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We report a theoretical result concerning the dynamics of an initially localized wave packet in quantum
nonlinear Schrödinger lattices with a disordered potential. A class of nonlinear lattices with subquadratic power
nonlinearity is considered. We show that there exists a parameter range for which an initially localized wave
packet can spread along the lattice to unlimited distances, but the phenomenon is purely quantum and is hindered
in the corresponding classical lattices. The mechanism for this spreading is moreover very peculiar and assumes
that the components of the wave field may form coupled states by tunneling under the topological barriers
caused by multiple discontinuities in the operator space. Then these coupled states thought of as quasiparticle
states can propagate to long distances on Lévy flights with a distribution of waiting times. The overall process
is subdiffusive and occurs as a competition between long-distance jumps of the quasiparticle states, on the one
hand, and long-time trapping phenomena mediated by clustering of unstable modes in wave number space, on
the other hand. The kinetic description of the transport, discussed in this work, is based on fractional-derivative
equations allowing for both (i) non-Markovianity of the spreading process as a result of attractive interaction
among the unstable modes; this interaction is then described in terms of the familiar Lennard-Jones potential;
and (ii) the effect of long-range correlations in wave number space tending to introduce fast channels for
the transport, the so-called “stripes.” We argue that the notion of stripes is key to understand the topological
constraints behind the quantum spreading, and we involve the idea of stripy ordering to obtain self-consistently
the parameters of the associated waiting-time and jump-length distributions. Finally, we predict the asymptotic
laws for quantum transport and show that the relevant parameter determining these laws is the exponent of the
power law defining the type of the nonlinearity. The results presented here shed light on the origin of Lévy flights
in quantum nonlinear lattices with disorder.
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I. INTRODUCTION

Waves in random systems cannot readily propagate to long
distances: scattered by structural inhomogeneities on many
spatial scales, they tend to form multiple standing waves at
high disorder, and this effectively confines the wave pro-
cess within a spatially restricted domain. The phenomenon—
predicted by Anderson in 1958 [1] and extensively studied
ever since—has come to be known as the Anderson local-
ization and occurs for any type of wave process, classical or
quantum.

A continued interest in the phenomena of Anderson lo-
calization was due to the direct experimental observation of
the Anderson localization of visible light [2] and the mea-
surement of the critical exponent of scaling theory of the
localization transition [3]. More recently, there has been a
stream of literature stimulated by Pikovsky and Shepelyansky
[4,5] that sought to demonstrate that the Anderson localization
in random systems could be destroyed by a weak nonlinearity
and that the phenomenon is thresholded in that there exists a
critical strength of nonlinear interaction such that above this
strength the nonlinear field can propagate across the lattice
to infinitely long distances, and is Anderson localized despite
these nonlinearities otherwise.

Theoretically, the destruction of Anderson localization in
nonlinear lattices has been studied in the fashion of the
Gross-Pitaevskii (i.e., nonlinear Schrödinger) equation with
disordered potential [4–13]. A modified perturbation theory
with regard to the strength of the nonlinear term has been
developed [6,9], and extensive numerical simulations have
been carried out [7–9]. A subdiffusive scaling for the onset
spreading has been introduced and numerically measured
[5,7]. A nonperturbative approach to the nonlinear Anderson
problem has been developed based on topological approx-
imations, using random walks and the concept of critical
percolation on a Cayley tree [12–15]. The subject has attracted
additional interest recently in view of its extension to quantum
dynamics [16,17] and the suggestion—motivated by Fermi’s
golden rule—that the loss of localization in the quantum
domain could be not thresholded [18].

Our purpose here is to describe the delocalizing effect of
subquadratic power nonlinearity on quantum dynamics of a
lattice gas in nonlinear Schrödinger lattices with disorder. A
background for this consists in the following. (i) It has been
shown [12–15] based on a classical analysis that a power
nonlinearity of the Ginzburg-Landau type (i.e., quadratic
power nonlinearity) played a very special role in classical
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dynamics, and that the quadratic power case was the only
power case to allow for a classical transport to long distances
by a stochastic process. (ii) Also it has been shown [13]
using a mapping procedure on a Cayley tree [12] that there
is no asymptotic classical transport in the parameter range
of subquadratic power nonlinearity due to a certain type of
topological constraints on trees.

In the present work, we contest these classical results
and show that quantum dynamics may allow the wave field
to spread even for subquadratic power nonlinearities under
certain conditions. The mechanism for this spreading uses the
idea that the quantum waves may tunnel under the topological
barriers associated with multiple discontinuities in the opera-
tor space. Then the waves with oppositely directed momenta
can couple together to form a joint state which also interacts
with the other states. The result of this interaction is formation
of one-dimensional ordered structures in wave number space,
which we arguably call “stripes” [19]. Then the nonlinear field
may propagate to long distances along these stripes, and we
show that the process occurs in the form of a competition
between long-time trapping phenomena due to the clustering
of the unstable modes, on the one hand, and instantaneous
jumps of the coupled states in a random direction along the
stripes, on the other hand.

Next we show based on a simple random-walk model that
the clustering phenomena in wave number space do introduce
a nontrivial statistics of exit times, with a diverging mean
waiting time, thus leading to important non-Markovian fea-
tures with a heavy-tailed autocorrelation, whereas the jumps
of the coupled states along the stripes introduce competing
nonlocal features [20] and can be understood dynamically
in terms of Lévy flights [21–23]. In that regard, we argue
that the Lévy flights are a characteristic of quantum models
with subquadratic power nonlinearity in that they do not
appear in the corresponding classical descriptions [13–15]
or in quantum models with the quadratic power nonlinearity
[18]. The kinetic approach to the asymptotic transport, dis-
cussed in this work, is based on fractional derivative equations
[21–25] accounting for both the waiting-time statistics with a
distribution of waiting times and the long-distance jumps of
the coupled states along the stripes. Our results shed light on
the quantum routes to fractional kinetics [21,24,25] and the
quantum significance of Lévy flights as a partial case.

The paper is organized as follows. The quantum model
is described first (Sec. II, the preamble), followed by a con-
struction of the backbone map (Sec. II A) and the associ-
ated backbone-reduced dynamical equations (Sec. II B). In
Sec. III we discuss the relevant topological methods using
the concepts of a Cayley tree, a Cayley forest, and stripes.
In Sec. IV we obtain the laws of spreading by solving a
dynamical problem for a “particle” interacting with a potential
field of the Lennard-Jones type [26]. Also in Sec. IV we
identify a trapping mechanism for quantum subdiffusion (in
terms of clustering of unstable modes). Section V is concerned
with a kinetic picture of the transport based on a fractional
generalization of the diffusion equation. Section VI is a
discussion session and summarizes a few elements to our
approach needing a broader interpretation. In Sec. VII we
explain an apparent paradox demonstrating the basic physics

significance of the Anderson localization. We reiterate our
results in the concluding Sec. VIII with a few remarks.

II. THE MODEL

We consider the problem of dynamical localization of
waves in a quantum nonlinear Schrödinger equation (QNLSE)
with random potential, i.e.,

ih̄
∂ψ̂n

∂t
= ĤLψ̂n + β|ψ̂n|2sψ̂n, (1)

where ψ̂n = ψ̂ (n, t ) is an operator wave function and is
defined on a grid with the discrete coordinate n; |ψ̂n|2s ≡
(|ψ̂n|2)s is the definition of the algebraic power nonlinearity
used in this work; s is a power exponent and is taken from
the unit interval 0 < s � 1; in this regard s = 1 represents the
familiar quadratic nonlinearity of the Ginzburg-Landau type;
s → 0 represents the linear localization case; s < 1 represents
a subquadratic power nonlinearity and is the main focus of
this study; further |ψ̂n|2 ≡ ψ̂†

n ψ̂n is the amplitude of the wave
field; ψ̂†

n with the superscript † is Hermitian conjugate wave
function;

ĤLψ̂n = εnψ̂n + V (ψ̂n+1 + ψ̂n−1) (2)

is the Hamiltonian of a linear problem in the tight-binding
approximation [1]; the coefficient β characterizes the strength
of nonlinearity; on-site energies εn are randomly distributed
with zero mean across a finite energy range; V is the hopping
matrix element; and h̄ is Planck’s constant and is set to 1
hereafter. The total (summed over all n) probability is 1 and
in the operator form corresponds to

∑
n ψ̂†

n ψ̂n = 1̂, where 1̂ is
the unity operator. For β → 0, the QNLSE with the Hamilto-
nian operator in Eq. (2) offers a quantum representation of the
linear Anderson model in Ref. [1].

Next, the eigenstates φn,k of the linear model are defined
through ĤLφn,k = ωkφn,k and constitute a full basis of mutu-
ally orthogonal complex functions with the eigenfrequencies
ωk , where k = 0,±1,±2, . . . is an integer number. Note that
all eigenstates φn,k are exponentially localized in the linear
regime; i.e., no spreading is expected to occur for β = 0.

To obtain the laws of spreading in the nonlinear phase,
it is convenient to consider the operator wave function ψ̂n

as a “vector” in functional space, whose basis vectors are
the eigenstates of the linear problem with β = 0. Using the
functions φn,k as the basis functions, we write

ψ̂n =
∑

m

âm(t )φn,m, (3)

and similarly for ψ̂†
n , i.e., ψ̂†

n = ∑
m â†

m(t )φ∗
n,m. Without loss

in generality, we consider the eigenfunctions φn,k being nor-
malized to unity, with the natural orthonormality condition∑

n

φ∗
n,k1

φn,k2 = δk1,k2 . (4)

Here, δk1,k2 is Kronecker’s delta and the star denotes complex
conjugation. âm(t ) and â†

m(t ) are, respectively, the annihilation
and the creation bosonic operators obeying the commutation
rule

[âm1 , â†
m2

] = âm1 â†
m2

− â†
m2

âm1 = δm1,m2 . (5)
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With the aid of Eq. (4), one sees that [ψ̂i, ψ̂
†
j ] = δi, j for all

pairs of indices i, j. The total probability being equal to 1
implies ∑

n

ψ̂†
n ψ̂n =

∑
m

â†
m(t )âm(t ) = 1̂ (6)

and has the sense of a quantum “conservation law” for the
dynamics of the nonlinear field.

A. The backbone map

In the above we have defined the power 2s of the modulus
operator |ψ̂n| as the power s of the corresponding probability
density, i.e., |ψ̂n|2s ≡ (|ψ̂n|2)s. This definition is very nontriv-
ial and in the basis of linearly localized modes leads to

|ψ̂n|2s = (ψ̂†
n ψ̂n)s =

[ ∑
m1,m2

â†
m1

âm2φ
∗
n,m1

φn,m2

]s

. (7)

Mathematically, it is convenient to consider the power nonlin-
earity on the right-hand side of Eq. (7) as a functional map

F̂s : {φn,m} →
[ ∑

m1,m2

â†
m1

âm2φ
∗
n,m1

φn,m2

]s

(8)

from the complex vector field {φn,m} into the “scalar” field
|ψ̂n|2s = (ψ̂†

n ψ̂n)s. It is noticed that the map in Eq. (8) is
positive definite, and that it contains a self-affine character in
it, such that by stretching the basis vectors by a stretch factor λ

the value of F̂s is renormalized (multiplied by |λ|2s). We have,
accordingly,

F̂s{λφn,m} = |λ|2sF̂s{φn,m}. (9)

Note that the self-affinity of F̂s is claimed based on the
rescaling of the basis vectors φn,m and does not involve the
commutation properties of the operators âm(t ) and â†

m(t ). In
this regard, the operator form in Eq. (8) behaves as a C-
number functional form and adheres to the usual C∗-algebra
[27].

For any nonnegative integer s, the power nonlinearity in
Eq. (7) can be expanded in a multinomial series [28], yielding

|ψ̂n|2s =
∑

∑
qm1 ,m2 =s

C ...qm1 ,m2
s

∏
m1,m2

[ξ̂m1,m2 ]qm1 ,m2 , (10)

where

C ...qm1 ,m2
s = s!∏

m1,m2
[qm1,m2 !]

(11)

is a multinomial coefficient, the sign ! indicates the factorial
operation, and we have denoted

ξ̂m1,m2 = â†
m1

âm2φ
∗
n,m1

φn,m2 (12)

for simplicity. The sum in Eq. (10) is taken over all combi-
nations of nonnegative integer exponents qm1,m2 such that the
sum of all qm1,m2 is s, i.e.,∑

m1,m2

qm1,m2 = s. (13)

An analytic continuation of Eqs. (10) and (11) to noninteger
values of s can be obtained by extending the factorial function

to the gamma function using m! = �(m + 1) and simultane-
ously relaxing the condition that the exponents in Eq. (13)
must be integer. The latter generalization may be achieved
iteratively starting from a situation according to which there
is only one such exponent to be accounted for, then gradually
increasing the number of the fractional-valued exponents in
Eq. (13), aiming to assess their overall effect on the final
expansion.

So in the first iteration Eq. (13) can only be satisfied if the
fractional exponent that we are looking at (which is the only
fractional exponent in this case) is equal to s exactly (because
the sum of the remaining integer-valued exponents cannot add
up to a fractional value). Then Eq. (13) demands that the sum
of the remaining (integer-valued) exponents be zero, and this
is an exact result. Assume it is the exponent qi, j that takes the
fractional value, i.e., qm1,m2 = s for some m1 = i and m2 = j.
Then from Eq. (13) one infers∑

m1 �=i,m2 �= j

qm1,m2 = 0. (14)

Equation (14) is a Diophantine equation, which is a polyno-
mial equation for which only integer solutions are sought.
Because the exponents qm1,m2 cannot take negative values,
the only way Eq. (14) can be satisfied is by setting all the
exponents qm1,m2 to zero (m1 �= i, m2 �= j; the exponent for
which m1 = i and m2 = j is equal to s, i.e., qi, j = s). It is
understood that the polynomial form in Eq. (10) is homo-
geneous in that the sum of the exponents in each term is
always s, as Eq. (13) shows. On the other hand, the property
of the homogeneity implies that any term of the polynomial
is in some sense representative of the whole. That means that
there is no special reason for which to prefer the very specific
setting m1 = i, m2 = j against other settings when choosing
the fractional-valued exponent, qm1,m2 . The net result is that
the condition qi, j = s can be satisfied in a countable number
of ways within the range of variation of the parameters m1 and
m2. Clearly, all such combinations would equally contribute to
the series expansion in Eq. (10). Then to account for these
contributions one has to sum over the indexes m1 and m2.
Eventually Eq. (10) is simplified to

|ψ̂n|2s =
∑

m1,m2

[ξ̂m1,m2 ]s. (15)

In writing Eq. (15) we also used that to first order

C ...qi, j
s = �(s + 1)

�(qi, j + 1)
= �(s + 1)

�(s + 1)
= 1. (16)

Substituting ξ̂m1,m2 with the aid of Eq. (12), from Eq. (15) one
arrives at

|ψ̂n|2s =
∑

m1,m2

â†s
m1

âs
m2

φ∗s
n,m1

φs
n,m2

. (17)

Let us now consider a more general case in which the
number of the fractional exponents is at least two or more.
This case is complicated by the fact that the sum of two or
more fractional numbers may be an integer number; therefore,
one cannot separate the fractional and the integer-valued
exponents when looking into Eq. (13). To this end, we have to
refer to our result in Ref. [13] according to which the operators
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raised to a fractional power that is strictly smaller than 1,
i.e., s < 1, cannot readily contribute to dynamics due to some
sort of topological restrictions in wave number space (to be
attributed to the connectedness limitations in the operator
space; see below). Then to obtain a nontrivial effect onto field
spreading one has to contemplate a nonlinear coupling process
among the fractional operators involved, with an idea that
such a process would help to generate an effective “integer”
operator first. If the fractional properties are divided between
m + m operators (m creation and m annihilation), then to
generate one integer creation-annihilation process one needs a
pool of N ∼ 2m/s fractional operators coming simultaneously
into play. Note that N may be a large number, i.e., N � 1, if
the exponent s is small enough. If p is the coupling probability
among two arbitrarily chosen waves (for a rarefied lattice gas
we may always assume that p is much smaller than 1, i.e.,
p � 1), then the coupling probability among N waves would
be pN ∼ pN/2. It is understood that in a random system this
probability will be an exponentially decaying function of N ,
i.e., pN ∼ exp[−(N/2) ln(1/p)]. That means that the rate of
field spreading in a nonlinear random system will be always
dominated by coupling processes to first order, leading to
Eq. (17) above.

Our findings so far can be summarized as follows. The
reduced model in Eq. (17) contains all the necessary ingre-
dients to assess the dynamics of field spreading in the orig-
inal QNLSE model (1). Mathematically, the reduced model
derives from an analytic continuation of the multinomial
theorem to fractional s values. It uses the idea that to leading
order the coefficients of the multinomial expansion can be
obtained by solving a Diophantine equation (13) with one
fractional index only.

We note in passing that the reduced model in Eq. (17) is
consistent with the idea that QNLSE (1) is by itself an approx-
imation according to which the nonlinearity |ψ̂n|2s occurs as a
consequence of the coupling process |ψ̂n|2s = |ψ̂n|s × |ψ̂n|s to
first order. For s = 1 (i.e., quadratic power nonlinearity), this
approximation is actually quite known in physics [9,29,30].

Similarly to Eq. (8) above, the model in Eq. (17) can be
considered as a homogeneous map

F̂′
s : {φn,m} →

∑
m1,m2

â†s
m1

âs
m2

φ∗s
n,m1

φs
n,m2

(18)

from the complex vector field {φn,m} into the operator field in
Eq. (17). In a classical format, we have already encountered
this map in Refs. [13,15], where it was dubbed the “backbone”
map owing to the very peculiar reductions this map offers
in the graph space. It was argued that the backbone map
preserved (despite the simplifications it carried) the sought
dynamical properties of the original QNLSE model, and that
it could be considered as representing the algebraic structure
of F̂s in the sense of Eq. (9). Note, in this regard, that the maps
F̂s and F̂′

s are both self-affine, obeying the same renormaliza-
tion rule as of Eq. (9). That means that a backbone-reduced
dynamical model would be characterized by the same scaling
behavior of fluctuating observable quantities, and will lead to
the same scaling laws for transport, as the original model in
Eq. (1).

In view of the above, our further analysis will be based
on the backbone-reduced QNLSE, which is obtained by re-
placing the original functional map F̂s by the backbone map
F̂′

s for s < 1. Note that F̂s coincides with its backbone in the
limit s → 1. This property illustrates the particularity of the
quadratic power case versus arbitrary power nonlinearity and
has been already discussed in Ref. [13].

B. Backbone-reduced dynamical model

Multiplying both sides of the backbone-reduced QNLSE
by φ∗

n,k and summing over n with the aid of the orthonormality
condition in Eq. (4), after simple algebra one obtains the
following dynamical equations for the amplitudes âk (t ) in the
tight-binding approximation:

i ˙̂ak − ωkâk = β
∑

m1,m2,m3

Vk,m1,m2,m3 â†s
m1

âs
m2

âm3 , (19)

where ωk is an eigenfrequency of the linear problem, the
label k = 0,±1,±2, . . . takes integer values, the coefficients
Vk,m1,m2,m3 characterize the overlap structure of the nonlinear
field and are given by

Vk,m1,m2,m3 =
∑

n

φ∗
n,kφ

∗s
n,m1

φs
n,m2

φn,m3 , (20)

and we have used the dot to denote time differentiation.
Equations (19) correspond to a system of coupled nonlinear
oscillators with the Hamiltonian

Ĥ = Ĥ0 + Ĥint, Ĥ0 =
∑

k

ωkâ†
k âk, (21)

Ĥint = β

1 + s

∑
k,m1,m2,m3

Vk,m1,m2,m3 â†
k â†s

m1
âs

m2
âm3 . (22)

In the above Ĥ0 is the Hamiltonian of noninteracting harmonic
oscillators, and Ĥint is the interaction Hamiltonian. Note that
Ĥint includes self-interactions through the diagonal elements
Vk,k,k,k . Each nonlinear oscillator with the Hamiltonian

ĥk = ωkâ†
k âk + β

1 + s
Vk,k,k,k â†

k â†s
k âs

k âk (23)

and the equation of motion

i ˙̂ak − ωkâk − βVk,k,k,k â†s
k âs

k âk = 0 (24)

represents one nonlinear eigenstate in the system, identi-
fied by its wave number k, unperturbed frequency ωk , and
nonlinear frequency shift �ωk = βVk,k,k,k â†s

k âs
k . Nondiago-

nal elements Vk,m1,m2,m3 characterize couplings between each
four eigenstates with the wave numbers k, m1, m2, and m3.
Resonances occur between the eigenfrequencies ωk and the
frequencies posed by the nonlinear interaction terms. Then
according to Eq. (22) the resonance condition is

ωk = −ωm1 + ωm2 + ωm3 . (25)

Conditions for a nonlinear resonance are obtained by ac-
counting for the nonlinear frequency shift �ω j , where j =
k, m1, m2, m3 is a resonance wave number.

When the resonances happen to overlap, a phase trajectory
may occasionally switch from one resonance to another, and
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k

Cantor setsk1

k2

k3

am3

am2

s

am1

+ s

a connected bond

dim =  s

dim =  1

dim =  1

dim =  s

FIG. 1. Mapping the system of dynamical equation (19) on a
Cayley tree. The Cantor sets represent the operators bearing the
power label s for 0 < s < 1 and are shown schematically by the
dashed lines. The nodes of the graph are labeled by a position
coordinate k and are shown as thick round circles.

this will introduce a random ingredient to dynamics in ac-
cordance with Chirikov’s overlap condition [31,32]. Then a
nonlinear field may naturally spread along the wave number
space via a stochastic process favoring random jumps between
the resonances. In this paradigm, an unlimited spreading
occurs when the system of overlapping resonances enables
a connected escape path to infinity [12–14]. In general, this
path may have a complex organization and be strongly shaped
[14,33].

III. MAPPING SPACE, CAYLEY TREES, AND STRIPES

Equations (19) constitute ever ramifying chains of coupled
nonlinear oscillators, with the interaction terms defined by
the backbone nonlinearity in Eq. (18). Mathematically, it is
convenient to represent these chains as an infinite graph by
mapping it on a Cayley forest [34] as follows.

For each nonlinear eigenstate with the Hamiltonian in
Eq. (23) and equation of motion (24) one finds a node in
a countably dimensional mapping space to which a position
coordinate k and the associated eigenfrequency ωk are as-
signed. By countably dimensional mapping space we mean
a Euclidean metric space such that its embedding (integer)
dimension is given by the arithmetic number of the different
oscillators in Eq. (19). Naturally we assume this number to
be countable. If we introduce M = max{m1, m2, m3}, then the
embedding dimension is d = 2M + 1, provided only that the
wave number space is isotropic, i.e., −M � m1, m2, m3 � M.

Furthermore, the different eigenstates may communicate
with each other by exchanging a wave process, and we repre-
sent these exchanges by the bonds of the graph connecting the
different nodes. These bonds are of two types (see Fig. 1). One
type is associated with the “integer” creation-annihilation op-
erators not bearing the power mark s. Then we represent such
operators as simple (connected) bonds; the bond representing
the operator âm3 and connecting the node k to k3 in Fig. 1 is an
example of this type. The second type is associated with the

k

Connected bonds
k1

k2

k3

am3

am2

am1

+
dim =  1

dim =  1

dim =  1

dim =  1

Connected bonds

FIG. 2. Same situation as in Fig. 1, but for s = 1. The Cantor sets
have become ordinary (simple) bonds (shown by the solid lines).

operators raised to the fractional power s < 1; this applies to,
e.g., the operators â†s

m1
and âs

m2
in Fig. 1. Following Ref. [13],

we represent such bonds as Cantor sets with the Hausdorff
(fractal) dimension s. So the Cantor sets in Fig. 1 are the
bonds connecting, e.g., the node k1 to k and the node k to k2.
The wave numbers m1, m2, and m3 identifying the operators
â†s

m1
, âs

m2
, and âm3 are such that the resonance condition in

Eq. (25) is observed. By examining the structure of Eq. (19)
one sees that at each step of the communication process
there will be exactly z = 3 bonds (whatever type they are)
coming into play: one that we consider ingoing corresponds
to the creation operator â†s

m1
, and the other two, the outgoing

bonds, correspond to the annihilation operators âs
m2

and âm3 ,
respectively. This gives rise to the characteristic structure of a
Cayley tree with the coordination number z = 3.

If s = 1, then the Cantor sets in Fig. 1 become ordinary
(simple) bonds, leading to a simplified situation schematically
shown in Fig. 2.

Generally speaking, there exists a number of different
connections (k1, k2, k3) to which a given eigenstate with the
wave number k can communicate by exchanging a wave
process. Indeed, if M = max{m1, m2, m3}, then in an isotropic
space there exist as many as 2M possibilities choosing the
wave number k1 (that is, 2M + 1 initial choices minus the
choice for the node k, already made), consequently 2M − 1
possibilities choosing the wave number k2 �= k1, and finally
2M − 2 possibilities choosing the wave number k3 �= k2 �= k1.
Eventually the different arrangements of three different wave
numbers would add up to as many as 2M(2M − 1)(2M −
2)/3! combinations, which is none other than the familiar
binomial coefficient

C3
2M = (2M )!/3!(2M − 3)! ∼ 4M3/3. (26)

It is understood that each such combination of indices defines
a structural element for a Cayley tree originating from the
node k. For M � 1, there will be all in all a forest of incipient
Cayley trees, which we arguably call the Cayley forest [34].
Note that the different trees in the forest may occasionally
share some nodes or branches and in that case are not
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nonintersecting. Because of this, there may occur loops and
other “unpleasant” structural elements that can significantly
complicate the analysis of Eq. (19). In that regard, it was
our suggestion in Refs. [12,13] that the system of dynamical
equations in Eq. (19) could be simplified by assuming that the
breakdown of Anderson localization (and the associated trans-
port of the wave field to infinitely long spatial scales) need
not occur through all eigenstates of the nonlinear Schrödinger
lattice, but, rather, through only a “critical” connected part
of these, such that this part by itself permits a connected
escape path to infinity. It has been discussed that this critical
part lay on one single Cayley tree and had the topology of
a fractal cluster at percolation. Then the outward diffusion
of waves from the localization domain could be thought of
as a random-walk process along this cluster, leading to the
dispersion [12]

〈(�n)2(t )〉 ∼ t1/3 (27)

for t → +∞. Also it has been discussed that the reduction of
Eq. (19) to critical percolation on a tree was only possible for
the classical waves and only for s = 1, and that for s < 1 the
classical transport was hampered by multiple discontinuities
due to the Cantor sets in the operator space. Indeed the Cantor
sets being discontinuous on all spatial scales implied they
could not transmit a classical wave, so a wave initiated at the
node k, say, could not propagate by more than one step along
the tree and ended up at the node k3 (see Fig. 1).

In this work, we focus on the quantum transport case
and the particularities this case may have with respect to
the mechanisms of the transport. We disregard the idea that
quantum transport of the wave field in Eq. (19) may occur
through a critical percolation on a fractal object. One reason
for this is that a quantum wave function would naturally
tunnel between states; then it will be smeared among more
states around that are not necessarily restricted to a fractal
distribution. For the same reason we would also argue that a
quantum wave function could not be reduced to one single tree
either and that a quantum diffusion would go simultaneously
along all trees defined by Eq. (19). The latter property implies
that such a transport is not thresholded [18], contrary to
its classical counterpart. As a consequence, we find that a
quantum transport to long distances is possible for all s �
1/2 and is not restricted to the quadratic power nonlinearity
with s = 1, in contrast to the classical transport case as in
Refs. [12,13].

The mechanism of quantum spreading, which we discuss,
is based on the understanding that the Cayley trees defined
by Eq. (19) have exactly three (z = 3) bonds at each of their
nodes, and that for s < 1 two and only two out of the three
such bonds will be Cantor sets that cannot transmit a wave
in the classical format. The Cantor sets occur in the mapping
space because they represent the operators â†s

m1
and âs

m2
. The

latter operators are the usual bosonic operators â†
m1

and âm2

raised to a fractional power 0 < s < 1. We consider the power
s as a signature that there is an internal self-interference taking
place for the otherwise “complete” wave processes â†

m1
and

âm2 . Back to Fig. 1 above, the self-interference occurs along
the bonds connecting the node k1 to k and the node k to k2.
Because s < 1, this self-interference is destructive; i.e., the

k

Coupled state 

k1

k2

k3

am3

am2

s

am1

+ s

a connected bond
dim =  2s

dim =  1

a connected bond

amJ
kJ

FIG. 3. A stripe in the mapping space (schematic illustration).
The nodes with the position labels k1 and k2 are identified through
quantum smearing of the wave function (shown as an oval en-
compassing these two nodes). If s � 1/2, then the coupled state
â†s

m1
⊗ âs

−m1
can accommodate at least one “complete” wave process,

and this is shown as a thick solid line within the oval.

wave tends to cancel itself. The result of this self-cancellation
is an “incomplete” wave process that we call an “s wave.”
We consider the s waves as a wave process that has survived
the self-cancellation on a fractal object with the Hausdorff
measure s. It is in this sense that we represented the bonds
corresponding to the processes â†s

m1
and âs

m2
by Cantor sets

with the fractal dimension s < 1.
In quantum dynamics, the two s waves may tunnel under

the topological barriers associated with the Cantor sets—a
process strictly forbidden in a classical setting. Once the quan-
tum s waves “meet” under the barrier, they may constructively
interfere to produce a nonlinear coupled state that we shall
denote by â†s

m1
⊗ âs

m2
. By solving the wave equation for two

counterpropagating s waves one may immediately become
convinced that the cross-interference is most efficient if m1 =
−m2; i.e., the momenta of the s waves must be oppositely
directed. Let us assume that the constructive interference
is “broad” in that the eigenstates with position coordinates
k1 and k2 both lie within a half-width of the same wave
function characterizing the coupled state (see Fig. 3). Then
these eigenstates cannot be distinguished by the observer and
would appear through interactions as one effective, single
state. But if the eigenstates at k1 and k2 are inseparable through
quantum dynamics, then it is immediate that in the mapping
space they must be identified and hence we must glue [35]
them together, so that these nodes become just one single node
via the quantum identity relation k1

∼= k2.
The effect this identity relation has on topology of the

mapping space is that it locally affects the connectivity of
this space, giving rise to a theoretical possibility that two
otherwise disconnected nodes are connected to each other
via a coupled state of two s waves. Naturally one may try
to represent this new connection as a bond in the mapping
space (shown as a thick horizontal line inside the oval in
Fig. 3), which in this way of thinking is a substitute for the
coupled state â†s

m1
⊗ âs

−m1
enabling this connection. One sees

that such a bond (if it exists) would be characterized by the
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Hausdorff measure 2s. In fact, if s is the Hausdorff dimension
of the everywhere discontinuous bonds representing the single
operators â†s

m1
and âs

m2
, i.e.,

dim
[
â†s

m1

] = dim
[
âs

m2

] = s < 1, ∀m1, m2, (28)

then a bond representing a coupled state like â†s
mj

⊗ âs
−mj

must
have the Hausdorff dimension 2s in accordance with

dim
[
â†s

mj
⊗ âs

−mj

] = dim
[
â†s

mj

] + dim
[
âs

−mj

] = 2s. (29)

Equation (29) is a manifestation of the general property that
the Hausdorff dimension of the direct product of two fractal
sets is the sum of the respective Hausdorff dimensions of
these sets [33,36]. Note that the operation “dim” is defined
in the mapping space and must not be confused with the
“dimension” of the corresponding Hermitian matrix operator
in wave number space.

Having gone through all this detailed discussion of the
subtleties of the connectivity in the mapping space, we may
now argue based on Eq. (29) that the coupled state â†s

mj
⊗ âs

−mj

thought of as a quasiparticle state may accommodate at least
one “complete” wave process, if

dim
[
â†s

mj
⊗ âs

−mj

] = 2s � 1, (30)

i.e., if s � 1/2. Once a complete wave is there, it may nat-
urally propagate between the nodes k1

∼= k2 and k, and for
symmetry reasons also between the nodes kJ and k1

∼= k2 (see
Fig. 3). Here by kJ we mean a “mirror” node that mediates
the response of the coupled state k1

∼= k2 to an incoming
ordinary wave. The end result is that the “gap” between the
otherwise disconnected nodes kJ and k has been filled out
through the occurrence of an intermediate coupled state and
is now available for quantum transport.

Our next point here concerns the fact that the coupling pro-
cess â†s

mj
⊗ âs

−mj
only uses that the momenta of the respective

s waves are oppositely directed, but it does not involve an
explicit dependence on the position coordinate in the mapping
space. If one represents a complete wave process resulting
from the â†s

mj
⊗ âs

−mj
coupling as a connected bond in the

mapping space, then based on the dynamical Eq. (19) one
may construct a countable set of ever continued chains of
bonds stretching to arbitrarily long scales along which the
nonlinear field may propagate to infinity. Such chains would
alternate the creation-annihilation processes defined by the
free operators âm3 and other operators alike with the interme-
diate quasiparticle states contained in â†s

mj
⊗ âs

−mj
for mj =

0,±1,±2, . . . . We dub such chains of processes “stripes”
whose DNA [37] is schematically illustrated in Fig. 3.

Let us summarize. An important element to quantum
transport in disordered nonlinear Schrödinger lattices with
subquadratic power nonlinearity (s < 1) is the occurrence of
a stripy ordering in the mapping space. The stripes are ever
continued (DNA-like) chains of alternating ordinary bonds,
on the one hand, and the coupled states of quantum s waves,
on the other hand. The stripes form a runway along which a
quantum wave field may propagate to long distances through
a disordered structure as a result of the nonlinear interactions
behind. Those interactions are captured in a synthetic form by
the backbone-reduced dynamical model in Eq. (19). Through

self-affinity the latter model is characterized by the same scal-
ing properties as the original QNLSE model (1). The stripes
occur because the quasiparticle states resulting from the pair-
ing processes â†s

mj
⊗ âs

−mj
overlap with the propagating wave

processes coming with the ordinary creation-annihilation op-
erators. The pairing process â†s

mj
⊗ âs

−mj
is only possible in

the quantum domain in that it requires that the corresponding
partial s waves tunnel under the topological barriers associated
with the (everywhere discontinuous) Cantor sets.

The occurrence of stripes implies that a nonlinear quantum
field cannot be Anderson localized, if s � 1/2. This quantum
result is in marked contrast with the corresponding classical
result [12,13] according to which a classical nonlinear field is
Anderson localized for all s < 1 similarly to the linear field.
Moreover, the quantum transport is not thresholded (no onset
strength of nonlinear interaction permitting this), contrary to
its classical counterpart. The absence of onset strength is again
explained by quantum tunneling processes destroying the
otherwise thresholded conditions for the critical percolation
of a classical wave field on a Cayley tree [12].

In what follows, we consider the quantum transport along
the stripes as a dominant mechanism for the destruction
of Anderson localization in quantum nonlinear Schrödinger
lattices with s � 1/2. Note, in this regard, that by looking into
a stripy ordering we may appreciably simplify the analysis and
restrict ourselves just to one-dimensional transport models.

IV. THE LENNARD-JONES POTENTIAL AND
SUBDIFFUSIVE SPREADING LAW

It is understood that the excitation of each eigenstate is
none other than the spreading of the wave field in wave
number space [5,12]. If the field is spread over �n � 1 states,
then the conservation of the total probability∑

n

ψ̂†
n ψ̂n �

∫
|ψ̂n|2d�n = 1̂ (31)

would imply that |ψ̂n|2 � 1̂/�n. In the basis of linear local-
ized modes, the evolution of the operators âm = âm(t ) is due
to their nonlinear coupling, i.e.,

˙̂am ∼ βâ†s
m1

âs
m2

âm3 . (32)

The rate of excitation of the newly involved modes at the site
m is obtained as Rm ∼ | ˙̂am|2 and will be proportional to the
power 2s + 1 of the probability density. The system-average
mode excitation rate is written as R ∼ | ˙̂ψn|2 ∼ |ψ̂n|2(2s+1).
Taking the conservation of the total probability into account,
one arrives at

R ∼ β2/(�n)2s+1. (33)

On the other hand, the number of the newly excited modes per
unit time is d�n/dt , making it possible to assess d�n/dt ∼
β2/(�n)2s+1. The latter condition is different from the cor-
responding condition used in Refs. [5,13] in that we do not
assume that the spreading of the wave field is of the diffusive
type, nor do we involve any sort of random-phase approx-
imation justifying such an assumption. Indeed, in quantum
dynamics, the notion of chaos loses its classical meaning [38].
Therefore, the time derivative d/dt is applied to �n itself—as
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dictated by Fermi’s golden rule [39]—and not to the square
of �n, as in Refs. [5,12,13], leading to a different law of
spreading. Before we proceed, we abolish the similarity sign
in d�n/dt ∼ β2/(�n)2s+1 in favor of the equation d�n/dt =
A/(�n)2s+1 in which A ∝ β2 has absorbed all numerical co-
efficients behind. Integrating over time, one gets (�n)2s+2 =
(2s + 2)At , from which a subdiffusive law of spreading

(�n)2 = [(2s + 2)A]1/(s+1) t1/(s+1) (34)

can be deduced. For s → 1, the behavior on the right-hand
side of Eq. (34) is square-root-like (as a nickname, we would
call this “half-diffusion”). The half-diffusion (�n)2 ∝ t1/2

corresponds to a faster spreading process as compared to
Eq. (27). The explanation lies in the fact that the quantum spe-
cific phenomena, such as tunneling between states, naturally
enhance the transport above the classically expected values.

Let us now assess the dynamics of field spreading from
the perspective of the second-order time derivative. For this,
differentiate the equation d�n/dt = A/(�n)2s+1 with re-
spect to time, then eliminate on the right-hand side the first
derivative d�n/dt using the same equation. The end result
is d2�n/dt2 = −(2s + 1)A2/(�n)4s+3. Rewriting the power-
law dependence on the right-hand side such that it takes the
form of a “gradient” in the �n direction, one gets

d2

dt2
�n = − d

d�n

[
− A2/2

(�n)4s+2

]
. (35)

So, if �n is a position coordinate in wave number space, as
in fact it is, then Eq. (35) is none other than the Newtonian
equation of motion in the potential field

W (�n) = − A2/2

(�n)4s+2
. (36)

For s → 1, the potential function in Eq. (36) takes the form
W (�n) = −(A2/2)/(�n)6, which is immediately recognized
as the attractive part of the celebrated Lennard-Jones potential
[26]. The latter potential finds outstanding applications [40]
in molecular dynamics and quantum chemistry. As a result of
the attracting dynamics in Eq. (35), the newly excited modes
will tend to form clusters—“molecules”—in wave number
space, where they will be effectively trapped due to their
nonlinear coupling [10]. The comprehension of the attractive
“forces” between the components of the wave field explains
the deviation from the normal diffusion in the nonlinear
Schrödinger dynamics. Indeed the transport is subdiffusive,
i.e., (�n)2 ∼ t1/(s+1), and not ∼ t as in the Brownian transport
case, owing to the binding effect of the potential field of the
Lennard-Jones type. We shall illustrate this property shortly.

Multiplying both sides of Eq. (35) by the “velocity,”
d�n/dt , and integrating the ensuing differential equation
with respect to time, after simple algebra one obtains

1

2

[
d

dt
�n

]2

− A2/2

(�n)4s+2
= �E , (37)

where the first term on the left-hand side has the sense of the
kinetic energy of a “particle” of unit mass moving along the
�n coordinate, and the second term is its potential energy.
It is shown using the equation d�n/dt = A/(�n)2s+1 that
the kinetic energy in Eq. (37) compensates for the potential

energy exactly; that is, the full energy in Eq. (37) is actu-
ally zero, �E = 0. More so, both the negative potential en-
ergy W (�n) ∼ −A2/(�n)4s+2 and the positive kinetic energy
1
2 (d�n/dt )2 ∼ A2/(�n)2(2s+1) vanish while spreading. Both
will decay as the (4s + 2)th power of the number of states,
and the ratio between them will not depend on the width of
the field distribution.

The full energy being equal to zero implies that the “par-
ticle” in Eq. (37) is sitting on the separatrix �E = 0. Based
on the analysis of Ref. [41] we may argue that the separatrix
�E = 0 contains a connected escape path to infinity; hence it
allows for an unlimited spreading of the wave field regardless
of the strength of the nonlinearity. More so, as the particle
propagates outward, its motion becomes intrinsically unstable
(sensitive to fluctuations). This is because both the potential
and the kinetic energies vanish for �n → +∞, so very tiny
perturbations due to, for instance, random noise, zero point
fluctuations, and quantum tunneling may drastically change
the type of phase-space trajectory. The result generally holds
for the dynamics near separatrices in large systems [31,32,42].
To this end, the fact that a given mode does or does not belong
to a cluster of modes becomes essentially a matter of the
probability.

To assess the probabilistic aspects of field spreading, let
us assume that the fluctuation background is characterized by
the effective thermodynamic “temperature,” T . So, the value
of T weighs all occasional perturbations to dynamics that
might be influential near the separatrix. Then the probability
for a given mode to quit the cluster after it has traveled �n
sites on it can be written as the Boltzmann factor p(�n) =
exp[W (�n)/T ], where we have set the Boltzmann constant to
1 for simplicity. Substituting W (�n) from the Lennard-Jones
potential in Eq. (36), one gets

p(�n) = exp[−A2/2T (�n)4s+2]. (38)

Taylor-expanding the exponential function for �n � 1, we
find p(�n) � 1 − A2/2T (�n)4s+2. The probability to remain
(“survive”) on the cluster after �n space steps is p′ = 1 − p,
yielding

p′(�n) � A2/2T (�n)4s+2. (39)

Eliminating �n with the aid of Eq. (34), one obtains the
probability to survive on the cluster for t time steps, i.e.,

p′(t ) ∝ t−(2s+1)/(s+1), (40)

where we have omitted the redundant dimensional coefficient
A1/(s+1)/2T (2s + 2)(2s+1)/(s+1) in front of the scaling factor,
∝ t−(2s+1)/(s+1). Statistically, one may interpret the survival
probability in Eq. (40) as a waiting-time distribution χ (t ) ∝
t−(2s+1)/(s+1) reflecting the binding effect of the different
clusters in wave number space. Note that t in Eq. (40) is a
timescale, which has the sense of exit—or trapping [43]—
time for the random walks on finite clusters. Note also that the
integral

∫
tχ (t )dt ∼ t1/(s+1) diverges for t → +∞, implying

that the mean waiting time is infinite.

V. BIFRACTIONAL KINETIC EQUATION

In this section, we devise a kinetic picture for the asymp-
totic (t → +∞) transport using random walks and the
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formalism of a fractional-derivative diffusion equation. In-
deed the fractional kinetic equations dealing with general-
ized derivatives in space and time incorporate in a natu-
ral, unified way the key features of non-Gaussianity and
long-range dependence that often break down the restrictive
assumptions of locality and lack of correlation underlying
the conventional statistical mechanical paradigm [21,22,25].
From a probabilistic standpoint, fractional kinetics extends
Gaussian stochastic processes (i.e., Brownian random walks)
by taking into account long-range correlated events in the tail
of the probability density function. Mathematically, the use of
fractional-derivative equations is advantageous, as it makes it
possible to describe transport phenomena in complex systems
in much the same way as in simpler systems [25].

A. Continuous time random walks in wave number space

We propose based on the above analysis that the asymptotic
transport in the QNLSE model (1) occurs in the form of
a random walk process along the stripes and we adopt the
standard scheme of continuous time random walks (CTRW)
[43,44] to describe this process. In this paradigm one assumes
that the random walker (a component of the wave field, in
our case) jumps in random direction along the coordinate
axis and that the jumps are such that there is a distribution
of waiting times between consecutive steps of the random
motion, on the one hand, and a distribution of the jump lengths
in the coordinate space, on the other hand. Then we adopt
the following paradigmatic distributions respectively for the
waiting times and the jump lengths (t is the waiting time; � is
the jump length), i.e.,

χ (t ) ∝ 1/(1 + t/τ )1+α, (41)

χ (�) ∝ Aμ�−(1+μ), (42)

with 0 < α < 1 and 1 < μ < 2 (see Refs. [21,25]). In the
above τ is the microscopic lattice time and is set to 1 for
simplicity, and Aμ is a normalization constant parameter. Then
starting from the model distributions in Eqs. (41) and (42),
and using that the steps occur in random direction along a
one-dimensional coordinate axis, one obtains the following
kinetic equation for the probability density f = f (t,�n) to
find the random walker at time t at the distance �n from the
origin [21,22]:

∂

∂t
f (t,�n) = 0D1−α

t [κα,μ∇μ f (t,�n)]. (43)

Here, 0D1−α
t is the Riemann-Liouville fractional derivative

with respect to time, and ∇μ is the Riesz fractional derivative
and is taken with respect to the position coordinate �n (see
Eqs. (A.4) and (A.13) of Ref. [21]). Further κα,μ is the
transport coefficient, which carries the dimension cmμ × s−α .
The Riemann-Liouville derivative is defined by

0D1−α
t f (t,�n) = 1

�(α)

∂

∂t

∫ t

0
dt ′ f (t ′,�n)

(t − t ′)1−α
(44)

and accounts for the non-Markovian properties of the trans-
port in the limit t → +∞, e.g., multiscale trapping phe-
nomena along the stripes, stickiness, non-ergodicity, and
other phenomena alike [45]. Note that the Riemann-Liouville

derivative is none other than the ordinary time derivative
applied to a convolution of the probability density with a
power law. By setting the lower limit of the time integration to
zero we have tacitly assumed that the random walk process is
initiated at time t = 0. Note in this regard that the Riemann-
Liouville derivative incorporates the initial value problem
through the definition of the lower limit of the integration.

Concerning the Riesz fractional derivative in Eq. (43), its
definition [22,23] is such as to achieve a meaningful gener-
alization of the Laplacian operator to systems in which the
standard Gaussian central limit theorem [46] is invalidated
as a result of the heavy-tailed jump length distribution in
Eq. (42). In our notation

∇μ f (t,�n) = 1

�μ

∂2

∂�n2

∫ +∞

−∞

f (t,�n′)
|�n − �n′|μ−1

d�n′, (45)

where �μ = −2 cos(πμ/2)�(2 − μ) is a normalization pa-
rameter, and 1 < μ < 2 is the fractional index of the integro-
differentiation [same μ in Eq. (42) above]. The improper inte-
gral on the right-hand side of Eq. (45) is understood as the sum
of two Riemann-Liouville integrals, i.e.,

∫ +∞
−∞ = ∫ �n

−∞ + ∫ +∞
�n .

The integration in Eq. (45) is performed in infinite limits
along the position coordinate �n and in the mapping space
corresponds to an improper integration along a stripe. For
μ → 2, the conditions of the standard Gaussian limit theorem
are reinstalled. In that case one naturally uses in Eq. (43) the
standard Laplacian operator ∇2 = ∂2/∂ (�n)2 in place of the
Riesz operator, ∇μ. For μ → 1, the Riesz derivative reduces
(through the degeneration of the normalization parameter,
�μ → +0) to the Hilbert transform operator [22,47]

lim
μ→1

∇μ f (t,�n) = − 1

π

∂

∂�n

∫ +∞

−∞

f (�n′, t )

�n − �n′ d�n′. (46)

A derivation of kinetic Eq. (43) is articulated in, e.g.,
Refs. [21,23,48,49] for systems driven by a stochastic noise
process. A derivation using transition probabilities in recip-
rocal space has been obtained in Refs. [50,51]. As is well
known, the Riesz operator in Eq. (43) generates Lévy flights
[21,23]. A Lévy flight is defined as a motion process driven by
an uncorrelated Lévy “white” noise [23]. The defining feature
of Lévy flights is their ability to propagate nonlocally to
long distances by performing instantaneous jumps in ambient
space, with a jump-length statistics as of Eq. (42). The Hilbert
case in Eq. (46) is special and mathematically corresponds
to the Cauchy flights identified by the limiting value μ = 1.
We consider the Cauchy flights as a natural bound on the
Lévy-type processes discussed in this work.

In a basic theory of Lévy flights one shows that the Lévy
flight trajectory possesses a fractal dimension characterizing
the island structure of clusters of smaller steps, connected by a
long step (Ref. [21], p. 27). This fractal dimension is given by
d f = μ. The Lévy flight trajectory being a continuous fractal
curve implies that its fractal dimension is not smaller than 1,
i.e., d f � 1. We have, accordingly, μ � 1.

Mathematically, the nonlocality of Lévy flights is included
via the improper integration in Eqs. (45) and (46). The fact
that the convolution is taken with a power law is consistent
with the property of the homogeneity enabling the scaling
relation in Eq. (9) and the introduction of a backbone-reduced
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dynamical model in Eq. (19). A boundary-value problem for
Lévy flights is discussed in, e.g., Refs. [22,51,52].

B. Values of fractional exponents

In a statistical perspective, Eq. (43) is a starting point to
obtain fractional moments of the probability density function.
The exact calculation uses the Mellin transformation and the
formalism of Fox functions [21,53]. Here, we restrict our-
selves to a qualitative result contained in the scaling relation
(�n)μ ∝ tα , from which a pseudo-mean-square displacement
[�n]2 ∝ t2α/μ can be inferred for long times. This is consis-
tent with Eq. (34) above, if

2α/μ = 1/(s + 1). (47)

The α value is obtained by comparing the waiting-time dis-
tributions in, respectively, Eqs. (40) and (41), the result being

α = s/(s + 1). (48)

This value is self-consistent. Substituting this in Eq. (47), one
obtains the corresponding value of the fractional exponent μ

to be

μ = 2s. (49)

The result in Eq. (49) is not really surprising. It means that
the rate of excitation of the newly excited states and the jump
length distribution between clusters of states both belong to
the same power law, with the same drop-off exponent, as
a comparison of Eqs. (33) and (42) shows. This is to be
expected, since the Lévy flyer jumping between two points
in wave number space would excite dynamically a whole
cluster of states lying between these points. Since the flight
trajectories are continuous curves, as we have assumed they
are, then the condition in Eq. (49) is readily inferred for μ � 1
based on the connectedness arguments. The end result is that
the transport to infinite distances occurs in the QNLSE model
(1), if μ = 2s � 1, i.e.,

s � 1/2. (50)

The latter is consistent with the analysis of Sec. III based
on the idea of sub-barrier coupling among the s waves [see
Eq. (30)]. If the transport proceeds as a competition between
the waiting-time statistics and Lévy flights, then the pseudo-
mean-square displacement scales as [�n]2 ∝ t1/(s+1). Setting
s = 1, one gets (�n)2 ∝ t1/2 reviving the finding of Ref. [18].

More so, if s = 1, then the index of fractional integro-
differentiation in Eq. (45) takes its limiting (integer) value
μ = 2. The implication is that Lévy flights would only occur
for subquadratic power nonlinearities, with s < 1, whereas
in the quadratic power case (s = 1) the transport goes as
a non-Markovian diffusion with a waiting-time distribution
in Eq. (41), where α = 1/2. This process is such that it
adopts a characteristic jump length in wave number space and
corresponds to the conditions of the standard Gaussian central
limit theorem [46]. This situation has been discussed in our
previous publication [18]. Based on this evidence, one is led to
conclude that the Lévy flights are a characteristic of a QNLSE
model with the fractional s values that must be strictly smaller
than 1, i.e., s < 1.

TABLE I. A summary of results and comparison between the
quantum and classical situations for the different values of the
exponent s. One sees that the quantum transport is generally faster
than its classical counterpart (for s = 1) and it also occurs in the
parameter range 1/2 � s < 1 for which no classical transport has
been found [13,15]. N/A means “not appropriate” (wherever the
issue is undefined or badly posed).

Quantum 0 � s < 1/2 1/2 � s < 1 s = 1

Localization Yes No No
Spreading No Yes Yes
Thresholded N/A No No [18]
Stripes No Yes Yesa

Lévy flights No Yes Nob

Trappings Yes Yes Yes
Transport No Subdiffusivec Subdiffusive
Dispersiond N/A t1/(s+1) t1/2 [18]

Classical 0 � s < 1/2 1/2 � s < 1 s = 1

Localization Yes Yes Noe[5,12]
Spreading No No Yesf[5,12]
Thresholded N/A N/A Yes [12,13]
Stripes No No No
Lévy flights No No No
Trappings Yes Yes Yesg

Transport No No Subdiffusive
Dispersionh N/A N/A t1/3 [12,13]
Dispersioni (chaotic) N/A N/A t2/5 [5,12]

aIn this limit, the stripes have the fractal dimension df = 2 (same
as the Brownian random walk [21]) and in this sense are not low-
dimensional.
bThe jump-length distribution is Gaussian in this case. The impli-
cation is that there is a characteristic jump length, rather than a
heavy-tailed distribution of these as of Eq. (42).
cOccurs as a competition between long-time trappings with a distri-
bution of waiting/exit times, on the one hand, and Lévy flights along
the stripes, on the other hand.
dPseudo-mean-square displacement in the case of subdiffusion with
Lévy flights (1/2 � s < 1); otherwise the usual mean-square dis-
placement 〈(�n)2(t )〉.
eAbove a certain critical strength of nonlinear interaction [5,12].
fAbove a certain critical strength of nonlinear interaction [5,12].
gNot in the chaotic case; see below.
hPseudochaotic [45] random walks at the threshold of delocalization
[12–15].
iChaotic diffusion with a range-dependent diffusion coefficient above
the delocalization point [12,13].

In Table I, we summarize our results and also compare
the quantum and the classical transport cases with a special
focus on similarities and differences between the two transport
regimes, such as the occurrence of stripes, Lévy flights, and
a waiting-time statistics. While we do not discuss the clas-
sical transport here, an interested reader can easily refer to
Refs. [12–15] in which further particularities may be found.

VI. DISCUSSION

We proceed with a few remarks. Our first point here
concerns the use of the CTRW scheme and the fact
that the spreading process by Lévy flights involves an
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important chaotic ingredient into dynamics. We argue that
this ingredient is self-assembling and occurs naturally through
the phenomena of quantum tunneling. This is made more
precise in the following.

A. The chaos is self-reinforcing

The focus here is on Chirikov’s overlap parameter K �
�ωNL/δω [31,32,45], which in our case characterizes the
extent to which single resonances in Eq. (25) can overlap due
to their nonlinear broadening. The K value is defined as a
ratio between the nonlinear frequency shift �ωNL = β|ψ̂n|2s

and the typical distance between resonances in wave number
space, δω. The latter distance scales with the number of states
�n as δω � 1/�n. The overlap parameter being much larger
than 1 implies that the chaos is strong, paving the way for a
kinetic description in terms of the probability density function
f = f (t,�n). With the aid of Eq. (31) one finds that |ψ̂n|2 �
1̂/�n for �n � 1, leading to �ωNL � β/(�n)s. Therefore,
K � β(�n)1−s.

One sees that for s < 1 the K value involves a dependence
on the number of states. Through quantum tunneling this num-
ber is a nondecreasing function of time, i.e., d�n/dt � 0. So,
if the initial condition is such that Kt=0 � 1, then the property
for the overlap parameter to be large will be preserved while
spreading. Moreover, the chaos is self-reinforcing in that

dK/dt � β(1 − s)(�n)−sd�n/dt � 0. (51)

In our previous works [12,13] we have argued that the non-
linear oscillators at each node k could be found in one of
two states—either chaotic (“dephased”) or regular—and that
it was up to the oscillators in the chaotic state to reemit the
waves further, thus favoring a large-scale transport in wave
number space. Also we have argued that the probability for
an oscillator to be found in a chaotic state was given by the
Boltzmann factor

p�ωNL = exp(−δω/�ωNL) = exp[−1/β(�n)1−s] (52)

and that the nonlinear frequency shift �ωNL had the sense of
the effective “temperature” of the nonlinear interaction. If the
parameter s is strictly smaller than 1, then Eq. (52) would
imply that limt→+∞ p�ωNL (t ) = 1, because �n → +∞ for
t → +∞ as a result of quantum tunneling. That is, the asymp-
totic state of coupled nonlinear oscillators in the dynamical
system (19) is the chaotic state (at no contradiction to the fact
that the oscillators may be organized in clusters introducing
an exit-time statistics). In view of Eq. (51), the chaotic state is
an attractor for the dynamics.

As the oscillators form stripes through quantum tunneling
of counterpropagating s waves, one says the stripes are a
channel through which the chaotic motions can propagate
to infinitely long distances in wave number space, thus de-
stroying the Anderson localization by nonlinear interactions.
In that regard, the assumption that the transport is driven
by a Lévy white noise finds its justification in the chaotic
character of the interactions. We note in passing that the
dependence on the β value in Eq. (52) is nonperturbative for
β → 0, and that the linear model, with β = 0, is characterized
by the oscillators residing all in the regular state, which
does not conduct the waves. For s = 1 exactly, the onset of

long-distance transport is limited to the β value, which must
be large enough to guarantee a sufficiently broad population
of the dephased oscillators conducting the wave processes to
infinity [12,13].

B. Self-organization without criticality

Another point worth noting is that the asymptotic state is
characterized by a power-law waiting/exit time distribution
with the diverging mean waiting time [see Eqs. (40) and
(41)] and, simultaneously, by a Pareto-Lévy distribution of
jump lengths as in Eq. (42). More so, both distributions
are parametrized by the same exponent s < 1, making it
possible to express the α value in terms of the fractional
index μ as α = μ/(μ + 2). The implication is that the asymp-
totic transport is such that there is an important coupling
between statistical properties in time and in space. These
properties are, moreover, not separable. Often the phenom-
ena of spatiotemporal coupling (and the associated power-
law reduced distributions of fluctuating observable quantities)
are explained in terms of self-organized criticality (SOC)
[54]. SOC is a paradigmatic concept describing the general
tendency of complex driven dissipative dynamical systems
to generate power laws in response to an external driving.
Here we witness a different situation according to which the
dynamical system is Hamiltonian, yet it generates power laws
through the self-organization of clusters of coupled nonlinear
oscillators. The relaxations in this system are multiscale and
mediated by a stripy ordering permitting long-distance jumps
of the wave field with both a jump-length and waiting-time
statistics. Arguably we may consider these relaxation events
as the analog SOC avalanches. According to Eq. (42) these
“avalanches” will be characterized by a size distribution

χ (�n) ∝ �n−(1+μ), (53)

which corresponds to the elusive gray swans in the vocabulary
of Ref. [51]. The gray swans [51] are a specific type of large-
amplitude event [55] that occurs at the border of localization-
delocalization in complex systems. Tuning μ to its lower limit
at μ = 1 (i.e., s = 1/2), one also obtains χ (�n) ∝ �n−2.
This behavior has been found numerically in Ref. [56] through
a study of coupled nonlinear oscillators with a phase-space in-
stability. In contrast to SOC, the onset of relaxation dynamics
in the nonlinear system (19) is not thresholded in terms of
the β value, at least in the quantum domain. In this regard, we
might also speculate that the occurrence of stripes in a QNLSE
system with s < 1 is an example of a self-organization without
criticality. This type of dynamical phenomenon has attracted
some attention in the literature recently [57].

C. Hole superconductivity

The idea that the localization-delocalization transition in
QNLSE (1) occurs through coupling among quantum s waves
and the associated stripy ordering finds an interesting par-
allel in the theory of the superconductivity in some uncon-
ventional superconductors, such as self-assembling organic
polymers and copper-oxide compounds. It has been discussed
[19,58,59] that these superconductors are not described by
the traditional picture of Bardeen-Cooper-Schrieffer (BCS)
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superconductivity in regular crystals [60] in that the supercon-
ducting quantum condensate in this type of material is due to
the pairing among the hole states and not the electron states.
In fact, the cuprate superconductors consist of parallel planes
of copper and oxygen atoms arranged in a square grid. The
copper-oxygen planes are separated by the layered atoms of
other elements, which may absorb electrons from the cop-
per sites, leaving positively charged holes behind (Ref. [59]
and references therein). Then the integral system operates
like a multilayer field-effect transistor with the conducting
copper-oxygen planes confined between the charge-absorbing
insulating substrates.

The key issue about the holes is that they have nega-
tive mass m∗ = −|m∗| < 0, leading to the imaginary fractal
tunneling length l∗ ∼ ih̄/

√
2|m∗|T . This means a periodic

charge oscillation ∼ exp(−ix
√

2|m∗|T /h̄) along the position
coordinate x in the copper-oxygen lattice, i.e., a “stripe.” It
has been shown [19] based on a fracton model for hole-hole
interactions that the stripy ordering in cuprate superconduc-
tors might result from the self-organization of the conducting
system to a thermodynamically profitable one-dimensional
charge distribution, and that the generation of the stripes was
a mechanism by which the superconducting condensate may
flow across the complex molecular structure of the cuprates
without resistance.

Here, we add value to this discussion by proposing that
the stripy ordering in quantum nonlinear systems can be un-
derstood theoretically based on a QNLSE with subquadratic
power nonlinearity. In this paradigm, the loss of Anderson
localization in certain quantum nonlinear Schrödinger lattices
with randomness might be said to be due to the “superfluidity”
of coupled s waves escaping the localization domain along
the stripes. One might also speculate on an interesting parallel
between the s waves and the hole states, as well as the idea
that the localization-delocalization transition in QNLSE (1)
occurs as a result of the self-organization of a lattice gas of
interacting unstable modes for s � 1/2. The implication is
that this type of nonlinearity introduces a dynamical system
feedback mechanism [61] prompting the coupled states of
counterpropagating quantum s waves to arrange themselves
into a one-dimensional ordered structure, hence a phase-
transition-like behavior despite the underlying disorder.

D. The competition between discontinuity and nonlocality

Next we address the subtle difference between the quan-
tum nonlocality—which allows the components of quantum
s waves to tunnel under the topological barriers in map-
ping space—and the kinetic nonlocality, which permits the
coupled states of quantum s waves to perform long-distance
jumps along the stripes. The coexistence between these two
dynamical processes in a QNLSE system is accounted for
by the matching condition μ = 2s, which, together with the
requirement that the Lévy flight trajectories must be path-
connected, implies that the transport is possible for all 1/2 �
s � 1. The latter result is in marked contrast with the classical
situation, according to which the transport to long distances is
only possible for s = 1 (see Table I). Note in this regard that
the path-connectedness [35] of the trajectories in space is a

consequence of the continuity of the random walk process in
time [43,44].

Finally, the matching condition μ = 2s demonstrates that
the rate of quantum excitation in Eq. (33) scales with the
system size as the number density of quantum jumps to the
distance �n. Indeed, it is the density of the jumps that defines
dynamically the mode excitation rate, as Fermi’s golden rule
would imply.

All in all, we might conclude that the quantum transport
in QNLSE (1) is an elegant and delicate compromise between
quantum tunneling and flights, and that the quantum system
can overcome the intrinsic discontinuities in the mapping
space by organizing itself into a nonequilibrium dynamical
state with a stripy order.

E. The competition between trappings and flights

Our next point here concerns the bifractional form of the
basic kinetic Eq. (43), which involves both the fractional
Riemann-Liouville derivative over time, 0D1−α

t , and the frac-
tional Riesz derivative ∇μ over the space coordinate �n.
The implication is that the transport process proceeds as a
competition [22,30] between long-time trapping phenomena
with an exit-time statistics—introduced by multiple clusters in
phase space and the attracting dynamics of the Lennard-Jones
type—and the Lévy flights of the coupled states along the �n
axis. The overall effect this competition has on phase-space
transport is subdiffusive scaling in Eq. (34), where the s value
is limited to the interval 1/2 � s � 1. Setting the exponent s
to 1, one arrives at the elusive “half-diffusion,” i.e., (�n)2 ∝
t1/2 [18]. On the other extreme, one encounters the limiting
value s = 1/2 corresponding to Cauchy flights and the Hilbert
transform operator in Eq. (46). The Cauchy limit leads to a
two-thirds law, i.e., (�n)2 ∝ t2/3. At this point, one sees that
a stronger transport is found for the correspondingly smaller
values of s, for which the nonlocal features are generally more
pronounced.

Curiously, the Lévy flights do not introduce superdiffusion
in phase space (as perhaps they would in the absence of
trapping), but on the positive side they ensure that there
is unlimited transport for all 1/2 � s < 1, contrary to the
classical transport case [13,15].

Last but not least, the subdiffusion in QNLSE (1) is
claimed in the presence of nonlocality—counterintuitive, if
not substantiated by the kinetic Eq. (43), with properly bal-
anced time and phase-space derivatives.

VII. THE DIFFUSION PARADOX

If one is ambitious and wants to reach beyond the condition
s � 1/2, then one may try to tune the s value to zero by allow-
ing s → +0, which is the absolute bound on the exponent s
in QNLSE (1). Then based on the scaling law in Eq. (34) one
would argue that the transport is diffusive, i.e., (�n)2 ∝ t . This
sounds like a paradox, since the limit s → +0 corresponds to
the linear model, for which an Anderson localization would
be the case.

The paradox is solved by demonstrating that the diffu-
sion coefficient vanishes for s → +0; i.e., there is in fact a
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diffusive scaling coming up, but the diffusion flux is zero,
implying that there is no transport in real terms.

The demonstration refers to the topology of the Cayley
trees as of Sec. III above. Letting s → +0, one sees that the
bonds with the self-interference mark (i.e., the Cantor sets in
Fig. 1) are none other than the empty sets (since their fractal
dimension is exactly zero in this limit). That means that the
Cayley trees defined by the dynamical Eq. (19) lose two out
of three their bonds at each node, leaving one (and only one)
isolated bond behind. In our Fig. 1 this would be the bond
connecting the node k to k3, which corresponds to the operator
âm3 .

The fact that the nonvanishing bonds are disconnected
from other similar bonds would imply that the Cayley trees
have lost their structural identity in terms of the coordination
number. To this end, they are not even trees anymore, if not
a collection of isolated bonds lying here and there in the
graph space. As the topology of a tree has been relaxed in
the graph space, also relaxed will be any eventual long-range
dependencies introduced by such trees in correspondence with
the branching process in Eq. (19). In particular, the fact that
the node k appears to be connected just to k3 (and not to
any other node around) becomes a matter of choice. With the
deteriorating Cayley trees for s → +0, the Cayley forest at
each node k becomes a collection of randomly oriented bonds,
and their respective lengths k − k3 constitute a set of random
numbers centered around k.

The net result is that any eventual transport in the limit
s → +0 would be fully uncorrelated in the long run (both
in time and in wave number space). This corresponds to a
Gaussian diffusion process, i.e., the familiar Brownian ran-
dom walk [21,62]. Then it is the particularity of the Anderson
problem that this transport process occurs with zero diffusion
coefficient, as we now proceed to show.

The key step is to consider the series expansion in Eq. (3) as
a sum of random variables obeying the conditions of the cen-
tral limit theorem [46,62]. Then this theorem tells us that the
probability distributions of these sums—obtained statistically
at the different positions n—will be Gaussian (or “normal”).
Self-consistently, each of these probability distributions will
be none other than the probability density of the wave field
itself and will, therefore, be given by |ψ̂n|2 = ψ̂†

n ψ̂n. This said,
we can represent the probability density

|ψ̂n|2 =
∑

m1,m2

â†
m1

âm2φ
∗
n,m1

φn,m2 (54)

as an effective bell function, i.e.,

|ψ̂n|2 � exp[−b̂†b̂ φ̃∗
n φ̃n], (55)

where we have also introduced the effective “normal”
creation-annihilation operators b̂† and b̂, as well as the associ-
ated “effective-medium” complex functions φ̃∗

n and φ̃n, which
may depend on the coordinate n in general.

Focusing on the bell function in Eq. (55), one may use the
Gaussian representation

|ψ̂n|2s ≡ (|ψ̂n|2)s � exp[−sb̂†b̂φ̃∗
n φ̃n] (56)

to define the power s of the probability density |ψ̂n|2. Note
that the representation in Eq. (56) is exact within the range of

validity of the Gaussian central limit theorem. This represen-
tation is applied in the limit s → +0 for which Eq. (55) holds,
making it possible to circumvent the use of the backbone map
and other topological approximations alike, as soon as the
Gaussian diffusion is considered. Taylor-expanding the expo-
nential function for s → +0, we have |ψ̂n|2s � 1 − sb̂†b̂φ̃∗

n φ̃n.
Upon substituting in QNLSE (1) this yields

ih̄
∂ψ̂n

∂t
= Ĥ ′

Lψ̂n − sβb̂†b̂[φ̃∗
n φ̃n]ψ̂n, (57)

where Ĥ ′
L = ĤL + β. If we introduce ω′

k = ωk + β, we
may write for the eigenstates Ĥ ′

Lφn,k = ω′
kφn,k . Confident in

Eq. (3), we multiply both sides of Eq. (57) by φ∗
n,k , then sum

over n using the orthonormality condition in Eq. (4). The end
result is the following system of equations,

i ˙̂ak − (ω′
k − sβb̂†b̂Vk,k )âk = −sβb̂†b̂

∑
m �=k

Vk,mâm, (58)

in which the coefficients

Vk,m =
∑

n

[φ̃∗
n φ̃n]φ∗

n,kφn,m (59)

characterize the overlap structure of the wave field for s →
+0. Equation (58) is a linear dynamical equation and repre-
sents a system of forced linear oscillators, where the forcing
term at the node k is defined by

Fk � −sβb̂†b̂
∑
m �=k

Vk,mâm (60)

and is due to the presence of multiple decoupled oscillators in
the surrounding space. For the large number of the oscillators,
the forcing term in Eq. (60) acts as a Gaussian white noise
term in the limit t → +∞. At this point, Eq. (58) can conve-
niently be considered as a system of Langevin equations with
the effective-medium white noise term, whose amplitude, Fk ,
depends parametrically on the index s. As is well known [62],
the Langevin equations with a Gaussian white noise give rise
to a stochastic walk process of the diffusion type, and this
supports the observation above that the scaling in Eq. (34) is
diffusive for s → +0. On the other hand, the corresponding
diffusion coefficient is none other than the intensity of the
noise, i.e.,

D(s) � s2β2|b̂†b̂|2
∑

m1 �=k, m2 �=k

V ∗
k,m1

Vk,m2 â†
m1

âm2 , (61)

and this behaves for the small s → +0 as D(s) ∝ s2.
The end result is that the diffusion coefficient vanishes (as

a square of s) in linear random lattices, giving rise to the
phenomena of Anderson localization through the loss of long-
range correlation in a system of forced, weakly interacting
oscillators. All in all, this brings us to the celebrated absence
of diffusion, as it has been intimated by Anderson in his
seminal work in Ref. [1].

VIII. SUMMARY AND CONCLUSIONS

In the present work, we have analyzed the defining con-
ditions permitting the spreading of an initially localized
wave packet in one-dimensional discrete quantum nonlinear
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Schrödinger lattices with disorder and algebraic power non-
linearity. Our results for quantum and classical lattices differ
considerably. For classical lattices, we have found through
previous investigations [12,13,15] that an unlimited spreading
is only possible in the quadratic power case, and that the phe-
nomenon is thresholded in that there exists a critical strength
of nonlinear interaction, below which the nonlinear field is
Anderson localized similarly to the linear field. No unlimited
transport of the wave function has been found for subquadratic
power nonlinearities as a result of the topological restrictions
in the graph space.

For quantum lattices, we predict an unlimited spreading
for both the quadratic and to a certain extent subquadratic
power nonlinearities—in contrast to the corresponding clas-
sical lattices. Moreover, the phenomenon is not thresholded;
i.e., no critical strength of nonlinear interaction comes into
play. The explanation lies in the realm of quantum tunnel-
ing processes permitting sub-barrier propagation of the wave
function, hence unlimited transport in regimes otherwise in-
accessible for the classical field.

Our analysis indicates that the relevant parameter defining
the transition from localization to an unlimited spreading
is the exponent s of the power law, which appears in the
nonlinear term, ∼β|ψ̂n|2sψ̂n. Then for the quantum lattices we
find that an unlimited transport to long distances is possible
for all 1/2 � s � 1, whereas for the classical lattices it would
only be possible for s = 1, but not for s < 1. Finally, for 0 <

s < 1/2, the quantum field is Anderson localized despite the
nonlinearities present. These findings are compiled in Table I,
where one also finds a summary of dynamical properties
behind.

More generally and more importantly, we have devised
analytical methods enabling one to tackle algebraic power
nonlinearities in much the same way as the familiar quadratic
nonlinearity. Those methods have involved the multinomial
theorem [28] jointly with the formalism of Diophantine equa-
tions and some mapping procedure on a Cayley tree. In that
regard, we could argue that the nonlinear Anderson problem
was a topological problem of connectedness [35] in wave
number space mediated by quantum nonlocality properties.

In the discussion above we have argued that the stochas-
ticity parameter K = �ωNL/δω was dynamic in that it would
naturally increase while spreading if the nonlinearity is sub-
quadratic (i.e., s < 1). That is, the chaos is self-reinforcing for
s < 1. In that case K involves a dependence on the number of
states through K � β(�n)1−s. So, if K is large for some t = 0,
then it will be getting even larger for t > 0, thus dynamically
improving the condition K � 1 for which a kinetic model
of the Fokker-Planck type (whether ordinary or fractional)
may be introduced. If s = 1, then K � β is an invariant
of the spreading process, a property already discussed in
Refs. [5,13].

It is understood that the quantum transport is much faster
than the classical estimates would predict. Indeed, given a
QNLSE with the quadratic power nonlinearity, we have found
using Fermi’s golden rule (�n)2 ∝ t1/2, whereas the classical
estimates lead to (�n)2 ∝ t2/5 in the chaotic domain, and
to (�n)2 ∝ t1/3 in the pseudochaotic domain [12,13]. In the
latter case one recovers the one-third law in Eq. (27). We asso-
ciate the observed deviations with the fact that the topological

constraints for quantum transport are less demanding than in
the classical transport case; in particular, the quantum field is
allowed to tunnel along the disconnected bonds in the graph
space, as well as interfere with itself under the topological
barriers to form quasiparticle states—the processes that are
strictly forbidden in classical lattices.

Another particularity of the quantum case is the mecha-
nism of the transport: For s = 1, the transport (both quantum
and classical) is absolutely dominated by long-time trapping
phenomena and is non-Markovian in nature. The trappings
occur because the nonlinear interactions act so as to introduce
an attracting potential in wave number space favoring some
kind of stickiness phenomena [45] among the unstable modes.
By examining the structure of the nonlinear term one finds
that the attracting potential is none other than the celebrated
Lennard-Jones potential giving rise to the formation of multi-
ple clusters—or “molecules”—in wave number space, which
could effectively reduce the transport below the expected
diffusion values.

It is worth stressing here that the non-Markovian proper-
ties arise naturally through dynamics via the action of the
Lennard-Jones potential causing attraction between the unsta-
ble modes. It is due to this attraction that the actual transport
is much slower than a diffusive one. Behind the subdiffusive
character of the spreading is the nonlinear interaction between
the modes; in particular, the “(2s + 2)”-wave interaction in
Eq. (19) generates a waiting-time distribution with the diver-
gent mean, enabling non-Markovian dependencies in Eq. (43).

For 1/2 � s < 1, there is an additional mechanism coming
into play, and this is effective in quantum lattices only—not
the classical ones. It uses the possibility that some components
of the wave field, the so-called s waves, may constructively
interfere under the topological barriers caused by multiple
discontinuities in the operator space, and by doing so can
produce coupled states with zero overall momentum, simi-
larly to the hole-hole pairing processes in complex super-
conducting materials [19,59]. Then these pairwise coupled
states can propagate to long distances on Lévy flights by
jumping over the discontinuities in the mapping space. The
process is favored in the presence of a simultaneous long-
range one-dimensional ordering dubbed stripy ordering. For
classical lattices, this mechanism is forbidden, because the
wave function cannot penetrate under the barrier to meet
its pairing counterpart. It is due to this pairing mecha-
nism that the quantum transport for 1/2 � s < 1 is at all
possible.

It is worth noting here that the lower bound on the exponent
s, i.e., s = 1/2, is dictated by the connectedness of the Lévy
flight trajectories through the condition d f = 2s � 1, where
d f is the fractal dimension of the flight. Also it is dictated
by the connectedness of the stripes in wave number space
navigating the escape of the wave field to long distances. We
have seen in the above that these connectedness properties
being essentially the topological properties of a wave field as
complex system could be translated in terms of the continuity
of the transport process in time. This may be seen in the
fact that the exponents of both the waiting-time distribution
in Eq. (41) and the jump-length distribution in Eq. (42) are
categorized by the same parameter s � 1 and in this sense are
not independent.
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In a basic physics perspective, the Lévy flights introduce
important nonlocal features into the dynamics and by doing
so contest Fick’s first law [25,63] that fluxes are generated by
local gradients. The comprehension of nonlocality of quantum
transport has led us to a kinetic description based on the
theoretical scheme of continuous time random walks [21,44].
When applied to the QNLSE problem in Eq. (1), this scheme
assumes that the transport occurs as a competition between
multiple trapping phenomena due to the binding effect of the
phase-space clusters, on the one hand, and the Lévy flights of
the coupled states to long distances along the stripes, on the
other hand. For t → +∞, this scheme leads to a description
in terms of a time- and Lévy-fractional kinetic Eq. (43),
using the Riemann-Liouville derivative 0D1−α

t for the trapping
phenomena, and the Riesz fractional derivative ∇μ for the
flights. We note in this regard that the fractal dimension of the
Lévy flights is determined by the exponent of the algebraic
power nonlinearity and is equal to 2s exactly, hence the con-
nectedness restriction 2s � 1. For s = 1, the Lévy flights do
not occur. Controlling this case will be the standard Gaussian
central limit theorem [46,62], as the matching condition in
Eq. (49) shows. That means that there will be a characteristic
jump length along the lattice (which defines the half-width
of the Gaussian bell), and not a heavy-tailed distribution of
these, in contrast to Eq. (42). As a consequence, the Riesz
operator ∇μ in the basic kinetic Eq. (43) must be replaced by
a Laplacian operator � = ∇2. This recovers the next-neighbor
random walk model already discussed in Ref. [18].

The fact that the exponents μ and α = μ/(μ + 2) prove
to be related to each other means that there is an important
spatiotemporal coupling at play governing the escape of the
nonlinear field to infinity. When seen from a perspective
of the competing multiple trappings and flights this escape
process to infinity (and the associated destruction of Anderson
localization in quantum nonlinear Schrödinger lattices) turns
out to obey the bifractional kinetic equation in Eq. (43).

Our next point here concerns the fact that the resulting
transport process incorporating both the waiting-time statis-
tics and Lévy flights of the coupled states is subdiffusive
despite the nonlocalities present. The implication is that the
binding effect of phase-space clusters is quite strong in that it
overcomes the nonlocality effect due to the stripes. As a con-
sequence, the actual transport level is below the diffusionlike
levels.

By tuning the exponent s to zero we have demonstrated that
the limit s → +0 corresponds to a diffusive scaling in a sys-
tem of weakly interacting, linear forced oscillators. Because
of the lack of connectedness in the limit s → +0, the diffusion
coefficient (i.e., the flux of the field) goes to zero as D(s) ∝ s2.
One sees that the flux of the field vanishes, as soon as the dif-
fusion limit is achieved. This kind of paradoxical halt of diffu-
sion is, in fact, the phenomenon of Anderson localization [1].

Experimentally, detailed identification of the driving mech-
anisms leading to the destruction of Anderson localization
in quantum nonlinear lattices with disorder is in its infancy.
Beyond validation of theoretical models, the future of the
field lies in the development of accurate numerical simulation
tools. A few important milestones have been achieved recently
in the activities of Flach and co-workers (e.g., Ref. [17]), who
used a simplification of QNLSE (1) based on the Hubbard
model, with the structure of the nonlinear term corresponding
to our s = 1. The results support the idea that the asymptotic
transport is subdiffusive, with the transport exponent comply-
ing with a “half-diffusion” process [18]. The latter process is
a partial case of the more general scaling law in Eq. (34).

Extending the numerical simulations to an arbitrary 0 <

s < 1 is not at all trivial. The inclusion of the fractional
values 0 < s < 1 implies that the wave field may partially
annihilate along some bonds in the graph space. Then the
integral picture of the interactions is more like an overlap
among the fractional number 2s + 2 of the different waves,
rather than the familiar 4-wave interaction dynamics [10]. On
top of this, the partially annihilated modes may stick together
to produce coupled states, and these may propagate along the
lattice on Lévy flights introducing the important features of
nonlocality into the transport. We note in this regard that the
nonlocal features are absent in the quadratic power case for
which the transport is local in the sense of Fick’s first law
and the Gaussian central limit theorem. Another complication
comes with the fact that the numerical simulation tool should
be able to capture the signatures of the asymptotic transport
in the limit t → +∞. This may result in certain numerical
controversies already discussed in Refs. [12,13].

All in all, we expect the eventual numerical simulation task
to be both an intricate and challenging problem, which natu-
rally constitutes an important subject for future investigations.
We consider this task as posing the frontier for the present
study.
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