, (6)

ext

Z(¢p) ~ —d¢ + const, 7

respectively, with d := Ilej—x“ = (Kvt)~!. Event-based simula-
tions of this model are described in Appendix A; see Ref. [14]
for further details. They employ the phase representation for
its computational efficiency and for viewing a cross section of
the phase space. We will rely on its tractability to describe the
phase space geometry.

III. RESULTS
A. Phase space contraction and partitioning

The circuit models discussed above have proved useful
for understanding many aspects of the inhibition-dominated
regime of cortical network activity. Despite having no re-
current excitatory connections, they serve as a limiting class
of models for the fast action potential onset and pulse-
coupling regime that also exhibits the mean activity statis-
tics characteristic of the asynchronous irregular activity
of canonical excitatory-inhibitory circuits. It was in these
models that a locally stable dynamics was first observed
[19,20].

The character of the resulting phase space partitioning is
complicated here by the nonlinear time evolution of the net-
work state voltages. In the phase representation ¢(¢) [Eq. (4)]
by contrast, the state evolves linearly in the unit hypercube
and parallel to its main diagonal. States evolved across a face
of the cube are mapped to a different location on the oppo-
site face. We exploit this representation to define measures
of phase space contraction and partitioning, two important
features of the dynamics that contribute to the evolution of
nearby trajectories.

With vanishing coupling strength between neurons, J =

0, the dynamics reduces to é(t) = const and so preserves
phase space volume. For the recurrent dynamics emerging
at finite J, however, the phase space volume is contracted in
the O(K)-dimensional subspace spanned by the postsynaptic
neurons at each spike as a result of the derivative of the phase
response curve being negative %Z(qﬁ) ~ —d [Eq. (7)]. Thus,
trajectories from a small ball of initial conditions observed at
the same future spike form a ball of states that contracts by a
factor 1 — d along each of these K dimensions. The volume
thus contracts by (1 — d)X & e¢** per spike, for K > 1, with
exponential rate

Ak ~ —Kd < 0. (8)

Here Ag captures how the model ingredients involved in the
inhibitory interactions contribute to this dissipative dynamics
(mean Lyapunov exponent Apean < 0 [14]). The latter appears

to be the dominant stabilizing contribution, strong enough
to stabilize the dynamics (maximum Lyapunov exponent
Amax < 0 [20]).

Larger phase space volumes, however, are not uniformly
contracted, but were previously found in simulations [13,14]
to be torn apart, with the pieces individually contracted but
mutually dispersed across the entire traversed phase space
volume. The elementary phenomenon in a single direction is
illustrated in Fig. 1. To study the sharp onset of this tearing,
we capture its discrete nature by introducing the critical per-
t}lrbation strength €*: the precisq extent out from a given state
¢o on the attracting trajectory ¢; and in a given orthogonal
perturbation direction £ in which trajectories contract over
time,

€* (o, §) := sup {e| lim Dy(e) = 0}. ©)

Here D, (¢) is the distance between perturbed and unperturbed
trajectories using any conventional metric, since this defini-
tion only concerns the finiteness of the limiting behavior (we
use the 1-norm to allow interpretation of the values relative
to the distance between reset and threshold; see Appendix
B for details). The distance D; initially decays exponentially.
Fore = €* — § (§ > 0), this decay characterizes the long-time
behavior. Fore = ej +q8, in contrast, there exists a divergence
event time t* = *(¢g, &) > 0 at which a sustained divergence
in D, begins [see Fig. 1(a)]. In later sections we will show
that this holds for § — 0 and that this discreteness of €*
arises from a discrete destabilizing location in the phase space
traversed by the trajectory at ¢*.

Since we will build on the picture established in [14]
[Fig. 1(c)], we present and comment on it here. Since trajec-
tories in the phase representation only change their relative
positions at the boundary of the phase space, the geometry
is more clearly reflected in the Poincaré section obtained
by projecting the hypercube phase space into the (N — 1)-
dimensional hyperplane orthogonal to its main diagonal (see
Ref. [14]). The system’s state between spikes becomes a point
in the hyperplane, and the sequence of such points indexed
by spikes corresponds to the trajectory. A small portion of a
two-dimensional (2D) projection of this hyperplane around
¢o [Fig. 1(b)] reveals that the locations of these critical
perturbations form lines that partition this plane into polygon-
shaped basin boundaries formed by their intersections. The
putative N-dimensional volumes serving as attractor basins
were termed flux tubes [Fig. 1(c)] [14]. The smoothness of
the caricature in Fig. 1(c) is misleading in two ways however.
First, the divergence of supercritically perturbed trajectories
only begins at ¢*. Initially, these attract alongside the sub-
critically perturbed trajectories. Second, as we will see, the
flux tube boundaries are not uniformly smooth. We expect
they are formed by sequences of random but temporally
correlated (N — 1)-dimensional polytopes, each enclosing a
state from the state sequence trajectory in the hyperplane.
Before developing a theory for this phase space organization,
we analyze two main features of its geometry: the punctuated
exponential decay of a tube’s cross-sectional volume and the
exponential separation of neighboring tubes.
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FIG. 1. Finite-size perturbation instability and phase space partitioning in spiking networks. The three panels display the same two slightly
subcritical and supercritical perturbations of strength €* 4§, § 2 0, respectively, applied once at = 0 and in a random direction away from
an attracting trajectory. (a) Temporal responses of the system. Shown on top is the corresponding distance time series D, (¢) between the
perturbed and unperturbed trajectories (gray, subcritical; orange, supercritical). Arrows in all three panels indicate the respective perturbation.
The divergence of D, (¢* + §) begins at * ~ 3 ms and saturates at the average distance between randomly chosen trajectories D (dashed line)
[14], while D,(e* — §) only decays exponentially. Shown in the middle are the spike times as vertical ticks of 50 randomly labeled neurons
from the network. The unperturbed sequence (¢ = 0) is shown in black. Shown on the bottom is the subthreshold voltage time course of an
example neuron. The spike sequence and membrane potentials of the sub- and supercritical trajectories decorrelate after #*. (b) A 2D cross
section (8¢, §¢,) of the pseudophase representation of the phase space, orthogonal to and centered on the unperturbed trajectory from (a) at
t = 0 (see also [14]). The black dot at the origin indicates the latter, whose attractor basin is colored gray. The other colors distinguish basins in
the local neighborhood. The two perturbed trajectories from (a) were initiated from (§¢;, §¢,) = (0, €* £ §), respectively [shown as gray and
orange dots, respectively, in the inset, in (a) in the top and bottom panels, and in (c)]. (c) Schematic provided by Ref. [14] of the phase space
caricature of two neighboring flux tubes with subcritical perturbations decaying on the order of the membrane time constant T and typical basin
diameter €*. The pseudo-Lyapunov exponent A, is the rate at which neighboring tubes separate from each other (the parameters are N = 200,
K =50,vp=10Hz, t = 10 ms, and J, = 1).

B. Punctuated tube geometry asymptotic trajectory. The basin of attraction itself, however,
does not exclusively contract with time, but with these blowup
events it maintains a typical size on average.

The conspicuous blowup events typically coincide with a
divergence event time t* [Fig. 1(a)]. Two such coincidences
are visible in Figs. 2(c) and 2(d). This suggests the hypothesis
that there exist destabilizing locations of the phase space
that underlie both blowup and divergence events. How would
such locations give rise to the observed time variation of the
boundary? Due to the exponential expansion of the backward
dynamics, the set of their preimages naturally traces out
the observed exponential shape. With sufficient backward
iterations, however, another destabilizing event closer to the
trajectory is passed and becomes the event determining the
boundary. Thus, we conclude that a local basin’s extent in a
direction, at a given time, and out from the attracting trajectory
is determined by a preimage of a divergence event at a location
in the phase space near the trajectory at a future time.

By following a simulated trajectory, we find that the cross-
sectional volume enclosed by the local flux tube exhibits ex-
ponential decay. This decay, expected from the typical phase
space volume contraction [see Eq. (8)], must be opposed
by some counteracting element to be consistent with the
numerical observation in [14] of a finite average size. Indeed,
our simulation shows that the volume decay is punctuated
by events at which the volume blows up. Figure 2(a) dis-
plays the spiking activity produced by a typical trajectory
¢,. The temporal evolution of the neighborhood around ¢,
in the hyperplane is more clearly represented in an unfolded
representation in which copies of the space are aligned such
that the trajectory passes through them continuously. For
visualization, we show only a fixed 2D projection of the hy-
perplane around ¢, [see Fig. 2(b) and [21]; see also Appendix
D for construction details. The boundary of the attractor basin
surrounding ¢, in this 2D projection consists of lines which
remain fixed between spike times. Across spike times, new

lines appear and existing lines disappear. At irregular intervals C. Decorrelating spike collision events
breaking up time windows of exponential contraction, large While our above analysis highlighting the existence of
abrupt blowup events take the boundary away from the cen-  destabilizing events does not rely on what causes them, that

ter trajectory. The area enclosed by the boundary increases  knowledge is nevertheless important to further understand the
sharply there as a result [Fig. 2(c)]. It is important to note origin and generality of flux tubes. We thus analyzed a set of
that these blowup events do not mean that the evolving phase  divergence events from simulations to reveal that the collision
space volume from an ensemble of nearby trajectories would of a pair of input and output spikes was responsible (see
expand. Such volumes only contract and converge to the same Appendix E). This occurs when synaptic input is received
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FIG. 2. The basin boundary contracts towards and can blowup
away from the stable center trajectory. (a) Spike times from all
neurons of the simulated trajectory ¢; in a 150-ms window. (b) The
2+1D unfolded phase space volume (§¢;, 8¢, t) centered around ¢,
located at (0, 0, 7) (black line) and extended in two fixed random di-
rections 82)1 and 6¢,. The center tube is filled gray in this volume and
the two cross sections (8¢, 8¢, 0) and (8¢, 8¢p, 150) are shown.
(c) Cross-sectional area of the center tube from (b) versus time.
The area decays exponentially but can undergo abrupt expansions
at blow-up times, e.g., at spikes s; and s, (note the logarithmic scale
on the ordinate). (d) Absolute time of the next divergence event
[see Fig. 1(a), top] versus time for perturbations along §¢;. Note
the step increase coincident with the blowup events seen in (b) and
(c) (vertical dashed lines). (The parameters are the same as in Fig. 1.)

around when the voltage is near the threshold for spiking.
Thus, the pair of spikes involved in a collision event is gener-
ated by connected pairs of neurons. As a phase space location,
a collision event is then the (N — 2)-dimensional hyperedge
subspace of the hypercube spanned by the remaining N — 2
neurons and passing through ¢ = 1. Moreover, we found
that a perturbation-induced collision of an input-output spike
pair generated an abrupt spike-time shift in one or both of
these spike times, depending on the motif by which the two
neurons connect. The type of voltage dynamics and coupling
interaction conspire to produce this shift, as described in
Appendix F and shown in Fig. 3 for the backward-connected
pair motif ny <— ny, where s*, the divergence event index, is
the spike index of the earlier of the pair (note that t* = )
and s’ > s* here labels the index of the later spike in the pair.
The two other motifs (forward connected and symmetrical)
are discussed in Appendix F, where we also demonstrate
this abrupt shift in two less idealized neuron models, each
exhibiting a smoothness in one of the two limits of fast
action potential onset and fast coupling, respectively, that
characterize (nonsmooth) pulse-coupled LIF networks. The

(a) 17, Lngen (b) input delayed
€ V(t) spike  outpuf
< r \ spike
[0)] 1 1
o
SEl S B 12 .1
5| N NN
§ [ T e g
= > VAR |
0 \
e
2 |
80 1 L %
time res time

FIG. 3. Collision of an input-output spike pair causes an abrupt
change in spike time. (a) Schematic illustration of the collision event
(%) for the backward-connected pair motif (shown in the inset). For
this motif, the interval vanishes as € — €* from below. The linearly
varying locations of spike times as a function of perturbation strength
€ are plotted in the e-time plane. The spike times shift continuously
for € < €*. The next input spike time 7+, (¢* — §) is advanced over
the output spike #+(e* — §). A discontinuous jump of size Afjymp
occurs in the spike time of the postsynaptic neuron ng (light to
dark blue) from f(e* —§8) to t/_.(e*+8), 8 2 0. (b) Schematic
illustration of the voltage of the ny= neuron versus time for €* + 8.
The inhibitory kick of size J = —Jy/+/K (not shown to scale) delays
the spike time by an amount Afjym, ~ (K7)7".

spike-time shift resulting from the collision is large enough
that with saturating probability, the shifted spike collides with
a spike from a neuron in its pre- or postsynaptic subpop-
ulation, depending on the motif (see Appendix H for the
analytical result). An approximately exponential cascade of
collision events follows whose speed then depends on the
average rate of spikes in these subpopulations of on average
K neurons,

wx = Kb = p/At, (10)

where At = (ND)~! is the average distance between succes-
sive spikes.

Thus, the total collision rate is wg multiplied by the number
of source neurons. For most of the cascade, collisions involve
a previously unaffected neuron, so the number of source neu-
rons roughly increments with each collision. With collision
event times {¢,,} (reference time ¢*), the inverse total collision
rate gives an estimate for the interval ¢, —t,_; between
successive collision events. Using the approximation % ~
log(1 — L)=1 valid for m >> 1, we can then write f,, — f,y_1 ~
(wg) ' log(1 — %)", which can be rearranged as m/(m —
1) = e®n=tn-1) Qver many realizations of the cascade, the
average number of collisions, and thus the distance, grows ex-
ponentially with rate wg, providing the origin of the numerical
scaling result for the pseudo-Lyapunov exponent A, = K¥
[14] and the rate at which adjacent flux tubes diverge from
one another.

D. Statistical theory of flux tube diameter

We capture the geometry of a flux tube by introducing
the flux tube indicator function Ipr(e) = @(6*((;50, _é) —€),
evaluated at a network state ¢ on the attracting trajectory
inside a tube and for a perturbation direction & orthogonal
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to it. Using the Heaviside function ®(x), lgr(e) =1 for
perturbation strengths remaining in the tube (¢ < €*) and 0
other\jvise [s_ep Fig. 5(a) and Eq. (9)]. The average of 1gr(€)
over ¢ and &,

S(e) = (Ler(€)) y3, 2y (11)

is the survival function: the probability that an e-sized per-
turbation does not lead to a divergence event later in the
perturbed trajectory. Formally, S(¢) := 1 — f(; p(e*)de*, with
p(e*) the transformed density over €*. In addition, $(0) = 1
and decays to 0 as € — o0o. The scale of this decay defines
the typical flux tube size. Calculating S(¢) requires  two steps:
first, establishing a tractable representation of €*(¢y, £), and
second, performing the average in Eq. (11). Both of these in
general pose intricate problems. However, as we will see next,
they substantially simplify when generic properties of the
asynchronous irregular activity regime are taken into account.
_Since the spike collision event underlying €* for each
(¢o, &) pair can be identified through a vanishing spike inter-
val, we represent trajectories using the perturbed spike inter-
val sequence. The perturbation-induced spike-time deviations
8ty(e) :==t,(e) — 1,(0), s = 1, 2, ..., provide this sequence,

Ats(€) =1;(€) — t,-1(€) = AL;(0) + 815(€) — 81,1 (€), (12)

here with s >
where €* « 1

2. In a linear approximation valid in our setting

St ( ) Tfree (13)
s(€) =~ ——=a;se,

VN
where a; is a recursively defined dimensionless susceptibility
(see Appendix I)

s—1

as == gnx 1_[( +d J) o
j=1
s—1 s—1

+ 3 Awndya;| TT (1+dg)™ |, a4

j=1 k=j+1

depending on the adjacency matrix A = (A,,), the pertur-
bation direction &, and derivatives of the phase response
curve evaluated at the previous states when input spikes
were received, d 5 = Z'(¢n,(j)). Here Ti. converts phase
to time [cf. Eq. (5)] With an O(1) mean, random elements
|§ | &« O(V/N), so — fﬁm simply converts the units into an O(1)
spike-time deviation. Note from Eqgs. (12) and (13) that Az(¢)
can have a zero, i.e., a spike-time collision, only when Aa, =
a, —as_1 > 0.

We now focus on collisions of backward-connected input-
output spike pairs. They obey a simple implicit definition of
€*(¢o, &), expressed using the perturbed spike intervals and
connectivity alone: the smallest € for which Az;(e —§) — 0
as 8 — O for any s satisfying A,,, ,,, = 1. Using this definition,
we can write

Ter(e) = [ [ ©(An(e)) -, (15)

§=2

with Af;(e) = Aty — T/“%Aase. Here 1gy and its average S‘(e)
[Eq. (11)] will depend on the adjacency matrix A = (A,;)

of the network realization. Conveniently, removing this de-
pendence by averaging over the ensemble of graphs P(A)
simplifies the calculation of the survival function

S(e) = (S(6))pa).- (16)

Evaluating the right-hand side of Eq. (16) using the linearized
perturbed spike intervals requires knowledge of the joint
probability density of the variables on which these intervals
depend,

pUAa}, (AL} A, n ). M., §olE. A)pEPA).  (17)

where we have chosen the perturbation direction;é to be statis-
tically independent of the initial perturbed state ¢,. Taken over
a time window of size T, we hereafter refer to this density as
or. Here the unperturbed spike pattern is represented by two
random variables: M, the number of spikes in the time interval
[0, T] after the perturbation, and {At}, the set of all M — 1
interspike intervals in this window.

We now exploit the properties of the asynchronous irregu-
lar phase. It is well understood that in the large-system limit
for a sparse graph 1 < K « N, the currents driving individual
neurons in the network converge to independent, stationary
Gaussian random functions [22]. For low average firing rates,
this implies that the pattern of network spikes (M, {At})
resembles a Poisson process with weak serial correlations and
an exponential spike interval distribution [23]. These weak
serial correlations are absent in lgr at short range by the
sparsity (p < 1) of the surviving (4,,,,,, = 1) factors and are
further suppressed at longer range by the irregular activity
and the fact that s # s* indexed variables contribute to gy
only insofar as they determine s* via an extremum condition,
not via their actual values. Thus, we neglect serial index
correlations. Moreover, the linearization of the phase response
curve for the weak coupling in this limit implies that its deriva-
tive, and thus the susceptibilities ay, is state independent [see
Eq. (7)]. Finally, we neglect the weak dependence between the
distribution of network spike patterns and A = (A,;,).

Using the above assumptions (see Appendix J for details),
we have the factorized density

M
pr ~ P(Amn)PT(M)HP(AI)2®(Aas)p(Aas)s (18)
s=2

with the distribution of an adjacency matrix element P(A,,, =
1)=p and P(A,;, =0)=1— p, count the distribution of
spikes in the observation window Pr (M) and the exponential
distribution of single interspike intervals p(At) with the scale
parameter At (see Fig. 8). All dependences on the distribution
of perturbation direction are now mediated by the suscepti-
bilities {Aa,}. For any isotropic p(£) having finite variance,
we find that p(Aag) has zero mean and standard deviation
proportional to exp[’\’( s], with the average contraction rate per
neuron %’( = If\,d —pd due to the inhibition [see Eq. (8)
and Appendix J]. The factor 20(Aa;) places support only at
positive values of Aa; as required.

As pr factorizes, so does S(¢),

M
S(e) = lim < l_[ss(e>>
s=1

= HS (e), (19)

s=1

Pr(M)
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where S;(€) is the probability that a perturbation of strength €
does not lead to a collision event involving the sth spike. With
the above simplifications,

Ss(e) = ®<At - @Aa e)Am (20)
s - W s .

p(AD)p(Aas)P(Aun)

Evaluating Eq. (20) (see Appendix J for details), we find

o0
T
S(e) ~ H (1 _ %wl(ew/mse) @1)

s=1
where we have identified the rate of spikes from connected
subpopulations wg [Eq. (10)]. Employing the logarithm and
T‘ﬁwke x ﬁe <1,

S(e) =~ exp [—;:|, (22)
E*
with
Ak
_ oK Kd/N J|/N
e*:x/Nizx/N _/ =VN|_|/ ,
Wk Tiree KvTiree VT (23)
&=

VKNt

where K and Iy [Eq. (2)] cancel and we have used Egs. (6)
and (7). With the survival probability in hand, the density
p(e*) is simply obtained as the negative of its derivative.
Equation (22) shows for 1 <« K < N that the basin diameter
€* is exponentially distributed and so completely determined
by its characteristic scale e* [Eq. (23)]. Further, €* is smaller
for larger network size, higher average in-degree, higher
population activity, and larger membrane time constant t.
Diameters tend to be larger, however, for stronger synaptic
coupling strength Jy. This previously unknown dependence
of €* is crucial to its scaling with the stabilizing rate Ax and
its interpretation as the ratio of the stabilizing and destabi-
lizing rates. In Fig. 4(b) we show quantitative agreement in
simulations between the definition of S(¢) [Eq. (11) using
the definition of €*, Eq. (9)] and its approximate microstate
parametrization [Egs. (19) and (20)]. These results also con-
firm the exponential form of our reduced expression [Eqgs. (22)
and (23)] and a scaling dependence on Jj [Fig. 4(c)]. The latter
holds while the system is in the asynchronous and irregular
activity regime of J o O(1/+/K). The other scalings agree
with previous numerical simulations [14].

E. Global geometry of phase space partitioning
and sequence codes

Using our results, we build a summary the phase space
organization of these spiking circuits as we have revealed it
(Fig. 5). Figure 5(a) schematizes the phase space geometry
local to a basin in the unfolded Poincaré sections where an
attracting trajectory is located at the center, as in Fig. 2(a).
Subcritical perturbations push the perturbed state within the
tube and vanish over time, while supercritical perturbations
lead to a divergence event at some future spike time. The
preimages of the divergence event in previous sections de-
termine the flux tube boundary back to the perturbation
time. The flux tube indicator function, extending out in one

(a)Gm,s _x10°
~— ki
+3° Mﬁw{d\\v'«'ﬁum
10 e
0 500 1000 T —~
spike index, s <X
w
S -
| e
——
-1
1 1 1 I\
0.01 0 0.01 0.02 0.03
€ € et
(b) . .
10 o simulation
4 — full theory
<0 -- exp|—¢/€]
n
1072
6
']0
* 4
°2
1
12
_1/4
= exp[—¢/€]
104 107 1072 107 100

€

FIG. 4. Survival probability to remain in a flux tube. (a) Spike-
time deviations §t,(¢) (dots) as a function of perturbation strength
up to the positive and negative critical strengths €*~ and €**, re-
spectively, for s = 1, ..., 15 (colors) with their linear approximation
(lines) given by Eq. (13). The inset shows §t,(¢) as a function of
s (shown for € = 0.2¢*%, 0.4¢**, 0.6e*%, 0.8¢**) decays exponen-
tially at a rate near the maximum and mean Lyapunov exponents A,
(black line) and Aea, (black dashed line), respectively [14]. (b) Sur-
vival probability function S(€) from simulations [dots, Eq. (11);
bars are standard error], theory [line, Egs. (19) and (20)], and the
simplified theory at large K, exp[—e/€*] [dotted line, Eq. (22)],
where € = (VKN /Jo)~". (c) Survival probability function S(e)
from simulations (dots) and exp[—e/e*] (lines) for Jy = 2", n =
—2,—1,0,1,2. (The parameters are the same as in Fig. 1 except
for N = 10* and K = 10°%.)

perturbation direction, has support only on the local tube.
Averaging this function over perturbation directions and states
gave the survival probability of remaining in a flux tube after
a perturbation.

This trajectory-centered view is useful for quantifying lo-
cal deviations away from stable trajectories. It is nevertheless
artificial because the location of the stable trajectory is not
established a priori, but is determined by the combination of
the spatial layout of spike collisions (and their preimages) in
the phase space and the projected effects of the inhibition-
induced volume contraction of the postsynaptic subspace. Our
results suggest a picture of the geometry based on the global
partitioning of the phase space by these events [Fig. 5(b)].
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FIG. 5. Flux tube boundaries are the preimages of future input-
output spike collisions. (a) Unfolded phase space representation of an
input-output spike collision. Spikes (ticks) occur at a rate NV in the
unperturbed trajectory (black line). For an example spike (red bor-
dered) from some neuron, the spikes from connected neurons (red)
occur at rate K9. Small perturbations (gray arrows) lead to trajec-
tories (gray) with spike-time deviations that decay (tick alignment).
A larger perturbation (orange arrow) generates an input-output spike
collision (at s*) in the subsequent trajectory. The indicator function
Trr(e) has support (dark gray) only over the local tube. (b) Con-
structing the local flux tube partition in the folded phase space. On
the left input-output spikes are represented by unstable edges (thick
green lines) of the unit hypercube havingi =(1,...,1) (black dot)
as an end point. An intrinsic partition (thin green lines) is generated
by projecting these edges onto the hyperplane orthogonal to 1 (light
gray). A given trajectory (numbered sequence of small dots) and
its local neighborhood (within black dashed lines) is shown. On the
right the flux tube partition for this trajectory at a given spike (here
s1) is obtained from iterating backward the intrinsic partition from
all future spikes (dashed lines). (c) Fully connected three-neuron
network phase space viewed from rotated perspectives (from left to
right) so that the main diagonal aligns perpendicular to the page,
showing that a 2D projection captures the dynamics. All states on the
reset manifold are attracted in time (blue to red) to a unique trajectory
(red line), emitting spikes on the threshold manifold (the red outlined
dots). The unstable edges (yellow) and their preimages (black dashed
lines) form the basin boundaries.

Here input-output spike collisions are represented by the
subset of hyperedges of the N-dimensional unit hypercube of
phases where the corresponding voltages of two connected
neurons both approach the threshold. A perturbed trajectory
will diverge once one of these unstable edges is crossed. The

projection of these unstable edges into the Poincaré section
of the dynamics generates a partition [Fig. 5(b), left]. The
flux tube partition emerges as the refinement of this partition
obtained by iterating it backward in time using the inverse
of the Poincaré map. Different parts of this refined partition
are sampled by the trajectory’s neighborhood as it evolves.
The polytope basin boundaries thus arise as backward iterates
of the unstable edges lying near the trajectory [Fig. 5(b),
right]. Unstable edges at sufficiently distant future spikes
(the gray edge at s4) will no longer refine the partition in
the local neighborhood (at s;), since the expansive backward
dynamics maps the projected edges outside the neighborhood.
The refinement thus converges to a unique global partition of
the phase space.

For concreteness, in Fig. 5(c) we use rotated perspectives
to show how the projection captures the full phase space
dynamics in the flux tube partition of a fully connected three-
neuron network. There are two stable spike index sequences
for this network, ...123... and ...213.... Permutation of
any adjacent spikes thus changes the encoding symbol, i.e.,
tube, in which the trajectory resides.

More generally, the spike-based code emerging from this
partitioning is insensitive to permutations of adjacent spikes
from unconnected neurons and thus exhibits error-corrective
properties. This insensitivity necessarily lowers the spike se-
quence entropy. In a large window T, there is a number NvT
of spikes, KVT of which arrive at a given neuron, which itself
emits D7 spikes (in a ratio of N to K to 1, respectively). The
number of all possible distinct spike-index sequences in this
window scales roughly as N. An upper bound for the entropy
then scales superextensively as N log N, similar to the scaling
found in an estimate of the entropy of the sequence of network
states under this partition [14]. However, the entropy of the
spike index sequence is constrained by the dynamics. An
index subsequence of the network activity can be associated
with each neuron by combining its input and output spikes.
Enumerating the possibilities for this index subsequence that
are considered distinct under the flux tube partition, only the
positions of its output spikes relative to its input spikes need
to be considered. The number of such positions scales with K
and there is such a subsequence for each of the N neurons so
that an upper bound on the entropy is N log K = N log pN «
NlogN for K < N. We conclude that the partitioning of the
phase space by the dynamics, as well as the insensitivity of
this partition to permutations in the spike sequence involving
unconnected neurons, constrains the capacity of the associated
spike-sequence neural code while providing a robustness to
subcritical perturbations in the encoding.

IV. DISCUSSION

Attractor states and their basins of attraction play a funda-
mental role in theories of neural computation. Methods from
the physics of disordered systems have served these theories
by mathematically characterizing the statistics of dynamics
and phase space organization of rate networks (e.g., Ref. [2]
calculates their typical basin diameter in the limit of high
gain). Insight is gained by tracking the parameter dependences
in the resulting expressions back to the ingredients used to
specify the model. In this contribution, we have used this
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approach for the treatment of the attractor geometry of flux
tubes in the inhibitory LIF networks recently considered
in [14]. This dynamics serves as the limiting example of
inhibition-dominated spiking circuit models with fast action
potential onset and fast synapse kinetics that is relevant to
cortical dynamics.

Through massive activity simulations we present the phe-
nomenology of the time variation of flux tube attractors. The
flux tube diameter enclosing an attracting trajectory contracts
with the rate of volume contraction per neuron that we de-
rive as Ax/N = pd = (NDt)~! and is due to the inhibition
received across the subspace of postsynaptic neurons. This
contraction is punctuated, however, by blowup events occur-
ring when an initially adjacent flux tube diverges. We provide
a formal definition of the attractor boundary with which we
identify the boundary trajectories and track the source of the
blowup and divergence instability to a collision of an input
and an output spike. The exponential shape of the boundary
is thus formed by the preimages of these collisions and the
blowup events occur as the network state passes a nearby
collision event and the basin boundary expands out to a
preimage of the next-nearest collision event. The rate of spikes
in the subpopulations connected to a given neuron wgx = Kv
controls the probability of that neuron being involved in a
collision event. Once a collision event occurs, it sets off an
exponential (with rate wg) cascade of such events afterward
that is responsible for the tearing away of some adjacent tube.

Using the nature of these collision events to mathemat-
ically identify the spiking trajectories lying on flux tube
boundaries, we were able to calculate the size distribution of
these basins using disorder-averaging methods on the survival
probability of a perturbation of a given size and direction
remaining within the local basin. The average basin diameter
is controlled by the ratio of these per neuron rates (Ax /N)/wg
as the two dominant opposing contributions to the stability.
Both rates depend in the same way on the relative number of
interactions, i.e., the dimension of the pre- and postsynaptic
subspace to any neuron K. It then cancels in the resulting
expression, appearing in €* only implicitly in the scaling of
the synaptic coupling J, and so does not directly control the
attractor geometry. The remaining ratio reveals the parameters
controlling these two rates,

— |J|/N  inhibitory coupling strength: stabilizing
€* X =
4 rate of spikes: destabilizing

Namely, the synaptic coupling strength controls the stabilizing
contraction per neuron, while the nondimensionalized, single-
neuron spike rate controls the number of candidates for a
collision event and thereby the destabilizing contribution to
the dynamics. In the final expression, this is multiplied by ~/N
to account for the projection of the perturbation onto a single
neuron.

From these results we formed a geometric picture of
the structure of the high-dimensional phase space using a
Poincaré map obtained from the phase representation. Trajec-
tories evolve parallel to the main diagonal and hit the sides
of the unit hypercube at spikes times. Edges of the cube
with (1,...,1) as a vertex are where the voltages of two
neurons reach the threshold. Collision events are localized
in the space to the subset of these edges associated with

connected neurons. Successive preimages of these edges gen-
erate successively refined partitions of the phase space. On
account of the expansive reverse-time dynamics, this refine-
ment converges to the unique flux tube partition on the space.
Together, the elements of this dynamics-generated partition
form a finite resolution code of the input signal (for this
autonomous dynamical system the input is simply the initial
condition). For spike-sequence-based codes, sequences are
distinct under this code only if they differ in the ordering of
spikes in any of the O(KN) subsequences of spiking activity
from pairs of connected neurons. Thus, we find that the
noncommutability of the spike sequence to adjacent trans-
positions, previously proposed as applying generically [14],
applies only to these subsequences. The code is insensitive
to permutations of adjacent spikes from unconnected pairs of
neurons and a reduced entropy of the code results.

We emphasize that collision events structure the phase
space in this way only when the dynamics is linearly stable.
For inhibition-dominated circuits, this phase has been found
in the biologically relevant regime of fast but finite action po-
tential onset and fast but finite synapse kinetics [7-9,24]. We
have applied the theory to explain phase space partitioning in
the case of inhibitory, pulse-coupled LIF networks, a limiting
model for this regime. Using natural extensions of the LIF
model to fast but finite action potential onset and fast but finite
synapse kinetics, respectively, we find that the abrupt spike-
time jumps underlying the instability structuring the attractor
basins in LIF networks nevertheless persist when using these
nonlimiting neuron models in this regime. As expected from
our theory, divergence events have been observed in both these
models [7,8]. We leave understanding how collision events are
involved in the transition out of this regime to future work, but
we do show that they persist in two canonical relaxations of
the LIF neuron limit.

Applying our approach in a relatively idealized context al-
lowed for a tractable assessment of phase space organization.
We have nevertheless neglected heterogeneity in many proper-
ties. For instance, in contrast to the locally stable regime stud-
ied here, mixed networks of excitatory and inhibitory neurons
can instead be conventionally chaotic when the excitation is
strong enough [25]. It appears this chaos can nevertheless be
suppressed in the ubiquitous presence of fluctuating external
drive [26-30] and with spatially structured connectivity [10].
These observations, as well as the stable embedding of spiking
patterns into recurrent circuits [31], suggest locally stable dy-
namics and phase space partitioning are more general features
of spiking circuit dynamics than the specific setting studied
here.

Our theory of destabilizing collision events treats insta-
bilities by locating in the phase space abrupt changes in
subsequent spike times produced as the network state is
perturbed off an attracting trajectory. The existence of such
instabilities is thus intimately tied to the granularity of spikes
and has no equivalent in rate networks. Despite the instability,
chaos is kept at bay in this regime by the dominating effect
of the contraction at spike times arising from the inhibitory
and pulselike form of the coupling. With increasingly smooth
versions of the coupling or the hard threshold, this stabiliz-
ing contraction is smeared in time and presumably eventu-
ally succumbs to other destabilizing effects, yet to be well
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characterized, and the dynamics turns chaotic. Our theory
also applies to other, as yet unknown, and even coexisting
instabilities involving spike collision events, the existence of
which requires further investigation. Our work demonstrates
that both unit dynamics and the type of interaction coupling
will play a role.

Our approach, in particular the way we have quantified
the ensemble of perturbed spiking trajectories, can inform
formulations of local stability in less idealized contexts. Of
particular interest are extensions where a macroscopic fraction
of tubes remains large enough to realize encoding schemes
tolerant of intrinsic and stimulus noise. For example, us-
ing random dynamical systems theory [30,32] to incorporate
stochastic external drive could provide theoretical control over
spiking dynamics variants of rate-network-based learning
schemes to generate stable input-specific trajectories [33]. We
note that our expression for the survival probability [Eq. (21)]
takes the form of a g-Pochhammer symbol enumerating all
partitions of a set. How exactly this relates to our enumeration
of paths through the network, which we needed to compute
the spike-time deviations due to a previous perturbation to the
network state, is left to future work.

Our calculations can be performed for different disordered
connectivity ensembles (e.g., correlated entries from annealed
dilution processes [34] and structured second-order statistics
[35]). That the spatial structure of cortical circuits [10] is
stabilizing suggests that destabilizing collision events will
be relevant for extensions to more realistic connectivities.
Different activity regimes (e.g., non-Markovian spike interval
processes [36]) as well as any hard threshold neuron model
with known phase response curve are also amenable to our
approach, so long as the averages remain mathematically
tractable.

We note that flux tubes are not in a formal sense basins of
attraction. The locally stable trajectories they enclose are in
fact transients. They are nevertheless made quasistationary by
a transient time growing exponentially with network size [9].
Formally, the linear stability of the dynamics precludes a finite
value for the Kolmogorov-Sinai entropy rate. Nevertheless,
the partition refinement picture we provide in Fig. 5(b) is very
much analogous to the formal partition refinement used in
symbolic dynamics to define trajectories in chaotic systems.
The difference is that in our setting the refinement process
converges in a finite number of steps and to partition elements
having finite measure (i.e., not points), suggesting that there
is transient production of information about a perturbation
that persists up to timescales of the order of the divergence
event time #*. Formally establishing this connection to ergodic
theory is an interesting direction for future research.

Recent advances in experimental neuroscience have al-
lowed for probes of the finite-size stability properties of corti-
cal circuit dynamics in vivo. For example, simultaneous intra-
and extracellular recordings in the whisker-motion-sensing
system of the rat reveal that the addition of a single spike
makes a measurable impact on the underlying spiking dynam-
ics of the local cortical area [37]. Indeed, rats can be trained
to detect perturbations to single spikes emitted in this area
[38]. Toy theories explicitly representing spiking interactions,
such as the one presented here, can inform future experimental
studies by highlighting the features of spiking neural circuits

that contribute to these response properties. This combined
theory-experiment approach promises to elucidate a rich sub-
strate for collective computation in terms faithful to the way
neurons actually interact.
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APPENDIX A: EVENT-BASED SIMULATIONS

A true phase representation is defined on a circular domain,
e.g., [0, 11V with 0 and 1 identified. The phase dynamics
we analyze is termed a pseudophase representation ¢(t) €
(—o0, 1]V since the phase can be kicked to a negative value by
an inhibitory input arriving when the voltage is near its reset
value V &~ V.. We hereinafter drop pseudo from the term.

The complete phase representation dynamics is given by

Gu(t) = Tied + O A8t — t)Z(pa(t)),  (Al)

with constant phase velocity Tﬁ’ei, the phase response curve
Z(¢), and a spike-reset rule: When ¢, = 1, ¢, is reset to
0. Note that in the large-K limit the phase and the voltage
representation converge onto one another (see [14]).
Event-based simulations of Eq. (A1) were implemented by
iterations of a spike-time map that takes the network state
from just after one spike 7" to just after the next t;jr 1» Where
s is the index of the network spike sequence. The next spike
time 7, and next spiking neuron in the sequence are obtained

simply in the phase representation via
Ip1 =15+ min_[1 — @, (t)]Tiree,
ne{l,...,N)

N}[l - ¢n(ts)]Tfrees

respectively. An iteration consists of evolving the network
phases to this next spike time #,;;, applying the pulse of
size Z(Ppn(ts+1)) to the postsynaptic neurons {m | Ay, =
1}, and then resetting the phase of the spiking neuron ng .
For further details, as well as methods for computing the
Lyapunov spectrum for this network, see [14].

This implementation was used to apply perturbations to
the system and measure the subsequent activity. The model
was simulated in isolation for a time before the application of
the perturbation to allow it time to relax onto the stationary
measure.

.....

N1 = argmin,,c(
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APPENDIX B: DETERMINING THE CRITICAL
PERTURBATION STRENGTH

The separation of trajectories is quantified using the 1-
norm distance

1 N
Di(€)i= = > |bus = $ni(©) (B1)
n=1

between 53, and the perturbed trajectory (Z),(e) evolving freely
from the perturbed state ¢ (€) := ¢y + € with the pertu{bation
time set as ¢ = 0 and the perturbation vector € := %é The

norm of € is order 1 in N for aE order 1. Further, €* is the
largest value below which D, (¢) vanishes in time. We use a
bisection method on € (described in Appendix C) to obtain

€*,

APPENDIX C: ESTIMATION OF THE CRITICAL
PERTURBATION ¢*

A random perturbation direction % was obtained by sam-
pling N — 1 times from a standard normal distribution, nor-
malizing this vector, and projecting it into the N-dimensional
phase space such that it was orthogonal to the phase velocity
vector w = (T;}, ..., T;.)). Constrained to this hyperplane,
the perturbation alters only relative spike-time differences,

e., there is no global shift in spike times. For € > 0, the
critical perturbation size €* in that direction was obtained
using a bisection method. The initial estimate of €*, ;5 =

Jo/~vKNvt, was lower bounded by € = 10~ ~4e o and upper
bounded by €, = 1. The estimate €, was 1terat1vely refined
based on a divergence flag on the distance between the
perturbed and unperturbed trajectories at time 7 after the
perturbation (for iteration index i): If D7 (¢€;) > Dinresh, then
en o < € otherwise € < €/. Here Dyyresn = 0.01 defines
the threshold chosen to lie between the two well-separated
modes of the end-distance distribution. (D, eventually satu-
rates due to the bounded phase space at the average distance
D between a pair of random trajectories and computed in
Ref. [14].) A bisection step was then made,

* 61>Jkpp + 6]T)W

Cip1 = - 5

to obtain the estimate of the next iteration. The procedure was
repeated until the differences in successive values of €/ fell
below a tolerance threshold of 10~ and the final estimate was

taken as €*.

APPENDIX D: CONSTRUCTING THE FOLDED PHASE
SPACE REPRESENTATION

Here we describe the procedure used to construct the
folded representation of the phase space around the attracting
trajectory shown in Fig. 2(b) and [21]. Similar to Fig. 7 in
Ref. [14], the same random 2D projection of the (N — 1)-
dimensional subspace orthogonal to the trajectory was applied
at each iteration of the event map. This subspace remains
unchanged by the evolution since in the phase representation
the trajectory is always parallel to the main diagonal of the
unit hypercube. Then a rectilinear grid of initial conditions

was generated in these planes. The network was simulated
from each initial condition and the corresponding grid of end
states stored. A corresponding grid of the pairwise distances
between end states of all adjacent initial conditions was
computed. Distances falling in the finite-distance mode of
the resulting bimodal end-state distance distribution centered
around the average distance D were used to identify adjacent
initial conditions spanning a putative flux tube boundary. A
putative tube identity label was assigned to each continuous
region of corresponding initial conditions enclosed by these
putative boundaries in the grid. We occasionally observed
single tubes segregated into disjoint pieces in our 2D repre-
sentation by the occlusion of another tube, consistent with
the layering of projections as proposed in Fig. 5(b). For
robustness then, a round of amalgamation of tube identities
was performed by identifying as the same any two tubes
whose centers of mass gave an end-state distance which fell
below a threshold of 0.01. Again, that the modes were well
separated made for unambiguous flagging.

This algorithm to compute a single cross section was then
repeated at each spike of the network activity in a simulated
time window to obtain a set of successive cross sections
orthogonal to and centered on the stable trajectory. To present
these data, a folded representation is used in which these cross
sections are placed contiguously so that the center trajectory
passes through them continuously. This gives a 241D repre-
sentation of the tube and its neighborhood along the stable
trajectory, oriented such that the line (0, 0, ¢) is horizontal
with time increasing to the right. The identity of the center
tube is trivially maintained across sections since the (0,0)
perturbation leaves the stable trajectory unchanged. Keeping
track of the identities of the surrounding tubes represented in
the successive sections requires an identity list passed forward
and updated from section to section. We constructed such a
list by again comparing all pairwise end-state distances of the
center of masses of all cells of the previous and current cross
sections. We identified successive cells as coming from the
same tube if this distance fell below a threshold. Identities
were added when a current cell had no match in the previous
section corresponding to the event of a new tube entering the
section. Identities were removed when a cell in the previous
section had no match in the current section corresponding to
the event of an existing tube leaving the section. We then
used this identity list to color the cells, using an adaptive
color assignment scheme in order to keep the range of colors
reasonably bounded. This scheme randomly assigned unused
colors, abandoned from tubes that had exited the section, to
the cells of new tubes that had entered the section.

APPENDIX E: INSTABILITY CAUSED BY SPIKE
COLLISION EVENTS

In this Appendix we determine from simulations of the
dynamics that (i) the perturbed trajectories begin to diverge
where a difference in the spike sequence appears, (ii) this
change is associated with a vanishing interval, and (iii) this
interval is between susceptible spikes, i.e., spikes from a pair
of neurons that exhibit one of the three connected-pair motifs.

Over perturbation directions, an ensemble of pairs of per-
turbed trajectories was simulated using a perturbation strength
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FIG. 6. Characteristics of divergence events. (a) Small window of the distance time series aligned to index s* at which the decorrelation of
the spike sequence begins. The supercritical perturbed (red) trajectory started from €** jumps up away from the subcritical perturbed (blue)
trajectory started at €*~ at s* (note the logarithmic scale on the ordinate). Spike intervals £, | — ¢, for the (b) € = €** and (c) € = €*~ trajectories
[colors as in (a)]. Realizations not exhibiting ng- — nx-,; and nx— <— nx— |, respectively, have been grayed out. Note that those left colored
have a significantly smaller interval at index s*. (d) Coincidence of successive spikes with increasing precision (decreasing tolerance) of the
bisection algorithm used to find €*. Here a shrinking interval taken from an € = ¢** realization has been used [see the identified minimum

in (b)].

just above (¢*T) and just below (¢*7) the estimate obtained
according to the procedure described in Appendix C (using
the notation x* = limg_,¢x & 8). From the simulation started
at e*+, the decorrelation index s* was extracted as the index in
the spike sequence at which a sustained difference between
the pair of sequences began. We denote elements of the
perturbed spiking neuron sequence and spike times by n,(€)
and #,(¢€), respectively.

We first show that the sustained jump in distance begins
at the decorrelation index s*. We aligned by s* across trials
the distances D;(¢*") to the unperturbed trajectory from the
perturbed trajectory started from €*. The result in Fig. 6(a)
shows the high correlation across trials.

Next, in Figs. 6(b) and 6(c) we see that the spike time
interval ¢« (€) — £+ (€) corresponding to s* before (¢ = €*7)
and after (¢ = €**) the collision event, respectively, vanishes
only when A, = 1. In addition, g, (€) — - (€) scales
inversely with the precision of the bisection algorithm used
to obtain €*, demonstrating that the event is indeed generated
as two spikes become coincident, 71| (€) — #-(€) as € — €*
[see Fig. 6(d)].

APPENDIX F: SPIKE COLLISION MOTIFS

In the main text we focused on the backward-connected
motif. In this Appendix we discuss the forward-connected and
symmetrically connected motifs. Across these motifs, under
consideration is a situation where an output spike time of a

given neuron f#,, is near in time to an input spike time f,
that this neuron receives. When the output spike is generated
before the input spike, # < tin (the backward-connected
motif), a collision can occur when a perturbation leads to
the vanishing of the interval between them, an example of
which is shown in Fig. 3 in main text. If #, < foy (the
forward-connected motif), however, the inhibition means that
tin already delays f, for € < €* so that t,,, can occur no closer
to tip than Afjyp, for the same reason that #,, undergoes
a jump forward in the backward-connected motif. Thus, a
collision event occurs in this motif when the perturbation
brings i, and foy to within Afjuy, of each other.

The two asymmetric motifs give collision scenarios that
are identified under a reversal of the direction of change in
perturbation strength. The forward- and backward-connected
motifs can be distinguished by whether the collision event is
approached by an input spike moving forward, df,/de > 0,
or backward, dti,/de < 0, over toy, the reference time. In
the forward-connected motif, the interval vanishes, #;, — 0T,
for € — €**, i.e., just after the collision. In the backward-
connected motif, the vanishing interval #, — 0" occurs as
€ — €*7, i.e., just before the collision. For either case, when
on the side of €* where the interval is vanishing, the input
spike comes after the output spike, #;, > 0, in this reference
frame.

In each of these two asymmetric motifs, only one pair of
spikes undergoes a jump of size Afjump. For the bidirectionally
connected motif, however, both spikes undergo a jump of
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size Atjmp simultaneously, by which they exchange spike
times, and so no vanishing interval exists on either side of
the flux tube boundary. A collision event occurs in this motif
with reduced relative frequency p compared with the two
asymmetric cases and so is negligible for sparse networks,
p L L

The characteristic of an inhibitory event at threshold is a
single neuron property, dependent on the neuron model, and
so can be investigated for many neuron models. Since the LIF
solution is invertible, one can explicitly solve for the time
Atjump that the inhibitory event has delayed the spike. With
initial condition V(0) =V, +J ~ J,

VT = \/f]() — (\/EIQ + J)E_Atj“mp/r,

J
Atymp =7tIn {1 + — F1
e ( «/?Io) D

Using the balance equation (3), we obtain Atjmp ~ 7In[1 +
(Kvt)~!'] ~ (K)~! for K >> 1, as stated in the main text.

The inhibition prohibits susceptible spike pairs in the
forward-connected (and bidirectional) motif that occur closer
than 1/Kv. Thus, these pairs are separated in time by on
average 2/K7 in the unperturbed trajectory. However, since
they collide when they come within 1/Kv of one another,
the susceptible pairs in a collision event for the forward-
connected and symmetric motifs are effectively separated by
the same perturbation distance as those pairs satisfying the
backward-connected motif.

APPENDIX G: COLLISION EVENTS FOR NEURON
MODELS WITH SMOOTH INTERACTION AND
THRESHOLD DYNAMICS

Here we demonstrate that for two natural extensions of the
LIF neuron model into the nonlimiting regime of finite deriva-
tives in the dynamics, the abrupt spike-time shifts persist.

We simulated the inhibitory input spike at a threshold event
for a neuron model with an active spike-generating mecha-
nism, the rapid ® neuron [8]. The ® neuron model on which
it is based is the phase representation of the normal form of a
saddle node bifurcation to periodic firing and thus its features
are universal to all neuron models operating near this transi-
tion. It has an additional parameter relative to that model, the
rapidness r, that controls the speed at which the voltage di-
verges. As the rapidness increases, the phase response curves
of the ® neuron qualitatively approaches that of the LIF
neuron with a large jump in phase around ¢ = 1 [Fig. 7(a)].
With the addition of finite speed of action potential onset,
i.e., with a smooth threshold, the spike jump has a magnitude
similar to that in the LIF case, but now it grows smoothly
with perturbation strength after the collision Fig. 7(b), top.
As the action potential onset rapidness increases, however,
this growth becomes sharper, approaching the discontinuous
jump for the LIF neuron [Fig. 7(c)]. Divergence events thus
result from spike collisions in this regime and the divergence
rates have been quantified [8] similarly to the case of the LIF
neuron [14].

We also simulated the inhibitory event at the threshold also
for the LIF neuron with the addition of an integrating synap-
tic current compartment so that /() = lex, + Isya(¢), where

smooth
threshold

0 02 04 06 08 1.0?

FIG. 7. Spike crossing instability in other models. (a) Phase
response curves for a smooth threshold neuron model (green) qual-
itatively approximate that of the LIF neuron (black) as the action
potential onset rapidness is increased (light to dark). (b) Parametrized
family of voltage traces of an inhibitory event near threshold for
other neuron models. Shown on top is a smooth threshold model
parametrized by increasing the action potential onset rapidness
(green to blue). On the bottom is a smooth synaptic coupling model
parametrized by decreasing the synaptic time constant (red to blue).

Liyn(t) is governed by gy %Isyn = —Lyn + 1) Au St —
t;). With the addition of finite synaptic current kinetics to the
model that low-pass filter the input and smooth the interaction
dynamics, the spike-time jump is still instantaneous with
magnitude approaching that of the LIF neuron for a vanish-
ing synaptic time constant Fig. 7(b), bottom. Thus, collision
events for finite-speed kinetics can induce divergence events.
Since the corresponding jump size decreases as the kinetics
are slowed, however, this collision-based instability is less
likely to induce a cascade for slower kinetics and so its
destabilizing effect on the dynamics is weakened the further
away the system is poised from the LIF regime.

APPENDIX H: CASCADE PROBABILITY

For € approaching €*, the presynaptic spike time fy_ 4|
is advanced relative to the postsynaptic spike time 7, until
the two spikes collide [see Fig. 3(a)]. At collision (¢ = €*),
the pulsed inhibition and the voltage’s rate of approach to
threshold cause an abrupt delay of 7 by Atjump [Fig. 3(b)].
Using Eq. (3) and the single-neuron dynamics we obtain

Atiymp = TIn[1 +d] ~ d = (KD)™" (H1)

ford <« 1.

Since Afjymp & a)gl, the spike time of neuron ng is typi-
cally shifted far enough forward to cross a spike emitted by a
neuron in its postsynaptic population. Formally, the probabil-
ity ppost Of a spike emitted by any of the postsynaptic neurons
during the window of size (K¥)~! over which the output spike
has jumped is K(1 —e™"/%) =1 — ;L + O(K~?). Since the
subsequent activity of a neuron involved in a collision event
is irreversibly altered, there are on average logN/logK <
N/K = 1/p of these events until the activities of all neurons
have been altered. A lower bound on the probability of a
cascade is then (ppos)? ~ (1 — 21+N)1/p — 1 in both the
sparse (N — oo and pN fixed) and dense (N — oo and p
fixed) thermodynamic limits.
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APPENDIX I: SUSCEPTIBILITIES a,

The spike-time deviation §t;(¢) := t;(€) — £,(0) is com-
posed of a contribution by the direct perturbation to n, and
a contribution from the indirect effects of the perturbation
via deviations of the input spike times to n;. The deviations
from both of these contributions will be contracted across
subsequent input spikes to that neuron. The derivative with
respect to perturbation strength thus consists of a differential

J

dt, 0t

: dt; oty
de o€

3 de Btj

_den () [ 9\ g il
~ de anbn_v(t;) 3, (17 1) 2

s—1
_ <En] ) l—[ 1+d; nw, ( Tfree)+2( 1 Amn/d J)
j=1

dts _ _Tfree S71
de = (L0

where d
curve,

is shorthand for the derivative of the phase response

d¢xj = Z/((pnx (tj))v

evaluated at the phase of the n, neuron at the time of the jth
spike in the network spike sequence and where the perturba-
tion direction vector £ is not normalized but explicitly divided
by +/N, preserving the O(1/+/N) scaling of a unit vector.
The result contains three contributions: perturbations to n,
perturbations to neurons connected to 7, and the contraction
events from input spikes to n. Dividing the result by *JTFL“ and

rescaling the perturbation to € = _j%e €, we obtain

dt? de Tfree
Sty(e) = — 1z de :—mase, 12)

as stated in the main text [Eq. (14)].

APPENDIX J: DETAILS OF DERIVATION OF FLUX TUBE
DIAMETER DISTRIBUTION

The state being perturbed at t = 0, J)o, is an equilibriated
state whose probability density function depends in general
on the realization of the connectivity A = (A,,,). For large,
sparse connectivities, however, the self-averaging properties
of A leave the invariant density p(¢y) dependent only on the
parameters of the connectivity ensemble and not the particular
realization. A closed form for this density has been previously
derived (see [14]), though we will not need it here since
the dependence of d,; on ¢! becomes negligible at large K
[Eq. (7).

We instead require the distribution of unperturbed in-
tervals. In a diffusion approximation, applicable to large,
sparse graphs, the inputs to different neurons are negligibly

j m”j + ZAanjd(p/

due to changing initial state with fixed input spike times and
due to changing input spike times with the initial state fixed,
respectively:
s—1
dt, 0t dt; oty
o B L 11
de de + Z:; de 0t; an

The chain-rule calculation is

di; 3¢, (t;) ﬁ 0\ o

o1; 1 060 | 9 (1))

s—1

dt
l—[ (1 + d¢§)A"’v”k (_Tfree)d_,

k=j+1

dt;
[T (1+dg) |52
=11 de

(

correlated. Each set of unperturbed interspike intervals { Az}
of the compound spike sequence obeys a distribution that with
increasing N rapidly approaches the same exponential form
with rate N, p(Aty) = Noe N"2% for all s (see Fig. 8). The
distribution of {Atz} is then

M
p({an)) = o(AL). an

s=2

The susceptibilities Aa, are simplified in three ways. First,
the sizes of indirect effects [the second term in Eq. (14)] are
suppressed for large K, since they additionally contain d; o

0 2 4 6 8 10

NUAt

FIG. 8. Network spike-time interval probability density p(At),
which is distributed exponentially (¥ = 10*, b = 10 Hz, and 107
network intervals). The dashed line is the prediction p(Ar) =
NpeV"2 Note that the abscissa is scaled by ND.
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K1 as a factor. Thus,
s—1

a; X &, ]‘[ (1+d ¢§-)Aw J2)

j=1

Second, the small synaptic strength linearizes Z(¢) for K > 1
so that d; ~ —d with d := (Kvt)™' > 0 [Eq. (7)] so as
no longer depends on the distribution of states. Third, for
nonsmall s a fraction p of the earlier spikes {1, ...,s — 1} are
from neurons presynaptic to n, so that

ay % &,(1 =) Y ~ £, (1 = d)
=&,{[1 — 0) ' /KI* PN ~ g, et

for K> 1. Thus, Aa,~ e”’dsgns — e”’d(s’l)’g‘nvfl ~
e P, —E, ), since e’ ~ 1 for N > 1. We note that
—pds ~ \t, where . = —t~! serves here as an estimate for
the mean Lyapunov exponent Apean at large K, calculated in
[14].

Then o; determines the numeric prefactor in the standard
deviation of Aag, oa4, and so can be set to make this
prefactor unity. In addition, p(§) was chosen as a centered
normal distribution in order to generate isotropic perturbation
directions. The difference of two independent centered normal

random variables has 0 mean and twice the variance. Thus,
Opa, = \/Ecrg e~P?We also note that [a;] o) = 0 when serial
correlations are negligible, [&,.&,, 1 = 8un,_,, as assumed in
the main text, and [&,, ] o) = 0 for the isotropic perturbation
direction distributions used here.

The expectation of S;(¢) [Eq. (20)] is then evaluated as

7} Amﬂ
Si(e) = [@(At — ﬁAase> ]
N P(AL)p(Aag)Pa,,, (Amn)

(1= p)+ poee /oo g
= — —e® e s s
p pﬁ o 2

(1-p) +pe°‘?<1 - / e—yfdys)
0

1 + p(erfex[cg] — 1),

. T
with yy = x5 4+ ¢, X5 = Aas/\/iams, and ¢; = %JLNGA%

and where erfex[x] = " (1 — \/i; fg e‘yzdy) is the scaled
complementary error function. Using the approximation
erfex[c,] — 1 & —c¢ forcy < 1 (trueife/,/p < 1), we obtain
Eq. (21).
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