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Optimal geometry of transportation networks
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Motivated by the shape of transportation networks such as subways, we consider a distribution of points in the
plane and ask for the network G of given length L that is optimal in a certain sense. In the general model, the
optimality criterion is to minimize the average (over pairs of points chosen independently from the distribution)
time to travel between the points, where a travel path consists of any line segments in the plane traversed at
slow speed and any route within the subway network traversed at a faster speed. Of major interest is how the
shape of the optimal network changes as L increases. We first study the simplest variant of this problem where
the optimization criterion is to minimize the average distance from a point to the network, and we provide
some general arguments about the optimal networks. As a second variant we consider the optimal network that
minimizes the average travel time to a central destination, and we discuss both analytically and numerically some
simple shapes such as the star network, the ring, or combinations of both these elements. Finally, we discuss
numerically the general model where the network minimizes the average time between all pairs of points. For
this case, we propose a scaling form for the average time that we verify numerically. We also show that in the
medium-length regime, as L increases, resources go preferentially to radial branches and that there is a sharp
transition at a value Lc where a loop appears.
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I. INTRODUCTION

Transportation networks evolve in time and their structure
has been studied in many contexts from street networks to
railways and subways [1–4]. The evolution of transportation
networks is also relevant in biological cases such as the growth
of slime mould [5] or for social insects [6–9]. The specific
case of subways is particularly interesting (for network analy-
sis of subways, see for example [2,10–14]). In most very large
cities, a subway system has been built and later enlarged [2],
with current total lengths L varying from a few kilometers to a
few hundred kilometers. We observe that the length of subway
networks is distributed over a broad range [see Fig. 1 (top)].
Fig. 1 (bottom) also shows the total length versus the first
construction date for most subway networks worldwide (the
data is from various sources, see [14] and references therein):
the oldest networks are mostly European and the largest and
more recent ones can be found in Asia.

Concerning the geometry of these networks, as L increases
we observe more complex shapes and an increase in the num-
ber of lines (see Fig. 2 and also Ref. [15]). Usually for small
subways (L of order a couple of 10 kms) we observe a single
line or a simple tree (e.g., a single line in the case of Baltimore,
Haifa, Helsinki, Hiroshima, Miami, Mumbai, Xiamen, ...; or
many radial lines such as in Atlanta, Bangalore, Incheon, Ky-
oto, Philadelphia, Rome, Sendai, Warsaw, Boston, Budapest,
Buenos Aires, Chicago, Daegu, Kiev, Los Angeles, Sapporo,
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Tehran, Vancouver, Washington DC). For larger L (of order
100 kms), we typically observe the appearance of a loop line,
either in the form of a single ring (e.g., Glasgow) or multiple
lines with connection stations (Athens, Budapest, Lisbon,
Munich, Prague, São Paulo, St. Petersburg, Cairo, Chennai,
Lille, Marseille, Montreal, Nuremberg, Qingdao, Toronto).
For larger networks (L over 200 kms) we observe in general
some more complex topological structure (Berlin, Chongqing,
Delhi, Guangzhou, Hong Kong, Mexico City, Milan, Nanjing,
New York, Osaka, Paris, Shenzhen, Taipei). For the largest
networks, convergence to a structure with a well-connected
central core and branches reaching out to suburbs has been
observed [2].

In this paper we investigate the optimal structure of trans-
portation networks, as a function of length L, for several
related notions of optimal involving minimizing travel time.
Real-world subway networks have developed under many
other factors, of course, rather than resulting from the opti-
mization of some simple quantity, but optimal structures pro-
vide interesting benchmarks for comparison with real-world
networks.

There has been extensive study of optimal networks over
a given set of nodes (such as the minimum spanning tree
[16] or other optimal trees [17]). Some such problems allow
extra chosen nodes, for example, the Steiner tree problem
[18], or geometric location problems in which n given demand
points are to be matched with p chosen supply points [19].
At another extreme is the much-studied Monge-Kantorovich
mass transportation problem [20], involving matching points
from one distribution with points from another distribution.
Our setting is fundamentally different, in that what we are
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FIG. 1. (a) Histogram of the total length L of subway networks.
(b) Total length of the network versus first construction date t0. We
grouped the networks according to broad regions.

given is just the density of start/end points on the plane.
A network is intrinsically one-dimensional, in the sense of
being a collection of (maybe curved) lines embedded in the
plane. In a sense we are studying a coupling between a given
distribution over points in the continuum and a network of our
choice constrained only by length and connectedness. Some

Total length L

∼ 101 kms ∼ 102 kms 102 kms

FIG. 2. Typical observed shapes when the length L increases. For
small L we observe a line or a simple tree. For larger L we observe
the appearance of a loop and for much larger L more complex shapes
including a lattice like network or a superimposition of a ring and
radial lines.

G
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FIG. 3. Definition of the model. Residences or workplaces are
represented by points. The graph G represents the subway and we
look for the quickest path that connects any pair of nodes. We have
to compare the direct path (dotted line) with the “multimodal” path
(dashed and solid red lines) that combines both walking and using
the subway.

simpler problems of this type have been addressed previously.
For instance, the problem of the quickest access between an
area and a given point was discussed in Refs. [21,22]. More
recently, the impact of the shape of the city and a single
subway line was discussed in Ref. [23]. Algorithmic aspects
of network design questions similar to ours have been studied
within computational geometry (e.g., Ref. [24] chapter 9) and
“location science” (e.g., Ref. [25] and references therein).
But our specific question—optimal network topologies as a
function of population distribution and network length—has
apparently not been explicitly addressed.

II. THE MODEL AND THE MAIN QUESTION

Here we define precisely the general model we have in
mind, and the three different variants that we will in fact study.
Our model makes sense for an arbitrary “population density”
ρ( ) on the plane, but we will study mostly the isotropic
(rotation-invariant around the origin) case, in particular, the
(standard) Gaussian density,

ρ(x, y) = (2π )−1 exp(−r2/2), r2 = x2 + y2,

and the uniform distribution on a disk. The population density
is of individuals who wish to reach as quickly as possible
other points in the system (for simplicity we do not distin-
guish densities of residences and workplaces, for instance).
Continuing with the subway interpretation, we assume that
one can move anywhere in the plane at speed 1, and one can
move within the network at speed S > 1 (this quantity can
therefore be seen as the ratio S = vs/vw between subway and
walking velocities, see Fig. 3). Note that we envisage each
position on the network as a “station” where the subway is
accessible—the relative efficiency of two networks would be
little affected by the incorporation of discrete stations into a
model. The problem that we consider is the following one.
For any pair of points (such as i and j in Fig. 3), we look for
the quickest path connecting them. This path either connects
directly the points (at walking speed vw) or uses the graph.
More generally, for any pair of points (z1, z2) in the plane,
there is a minimum (over all possible routes) time τ (z1, z2) to

052303-2



OPTIMAL GEOMETRY OF TRANSPORTATION NETWORKS PHYSICAL REVIEW E 99, 052303 (2019)

journey from z1 to z2, and so the average journey time is

τ =
∫∫

τ (z1, z2)ρ(z1)ρ(z2) dz1dz2.

This depends on the network and we consider here graphs of
total length L defined as the sum of the length of all edges
(note that for the gaussian disorder, the length is counted in
unit of its standard deviation σ ). For a given L there is some
optimal network which will also depend on the speed ratio S
and on the density ρ. We study the shapes and average journey
times for such optimal networks.

This “general model” is very simplistic—as a next step, a
companion paper [27] studies an extended model including
a waiting time W whenever we take the subway or connect
from one line to another—but nevertheless seems analytically
intractable. So in fact we will consider three simpler variants.

First, we will consider the problem of minimizing the
average (over starting points from the given distribution)
distance to the network, that is to the closest point in
the network. Note here that we don’t compute the average
time between all pairs of points but just consider the access
time to the network from each point. The second variant that
we consider is the problem of minimizing the journey time
from the points to a single destination, which we may take to
be the origin O. In the third variant, we engage the general
issue of routes between arbitrary points which typically (but
not always) involve entering and exiting the subway network,
but now require these entrances and exits to be the closest
positions to the starting and ending points, rather than the
time-minimizing positions.

Except in asymptotic results [e.g., Eq. (4)] we do not
have exact formulas involving optimal networks. Instead we
consider a range of simple network shapes, allowing us to
investigate the possible shape of optimal networks.

III. A FIRST SIMPLIFICATION: OPTIMAL PLACEMENT

Here we consider the simplest variant, in which we seek
the network (of given length L) that minimizes the average
distance from a point to the network. This is almost the
same as the S = ∞ case of the general model, because the
journey time between two points would be the sum of the two
distances to the network, except that in the general model the
shortest route might not use the subway network at all. Intu-
itively an optimal network must come close to most points of
the distribution. Although superficially similar to the notion of
space-filling curves [26], the latter are fractal curves whereas
our networks (having finite length) cannot have fractal curves.

A. Some rigorous results

Here we outline some rigorous results for this variant
model, with details to be given in the companion paper [27].

Observe that given a straight line segment, the area within
a small distance ε from the line is 2ε per unit length. So
in a network of length L, the total area within that distance
from the network is at most 2ε × L, and is reduced from that
value by the presence of curved lines and intersections. By
extending that argument one can prove [27] that the optimal
network is always a tree (or a single curve, which is a special

case of a tree). For a nonisotropic density ρ( ) the optimal
network may not be a single line, but we conjecture that
for isotropic densities decreasing in r the optimal network is
always a single curve.

Although L → ∞ asymptotics are hardly realistic in the
context of subway networks, the same questions might arise in
some quite different context, so it seems worth recording the
explicit result for asymptotics. In the L → ∞ limit, the opti-
mal network density (i.e., the edge length per unit area of the
network) near point z should be of the form Lφ[ρ(z)] for some
increasing function φ. By scaling, the average distance from
a typical point near z to the network should be c0/{Lφ[ρ(z)]}
for some constant c0. So the overall average distance to the
network is

d (L) = c0

L

∫
1

φ[ρ(z)]
ρ(z)dz. (1)

The total length constraint implies that∫
φ[ρ(z)] dz = 1. (2)

A standard Lagrange multiplier argument shows that the inte-
gral in Eq. (1) is minimized, over functions φ under constraint
Eq. (2), by a function of the form φ(ρ) = aρ1/2, and then
Eqs. (2) and (1) combine to show

d (L)opt = c0

L

[∫
ρ1/2(z) dz

]2

. (3)

Finally, the constant c0 can be reinterpreted as the minimum
average-distance-to-network in the context of networks on the
infinite plane with network density = 1. From our initial “area
within a small distance ε” observation, the optimal network
in the infinite context consists simply of parallel lines spaced
one unit apart, for which c0 = 1/4. So this analytic argument
shows

d (L)opt ∼ 1

4L

[∫
ρ1/2(z) dz

]2

as L → ∞. (4)

This result makes no assumption about the underlying
density ρ. In the Gaussian case, the integral in Eq. (4) equals√

8πσ and so d (L)opt ∼ 2πσ 2

L .
As explained in Ref. [27], what this argument actually

shows is that a sequence of networks is asymptotically optimal
as L → ∞ if and only if the rescaled local pattern around a
typical position z consists of asymptotically parallel lines with
spacing proportional to 1/φ ∼ ρ−1/2(z), but the orientations
can depend arbitrarily on z. Visualize a fingerprint. For an
isotropic density we can arrange such a network to be a spiral.
This enables us to check the Gaussian prediction numerically.
Consider a spiral of length L starting at some point (aL, 0)
and with rings at radius r separated by bL exp(r2/4), and then
optimize over (aL, bL ). Numerically we find slow convergence
toward this limit behavior, shown in Fig. 4.

B. Numerical study: Different shapes

Unfortunately the asymptotics above say nothing about
the actual shapes of the optimal networks for more realistic
smaller values of L. Intuitively, we expect that for very small
L the optimal network is just a line segment centered on the
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FIG. 4. Rescaled average distance Ld (L)opt versus L for the spi-
ral and the star network (for the Gaussian disorder with σ = 1). For
the spiral, we observe a slow convergence toward the theoretical limit
2π for gaussian disorder (horizontal dotted line). The convergence
is even slower for the star network which converges to 21/2π 3/2

(horizontal dashed line). For L ≈ 110 (dashed vertical line) the spiral
outperforms the star network.

origin. As L increases we expect a smooth transition from the
line segment to a slightly-curved path, a “C-shaped” curve.
But then how the optimal shapes transition to a tight spiral
path (presumed optimal for very large L) is not a priori easy
to guess.

We tested 8 shapes numerically for the standard Gaussian
distribution, but we have to keep in mind that other shapes
are in principle possible. For each shape the length is L, and
we optimized over any free parameters (such as s in the 2 × 2
grid). The shapes considered here are the following ones:

(1) The line segment [−L/2, L/2].
(2) The “cross” (two length L/2 lines crossing at the

origin).
(3) The “hashtag” or “2 × 2 grid” [Fig. 5(a)].
(4) The “ring” (circle centered on the origin).
(5) The “C-shape” [off-centered partial circle, with arc

length 2θ removed, see Fig. 5(b)].
(6) The “S-shape”: two arcs of circle of radius R and

of angle 2θ , connected by a straight line of length 2R [see
Fig. 5(c)].

(7) The “star” with nb branches of length r∗ [so r∗nb = L,
see Fig. 5(d)].

(8) The (Archimedean) “spiral”, r = aθ + b.
Recall that the optimal (over all shapes) shape is always a

path or tree, so the 2 × 2 grid or ring can never be overall
optimal. Note also that (for any isotropic distribution) the
optimal ring has radius equal to the median of the radial
component of the underlying distribution, in our Gaussian
case

√
2 log 2 ≈ 1.18.

We simulated these different shapes in the Gaussian dis-
order case, and for each value of L we optimize over the
parameters defining the different shapes. We note that for
most shapes the variation interval of their parameters is small
enough and we can scan it completely. There is therefore no
problem of convergence, and the precision of the solution

s

s

L/4

L/4 2θ0 s

2θ

0

R
2θ

r∗

2π/nb

(a) (b)

(c) (d)

FIG. 5. Main shapes studied here (in addition to the line and the
spiral). (a) The “hashtag” of 2 × 2 grid with parameter s. (b) The
“C-shape” with paramerers s and θ . (c) The “S-shape” with parame-
ter θ . (d) The star network with nb branches of size r∗.

found depends only on the number of points used to scan this
interval. We show the results for these various shapes in Fig. 6.

The following general picture emerges (see also the
Table I):

(1) For small L � 3.2 the optimal shape is the C-shape.
We note that for this shape the optimal θ decreases with L:
for L ≈ 6 we have s = 0 and for L ≈ 8.0 the optimal θ = 0.
When θ = 0 and s = 0 we then recover the ring result (see
Fig. 7).

(2) For 3.2 � L � 5.8, the cross (star network with four
branches) is optimal.

(3) For 5.8 � L � 8.7, the S-shape is optimal. We note
that for this shape, as L increases, the optimal angle θ in-
creases from 0 to π/2, but with a jump at L ≈ 5 (see Fig. 8).

FIG. 6. Average distance to the network versus L for various
shapes.

052303-4



OPTIMAL GEOMETRY OF TRANSPORTATION NETWORKS PHYSICAL REVIEW E 99, 052303 (2019)

TABLE I. Numerical results for different total length L for
the optimal shapes in the case of the optimal placement problem
discussed in the main text.

Total length L <3.2 [3.2,5.8] [5.8,8.7] �8.7

Optimal shape C-Shape Cross S-Shape Star network

(4) For L � 8.7 the star network with nb branches is the
optimal shape. The number of branches is roughly increasing
with L: nb ∼ pL + q with p ≈ 0.4.

(5) The simple Archimedean spiral was slightly less ef-
ficient than the star network over the range of L considered
above: For L = 20, the average time is dopt ≈ 0.215 for the
star network, while for the spiral we have dopt ≈ 0.233.

Qualitative discussion

In the examples above, the shapes were not adapted specif-
ically to the Gaussian model (although the numerical param-
eters were optimized) and so are shapes one might consider
for other isotropic distributions. Recall that our previous
analysis of the L → ∞ behavior found optimal networks to
be spiral-like in a specific distribution-dependent way (near
a point z, the rings are separated by distance proportional to
[ρ(z)]−1/2). For comparison, it is straightforward to show that
the asymptotic behavior of the optimal star shape is d (L)opt ∼
21/2π3/2/L, and numerical results are shown in the Fig. 4.
By comparing with the spiral, we estimate that the value at
which such spiral networks out-perform star networks in the
Gaussian model is around L = 110.

Our numerics thus suggest there are 4 sharp transitions of
shape: C-shape to cross near L = 3.2, cross to S-shape near
L = 5.8, S-shape to star near L = 8.7 and finally a transition
from the star network to the spiral near L = 110. But the star
only slightly out-performs these curves, so it is possible that in
fact there is a smooth evolution of curves as optimal networks.
An alternative numerical approach is to seek the overall
optimal network, via simulated annealing for example. This
is computationally difficult, but some preliminary results for
optimal curves are shown in Fig. 9 and are roughly consistent
with our qualitative summary.

FIG. 7. Study of the C-shape with parameter s and θ .

FIG. 8. Study of the S-shape: evolution of the optimal angle θ

versus L.

IV. THE MINIMUM DISTANCE TO THE CENTER

For our second variant, closer to the general problem, we
seek the network of length L that minimizes the average
time to reach a designated “center” location. This was, for
example, discussed in Refs. [21,22] where the case of street
networks was considered and where the optimal tree was
found. This problem in the context of a single line bus was
also considered in Ref. [24] (and references therein). With
respect to transportation systems such as subways or trains,
this is obviously a crude simplification as we are in general
interested in reaching many other stations and not a single
location. As we will see in the rest of the paper, our results
suggest that this simplified problem perhaps captures the
essence of the general problem and might constitute a useful
toy model where analytical calculations are feasible. As in our
other variants we envisage each position on the network as a
“station” where the subway is accessible.

FIG. 9. Best configurations obtained with simulated annealing
for different values of L = 5, 10, 20, 50. The simulations are ob-
tained with a lattice polymer and using the pivot algorithm [28].
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Taking as before an isotropic density ρ( ) and the origin as
“center,” we seek the optimal network that minimizes

τ =
∫

τ (z, 0)ρ(z)dz, (5)

where τ (z, 0) is the minimum time to go from the point z to
the origin 0. The optimal network will depend on the ratio
S = vs/vw > 1, where we recall that vs is the speed within
the network, and vw the speed outside.

To simplify analytical calculations we assume in this vari-
ant that the paths from the points to the network can be made
only along circular (r = const.) or radial (θ = const.) lines. It
remains true that the overall optimal network must be a path
or tree. Indeed, if there is a cycle in the network, there is at
least one point such that starting in either direction takes the
same time to get to the center. One can then remove a small
interval from that point and reattach elsewhere to get a better
network.

However, we will consider only simple shapes for the
network, starting from the star network and then adding a
ring to it. As we will see below, for these structures we can
develop simple analytical calculations and observe important
phenomena such as a topological transition.

A. Star network

We first consider the star network, having nb branches of
lengths r∗, outward from the origin, evenly spaced with angle
2π/nb spacing [see Fig. 5(d)]. So L = nbr∗ and (for given L)
nb is a free parameter to be optimized over. By isotropy we
can write

ρ(x, y) = ρ(r) for r2 = x2 + y2.

Again by isotropy, the average time τ to the center is such that

1

2nb
τ =

∫ π/nb

0
dθ

[∫ r∗

0
drrρ(r)

(
θr

vw

+ r

vs

)

+
∫ R

r∗
drrρ(r)

(
r − r∗

vw

+ θr∗

vw

+ r∗

vs

)]
. (6)

In the following we will consider the uniform density on a
disk and an exponentially decreasing density.

1. Uniform density

Here we take the uniform density ρ(r) = ρ0 = 1/(πR2) on
a disk of radius R. Without the network the average time to
reach the center is τ0 = 2R/(3vw ). Write η = 1/S = vw/vs,
and assume that taking the subway is always better than
walking directly to the center, which is the condition that
η � 1 − π/nb. Write u∗ = r∗/R (the branch length relative
to city radius) and u0 = L/R (network length relative to city
radius) and χ = π/nb. Evaluating the integrals in Eq. (6), the
average time τ to reach the center via subway satisfies

τ

τ0
= u∗3

2

[
− χ

2
− η + 1

]
− 3

2
u∗

[
− χ

2
− η + 1

]
+ 1. (7)

For given L we want to optimize over the free parameter r∗,
that is over u∗. From L = nbr∗ we obtain χ = πu∗/u0 and

FIG. 10. We show here the result of the minimization of the
average time for the star network with parameters nb and r∗ with the
constraint L = nbr∗. On the left (a, c) we show the length of branches
r∗ versus u0 = L/R and on the right (b, d) the number of branches nb

versus u0 (here η = 1/8). The top row corresponds to the uniform
density case and the bottom one to the exponential density.

then the average time as a function of u∗ reads

τ

τ0
= 1

2
(u∗3 − 3u∗)

[
−η + 1 − π

u∗

u0

]
+ 1. (8)

Minimizing this quantity over u∗ leads to a polynomial of de-
gree 3, and the behavior of the solution is shown numerically
in Fig. 10. As is intuitively obvious, for large u0 = L/R it is
optimal to use roughly u0 branches of length almost R; more
precisely for u0 � 1 we obtain

u∗ = 1 − π

3(1 − η)u0
+ O

(
1

u2
0

)

nb = u0 + O(1). (9)

Perhaps less obvious is the initial behavior over 0 � u0 � 10,
where the length of branches is increasing faster than their
number. In other words we first observe a radial growth and
then an increase of the number of branches.

2. Exponential density

In this case, we take the density of the radial component to
be ρ0rexp(−r/r0) on the infinite plane. Without the network
the average time to reach the center is τ0 = 2r0/vw. Evaluat-
ing the integrals in Eq. (6), the average time τ to reach the
center via subway satisfies

τ

τ0
= πu∗

2u0
+ η − e−u∗

(
πu∗

u0
+ η − 1

)(
u∗

2
+ 1

)
, (10)

where u∗ = r∗/r0 and u0 = L/r0. We can plot this function
and look numerically for the minimum. The results are shown
in Fig. 10 (bottom).

We observe here that for large resources (u0 � 1) the
number of branches scales as nb ∼ au0 with a ≈ 0.1 and
the solution u∗ seems to converge slowly to some value that
depends on η. Here also, the number of branches increases
only after the radial growth.
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r∗

2π/nb

FIG. 11. Schematic of the star network combined with a ring. We
have now three parameters: the number of branches nb, the length r∗

of the branches, and the radius � of the ring.

B. Loop and branches

We now consider a more interesting case where we have nb

branches of length r∗ and a ring of radius � (see Fig. 11). This

FIG. 12. Uniform density: results for the star+loop network for
different values of nb. (a) Normalized radius of the ring. (b) Nor-
malized length of branches. We normalized u0 by nb to get the
same “transition” point at u0/nb = 1. These results are obtained for
η = 1/8.

FIG. 13. Gaussian density (σ = 1): results for the star+loop
network for nb = 8. (a) Size r∗ of the branches. (b) Radius of the
ring. These results are averaged over 100 configurations and are
obtained for η = 1/8. The gray curves represent the results for each
configuration.

case is essentially motivated by subway networks that seem
to display this type of structure when they are large enough
[2]. We have three parameters: nb, �, and r∗, where � � r∗ for
connectivity. The total length of the network is

L = 2π� + nbr∗. (11)

This network enables us to study the relative contributions of
loop and branches to our goal of minimizing the average time
to go to the center. This case is analytically difficult, so we
study it numerically with a simulation.

We first consider the uniform distribution on a disk of
radius r0 and again choose η = 1/8 (which corresponds to the
reasonable values vw ≈ 5 km/h and vs ≈ 40 km/h). We first
study the case where nb is fixed and where we optimize the
network over r∗ and �. In Fig. 12, we show the results for
the optimal value of r∗ and � versus u0 = L/r0 normalized
by nb. We observe that when resources are growing from 0,
we have only a radial network (� = 0). At u0/nb = 1 we have
a “transition” point where a loop appears. This means that
until u0 = nb all the available resource is converted into the

052303-7



DAVID ALDOUS AND MARC BARTHELEMY PHYSICAL REVIEW E 99, 052303 (2019)

FIG. 14. Average journey time in the Gaussian case for different
values of S and for (a) a line [−L/2.L/2] and (b) a ring of radius
R = L/2π .

radial structure. When the radial structure is at its maximum
(r∗ = r0) we observe the appearance of a loop whose diameter
is then increasing with u0.

We note that even if both the number of branches and
the size of the loop undergo a discontinuous transition, the
average minimum time displays a smooth behavior. Also, if
we increase further the total length L, it will result in a larger
number of branches nb.

In the uniform density case, the domain is finite (a disk
of radius R) and at fixed value of nb, there is therefore a
maximum value of Lmax = nbR + 2πR. For larger values of
L, the optimal network will increase its number of branches
nb. It is different in the Gaussian disorder case: the domain
is infinite and there is no obstacle to have a fixed value of
nb with size r∗ growing indefinitely with L. We can thus
expect some differences with the uniform density case. We
repeated the calculations above for 100 configurations and
the average together with the results for each configuration
are shown in Fig. 13 (here u0 = L/σ ). We still observe the
different regimes separated by an abrupt transition: the first
regime where the size of branches grows with L and the
second regime where there is a ring whose size grows very
slowly with L. In contrast with the uniform density case, the

FIG. 15. Average journey time (in the Gaussian case) for star
networks with different number of branches (nb = 2, 4, 6).

transition takes place for a value u0/nb that fluctuates in the
range [2.5,3.0].

V. THE GENERAL MODEL

As discussed in the Introduction, we will now consider
the “general” setting of routes between arbitrary points z1

and z2. The route can either go straight (speed vw) from z1

to z2 without using the network, or go z1 → A1 → A2 → z2,
where A1 and A2 are “stations” (any points on the network)
and where travel from A1 to A2 is within the network at speed
vs, and the other journey segments are straight at speed vw.
In a companion paper [27] we study the more realistic model
where the route is optimized over choice of A1 and A2, but here
we take each Ai as the closest station to zi. Unlike previous
cases, the overall optimal network is not necessarily a tree.

A. Various shapes

We present results for various simple shapes, for the stan-
dard Gaussian density. We start with the line segment and the
ring and the results for different values of S are shown on
Fig. 14. For these two shapes, we observe the same behavior
as in the time to center problem: For the line there is a quick
saturation to a constant, and for the ring there is a minimum
at L ≈ 2πσ .

We also consider the case of the star network with nb

branches and the result is shown on Fig. 15. We observe (see
also the Table II that for 0 < L � 1.15 the line is optimal. For
1.15 � L � 6.6, the cross nb = 4 is the optimal choice, while
for L � 6.6, the solution nb = 6 is better. Very likely we will
have (as in the previous case of the average time to the center)
an optimal network with nb ∝ L.

TABLE II. Numerical results for the optimal shapes for the
general model for different total length L.

Total length L <1.15 [1.15,6.6] �6.6

Optimal shape Line Cross (nb = 4) Star (nb = 6)
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FIG. 16. Average time (Gaussian density) for nb branches plus a
loop for values of S from 14 to 100.

B. Loop and branches: Scaling of the average time

We focus here on the case where the network is made of nb

branches of length r∗ and a loop of radius �. So L = nbr∗ +
2π�. We take nb and � as the 2 free parameters over which we
will minimize the average time. The optimized average time
τmin for different values of S is shown in Fig. 16. Naively one
expects that this quantity behaves as

τmin = a√
L

+ b

S
, (12)

where the first term of the right-hand side corresponds to
the average distance to the network and which we expect to
scale as 1/

√
L. The second term corresponds to the shortest

path distance within the network. In principle, a and b could
depend on L. If we assume this form to be correct then Sτmin

versus X = S/
√

L should be a straight line. We tested this
assumption on the data from Fig. 16 and the result is shown in
Fig. 17. This good collapse (except for deviations observed
for large values of S/

√
L) supports the assumption Eq. (12).

FIG. 17. Rescaled average time Sτmin versus the rescaled vari-
able S/

√
L.

FIG. 18. Optimal length of branches and optimal size of the loop
versus the total length L (for gaussian disorder): typical shape for r∗

and �. As in the case of the quickest path to the origin, we observe
a sharp transition for L ≈ 20σ where a loop of radius � ≈ σ appears
(here η = 1/2).

C. Loop and branches: A topological transition

Still in the branches and loop model, we observe (Fig. 18)
a transition: r∗ grows almost steadily with � = 0, until a
transition value at Lc ≈ 20 where the ring appears. Although
the structure changes abruptly it is interesting to note that
there is no discontinuity in the average minimum time. The
size of the ring stays stable with � ≈ σ (the Gaussian standard
deviation). Naively, we can say that the ring appears when the
branches can have a length r∗ ≈ 2σ and a loop of size � ≈ σ

which gives the condition Lc ≈ nbσ + 2πσ . At the transition,
we observe that we have nb ≈ 8 which then gives Lc ≈ 22, not
too far from the value Lc = 20 observed here.

The quantity Lc is independent from S which is expected,
as it is essentially controlled by the topology of the network.
We note that this transition was already observed in the pre-
vious case “minimum distance to the center.” As L increases
the optimal number of branches grows roughly from 2 to 10.
The picture that emerges here is consistent with the empirical
study [2]: we observe a ring around the “core” of the city and
then branches radiating from it. More generally, these results
suggest that the distance to center problem is a reasonably
good proxy for the more general problem.

VI. DISCUSSION

Algorithmic aspects of network design questions similar to
ours have been studied within computational geometry (e.g.,
Ref. [24] chapter 9) and “location science” (e.g., Ref. [25]).
But our specific question—optimal network topologies as a
function of population distribution and network length—has
apparently not been explicitly addressed. Although real-world
networks are probably not optimal and result from the super-
imposition of many different factors, understanding theoret-
ically optimal networks could give some information about
the actual structure observed in many cases. For example, it
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could help us to understand the seemingly universal structure
displayed by very large subway networks [2].

Even for simple models, optimizing over all possible
topologies is difficult, so we investigated only various simple
shapes. We provided general arguments and analytical calcu-
lations in simple cases and most of our analysis is numerical.
In general, we expect an evolution of the shape of optimal
networks when L increases, with the possible existence of
sharp transitions between different shapes. Although we were
not able to prove this in general, we observed such transitions
in simple cases such as branches and a loop: in the case

of Gaussian (variance σ 2) population density, starting from
a small value of L the branches first grow smoothly, then
suddenly for a value Lc we observe the appearance of a loop
of size � ∼ σ . This transition also exists in the case of uniform
density.

It would be interesting to see these transitions of overall
optimal networks obtained numerically, and this might be
feasible in some cases with a simulated annealing type of
algorithm. In any case these problems suggest theoretical
questions and practical applications which certainly deserve
further studies.
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