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Vibrational antiresonance in nonlinear coupled systems
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We examine the response of a system of coupled nonlinear oscillators driven by a rapidly varying field, to a
low frequency weak periodic excitation of one of the oscillators. The response amplitude of the weak field-driven
oscillator at an optimal strength of the rapidly varying field exhibits a strong suppression accompanied by a large
negative shift in its oscillation phase. The minimum can be identified as vibrational antiresonance in between
the two maxima corresponding to vibrational resonance. This vibrational antiresonance can be observed only in
nonlinear coupled systems and not in linearly coupled systems or in a single nonlinear oscillator, under similar
physical condition. We discuss the underlying dynamical mechanism, the role of nonlinearity and high frequency
in characterizing this counter-resonance effect. Our theoretical analysis is corroborated by detailed numerical
simulations.
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I. INTRODUCTION

The response of a nonlinear system to a weak periodic
signal in the presence of noise has been a topical theme
in physical sciences since the 1980s. This phenomenon of
stochastic resonance [1,2] and several of its variants have
enriched our understanding of the constructive role of noise
in weak signal amplification and in other issues, e.g., reso-
nant activation [3,4], coherence resonance [5], noise-induced
transition [6], wave propagation [7], pattern formation [8],
to name a few. When the noise is replaced by a high fre-
quency field one realizes vibrational resonance [9], i.e., the
resonance enhancement of the response of the system to
a weak periodic force at an optimal strength of the high
frequency field. The numerical observation of this resonance
phenomenon by Landa and McClintok [9] and subsequent
theoretical [10] and experimental [11] investigations have
paved the way for observation of several new high frequency
field-induced effects [12,13]. Over the years, vibrational reso-
nance along with other deterministic analogs of stochastic res-
onance have been the subject of a body of literature covering,
e.g., ghost resonance [14], autoresonance [15], vibrational
ratchets [16], nonlinear vibrational resonance [17], etc. We
refer to [15] and Vincent et al. [18] for a comprehensive
overview.

The focus of the present work is a theoretical and numer-
ical analysis of an interesting, high frequency field-induced
counter-resonance effect or antiresonance in a system of cou-
pled nonlinear oscillators which has attracted little attention.
To bring the issue in an appropriate perspective, we first
revisit the aspect of antiresonance in the conventional [19]
and some related [20,21] contexts. It is well known that when
two or more linear oscillators are coupled and one of them is
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driven by a periodic field, the response of the driven oscillator
displays antiresonance dips along with resonance maxima
alternately in the response amplitude-frequency spectrum.
Various features of the occurrence of antiresonance have been
discussed in Chap. 14 of Ref. [15], in systems subjected
to additive and multiplicative (parametric) periodic forces in
the presence and absence of noise to demonstrate parametric
antiresonance in coupled systems, stochastic antiresonance
in single nonlinear oscillator, and conventional antiresonance
in coupled Duffing systems. In Jothimurugan et al., [19]
conventional antiresonance and multiple resonance in coupled
oscillators have been investigated in terms of amplitude of
response vs frequency plot but in the absence of high fre-
quency field. Vibrational resonance has been demonstrated in
a single classical and quantum Morse oscillator [20], along
with antiresonance in the quantum oscillator, shown by the
variation of quantum transition probability with amplitude
of the high frequency field. Single and multiple vibrational
resonance in a quintic oscillator with monostable potential
has also been discussed [21]. We now emphasize two points
at this stage. First, an important hallmark of antiresonance
is the large phase shift [22–26] in oscillation of one of the
oscillators with respect to the other and is therefore is a
characteristic feature of antiresonance which can occur in the
coupled systems rather than a single oscillator, a point that
has often been stressed in experiments [26] and engineering
literature [22–24]. Notably this phase aspect is absent in these
treatments which also lack any explicit analytic expression for
amplitude or phase of the driven oscillator showing antires-
onance vis-à-vis to that of the other oscillator(s), since the
occurrence of antiresonance has been studied in a single oscil-
lator [20,21]. Therefore this generic feature of the phase shift
of one oscillator with respect to the other cannot arise. Second,
the earlier studies on the system of coupled oscillators [15–19]
focus on the conventional antiresonance or parametric
antiresonance, where the high frequency modulation effect
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is absent. The emphasis of the present work lies in the
consideration of a high frequency field-induced antiresonance
effect as a counterpart of vibrational resonance but in a system
of coupled oscillators by taking care of the amplitude and
phase response functions analytically and numerically for
both the oscillators on an equal footing. The phenomenon
can be observed only in nonlinear coupled systems but not
in a single nonlinear oscillator or in coupled linear systems
under similar physical conditions. This is the major point of
departure from all the earlier treatments. Since antiresonance
depends solely on the characteristics of the oscillator being
driven, although coupled to others, in contrast to resonances
which are dependent on all the component oscillators of the
assembly, antiresonance has been useful for gaining infor-
mation of the individual components. Its technical applica-
tions in electrical circuits [15,22], structural analysis [23],
and mechanical engineering [24] are known. Antiresonance
has also been demonstrated in an excitable biological sys-
tem [25] and in a quantum system in the context of atom-
cavity interaction in cavity electrodynamics [26] in the recent
past.

The antiresonance in a coupled system of oscillators ap-
pears due to cancellation of the force acting via coupling to
the undriven oscillators by the external drive acting directly
on the single oscillator making the latter almost stationary.
The question is whether this destructive interference can be
optimized by the application of a high frequency field to each
of the component oscillators after subsuming the field effect in
the reduced dynamics as done in the treatment of vibrational
resonance. The object of this paper is to address this question.
In what follows, we consider a system of coupled bistable
oscillators in the presence of high frequency field interacting
with each of the components. The response of the system
to a weak low frequency field is examined as a function
of the strength of the high frequency field to show that the
response amplitude of the low frequency driven oscillator ex-
hibits a pronounced dip in between the vibrational resonance
maxima. The dip corresponds to vibrational antiresonance
which is accompanied by a large phase shift in its oscillation
phase. This counter-resonance is conspicuously distinct by
virtue of the following features: First, the signature of this
antiresonance is marked on the response strength (of high
frequency field) curve rather than on the response frequency
(of low frequency drive) spectrum. Second, this vibrational
antiresonance can occur only when the coupled system is
nonlinear and one of the oscillators undergoes a large phase
shift in its oscillation phase, in contrast to the conventional
antiresonance which occurs even in linear systems [19]. We
have explored the role of nonlinearity and high frequency
field in characterizing this phenomenon. Detailed numerical
simulations have been carried out to vindicate our theoretical
scheme.

The paper is organized as follows: In Sec. II, we introduce
a coupled nonlinear oscillator model for a theoretical analysis
of vibrational antiresonance in terms of the expressions for the
complex response functions for the oscillators. Section III is
devoted to the detailed numerical simulations of the model.
The paper is concluded in Sec. IV.

II. VIBRATIONAL ANTIRESONANCE IN COUPLED
NONLINEAR SYSTEMS: THEORETICAL

CONSIDERATIONS

A. Coupled nonlinear oscillator model

We begin with a model of linearly coupled nonlinear
oscillators as governed by the following equations:

ẍ1 + 2γ1ẋ1 − 2g1x2 + β1x3
1 − ω2

1x1 = 2F cos ωt + G cos �t

(2.1)
and

ẍ2 + 2γ2ẋ2 − 2g2x1 + β2x3
2 − ω2

2x2 = G cos �t, (2.2)

where γ1 and γ2 are the damping constants of the oscillators
characterized by their phase space coordinates (x1, ẋ1) and
(x2, ẋ2); g1 and g2 refer to the respective coupling coefficients.
ω1 and ω2 are the linear coefficients and β1 and β2 represent
the nonlinear coefficients, respectively. A low frequency sig-
nal having amplitude 2F and frequency ω is applied to the first
oscillator for measuring the response. Each of the oscillators
is perturbed by a high frequency field G cos �t . The frequency
� is much higher compared to other frequencies of the system
like ω1, ω2, ω. i.e., � � ω,ω1, ω2. In absence of the high
frequency field G cos �t , the coupled system of equations,
without or with nonlinearity, describes the conventional setup
for antiresonance [19].

As the system is perturbed by a rapidly varying field,
it is imperative that two time scales are associated with
the dynamics. Provided the choice of relaxation scales set
by γ1, γ2 and g1, g2 is appropriate and the rotating wave
approximation is applicable so that one may neglect the fast
counter-rotating terms over the time scale of interest, it is
convenient to decompose the variables x1(t ), x2(t ) into slow
parts X1(t, ωt ), X2(t, ωt ) and fast parts ψ1(t,�t ), ψ2(t,�t ),
respectively, as done in vibrational mechanics [12–18] as

x1(t ) = X1(t, ωt ) + ψ1(t,�t ) (2.3)
and

x2(t ) = X2(t, ωt ) + ψ2(t,�t ). (2.4)

Here, ψ1 and ψ2 are 2π periodic and therefore have zero mean
as

〈ψi〉 = 1

2π

∫ 2π

0
ψi(t, τ )dτ, (2.5)

with τ = �t and i = 1, 2 referring to the fast time scale.
Substituting Eqs. (2.3) and (2.4) in Eqs. (2.1) and (2.2) and
averaging over the fast time scale, we obtain the following
equations for the slow moving component of motion for the
first oscillator:

Ẍ1 + 2γ1Ẋ1 − 2g1X2 + β1X 3
1 + 3β1X 2

1 〈ψ1〉 − ω2
1cX1

= 2F cos ωt, (2.6)

and for the fast component

ψ̈1 + 2γ1ψ̇1 − 2g1ψ2 + 3β1X 2
1 (ψ1 − 〈ψ1〉)

+ 3β1X1
(
ψ2

1 − 〈ψ1〉2
) + β1ψ

3
1 − ω2

1ψ1 = G cos �t,

where ω2
1c = ω2

1 − 3β1
〈
ψ2

1

〉
. (2.7)
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Similarly, for the second oscillator, we have

Ẍ2 + 2γ2Ẋ2 − 2g2X1 + β2X 3
2 + 3β2X 2

2 〈ψ2〉 − ω2
2cX2 = 0,

(2.8)

and the fast component for the second oscillator takes the
following form:

ψ̈2 + 2γ2ψ̇2 − 2g2ψ1 + 3β2X 2
2 (ψ2 − 〈ψ2〉)

+ 3β2X2
(
ψ2

2 − 〈ψ2〉2) + β2ψ
3
2 − ω2

2ψ2 = G cos �t,

where ω2
2c = ω2

2 − 3β2
〈
ψ2

2

〉
. (2.9)

As ψ1 and ψ2 vary over a fast time scale, we assume further
ψ̈i, ψ̇i � ψi, ψ

2
i , ψ3

i , etc. The dynamics of ψi (i = 1, 2) is
then given by

ψ̈i + 2γiψ̇i = G cos �t . (2.10)

The solutions are

ψi = 1

2γi[1 + (�/2γi )2]

(
G

�
sin �t − G

2γi
cos �t

)
,

so that 〈ψi〉 = 0,

〈
ψ2

i

〉 = G2

2

[
1 + (2γi/�)2

[(2γi )2 + �2]2

]
,

and 〈ψ3
i 〉 = 0, for i = 1, 2. It is important to point out at this

juncture that in our approach based on vibrational resonance
literature, the high frequency perturbation adds up to the
linear frequency term. Its average effect can be taken into
consideration more effectively as in Ref. [27] for calculation
of response of the slowly operated devices or for calculation
of mobility [28].

Let us now consider the steady states Xis. These are Xis = 0
and Xis = ±

√
ω2

ic/βi , where the subscript s refers to the steady
state and i = 1, 2. Thus the position of the fixed point can
be controlled by G/� ratio. Linearization of the dynamics
around the nontrivial steady state can be performed by ex-
pressing the small perturbation Yi as Yi = (Xi − Xis). This
yields

Ÿ1 + 2γ1Ẏ1 − 2g1Y2 + �2
1Y1 + (

β1X 3
1s − 2g1X2s − ω2

1cX1s
)

= 2F cos ωt, (2.11)

and

Ÿ2 + 2γ2Ẏ2 − 2g2Y1 + �2
2Y2

+ (
β2X 3

2s − 2g2X1s − ω2
2cX2s

) = 0, (2.12)

where

�2
1 = (

3β1X 2
1s − ω2

1c

) = 2ω2
1c

and

�2
2 = (

3β2X 2
2s − ω2

2c

) = 2ω2
2c.

�1 and �2 are the effective strong field-dressed linear fre-
quencies for the two oscillators. The contribution due to high
frequency field has thus been incorporated in the resultant
dynamics. In what follows we explore the response of this
system to the low frequency field, 2F cos ωt .

B. Vibrational antiresonance: Expressions for response
amplitude and phase

We first use the following transformations to change the
real variables (Y1, Ẏ1) and (Y2, Ẏ2) to the complex variables α1

and α2, such that

α1 = −�1Y1 + iẎ1 (2.13)

and

α2 = −�2Y2 + iẎ2. (2.14)

Equations (2.11) and (2.12) can then be written as two first
order equations as follows:

α̇1 = i�1α1 − γ1(α1 − α∗
1 ) − i(α2 + α∗

2 )g1/�2

+ iF (eiwt + e−iwt ) − iM1, (2.15)

and

α̇2 = i�2α2 − γ2(α2 − α∗
2 ) − i(α1 + α∗

1 )g2/�1 − iM2,

(2.16)

where

M1 = (
β1X 3

1s − 2g1X2s − ω2
1cX1s

)
and

M2 = (
β2X 3

2s − 2g2X1s − ω2
2cX2s

)
.

Transforming these equations to a frame which is rotating at
the driving frequency αi → αieiωt , we take the resort of rotat-
ing wave approximation and neglect the fast counter-rotating
terms which are proportional to e2iωt and vanish on averaging
over the time scale of interest as (ω + �i ) � (ω − �i ). This
yields

α̇1 = i(
1 + iγ1)α1 + ig1α2/�2 + iF, (2.17)

and

α̇2 = i(
2 + iγ2)α2 + ig2α1/�1, (2.18)

where 
i refer to detunings, 
i = (ω − �i ) between the slow
drive and the effective frequencies. In the absence of damping,
driving, or coupling, the solutions to these equations can be
taken as

αi(t ) = αi(0)ei
it .

This represents a rotation in the complex αi plane with the an-
gular frequency 
i. The steady-state solutions for Eqs. (2.17)
and (2.18) can be found by setting

α̇1 = α̇2 = 0.

These conditions yield the complex response functions for the
oscillators as

α1steady = −F (
2 + iγ2)[
(
1 + iγ1)(
2 + iγ2) − g1g2

�1�2

] (2.19)

and

α2steady = −F (g2/�1)[
(
1 + iγ1)(
2 + iγ2) − g1g2

�1�2

] . (2.20)

Equations (2.19) and (2.20) are the theoretical expressions for
the steady state response functions of the two oscillators and
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FIG. 1. The response amplitude for the oscillators (first oscilla-
tor: solid line; second oscillator: dotted line) calculated theoretically
[Eqs. (2.19) and (2.20)] as a function of G, the strength of rapidly
varying field for the set of parameters � = 10.0, γ1 = γ2 = 0.5,
g1 = g2 = 0.05, β1 = β2 = 0.1, displaying antiresonance minimum
in between two vibrational maxima for the first oscillator. The inset
depicts the variation for a wider range of G values (units arbitrary).

constitute the main results of this section. In the following,
we discuss some of their notable features, in terms of their
amplitude and phase.

(i) A closer look at the detunings 
1 and 
2 clearly
reveals that because of the dependence of 
i on the
strength of the rapidly varying field G (
i = ω − √

2{ω2
i −

3βiG2

2 [ 1+(2γi/�)2

[(2γi )2+�2]2 ]}1/2) both the oscillators display resonances
in the response amplitudes when G is varied. These can be
identified as the vibrational resonances as shown in Fig. 1.
In addition, the weakly driven oscillator denoted by the solid
curve shows a pronounced dip for a Gmin in between the two
vibrational resonance maxima. The dip corresponds to an-
tiresonance arising out of destructive interference of the weak
driving force acting on the first oscillator and its interaction
with the second one. The second oscillator, on the other hand,
being undriven by weak force, remains in an almost quiescent
state in this region as evident from the dotted curve in Fig. 1.
The inset in Fig. 1 depicts the variation for a wider range of G
values. Because of the dependence of the response amplitude
on the strength of the high frequency field (G) the pronounced
minimum in the response curve may be termed as “vibra-
tional antiresonance” in analogy to vibrational resonance. The
caveat, however, is that this antiresonance can be realized only
in coupled nonlinear systems.

(ii) A conspicuous feature of antiresonance is a large phase
shift. In Fig. 2, we exhibit the variation of phase of the
two oscillators by solid (first oscillator) and dotted (second
oscillator) curves as a function of the strength of the strong
field (G) to demonstrate this phase shift. The inset depicts the
variation of phase for a wider range of G values. As there
is no analog of this phase shift in vibrational resonance, we
emphasize that this variation of phase with the strength of high
frequency field is a hallmark of this vibrational antiresonance.
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FIG. 2. The phase of the response function for the oscillators
(first oscillator: solid line; second oscillator: dotted line) calculated
theoretically [Eqs. (2.19) and (2.20)] as a function of G, the strength
of rapidly varying field for the set of parameters mentioned in Fig. 1,
displaying a negative phase shift for the first oscillator. The inset
shows the variation of phase for a wider range of G values (units
arbitrary).

(iii) Finally, we mention two distinctive features of the
antiresonance as reflected in the response function: First, it is
evident that vibrational resonances and antiresonance appear
alternately in the response amplitude profile of the weakly
driven oscillator, while the undriven oscillator displays no
antiresonance. Second, as in the case of conventional antires-
onance, the vibrational antiresonance observed for the system
is found to be independent of the properties of the driven os-
cillator, i.e., it remains insensitive to the variation of resonance
frequency or damping coefficient of the driven oscillator.

III. NUMERICAL SIMULATIONS

In order to confirm our theoretical observations based on
perturbation analysis, we have carried out numerical simu-
lations of the governing equations for the coupled nonlinear
systems, Eqs. (2.1) and (2.2). For the present investigation we
fix the parameter set as follows: ω1 = ω2 = 1.1, γ1 = γ2 =
0.5, β1 = β2 = 0.1, g1 = g2 = 0.05, ω = 1.4, and F = 1.0.
The strength G and frequency � of the high frequency field
G cos �t are used as the control parameters for the study of
of the variation of the linear response amplitude and phase.
The linear response of the ith oscillator of the coupled system
is evaluated as usual, by numerically estimating the sine and
cosine components B(i)

s (ω) and B(i)
c (ω), respectively, of the

corresponding output signal xi(t ) as follows:

B(i)
s (ω) = 2

πT

∫ nT

0
xi(t ) sin ωt, (3.1)

B(i)
c (ω) = 2

πT

∫ nT

0
xi(t ) cos ωt, (3.2)

where T = 2π/ω with integer n, ω being the frequency of
the weak field 2F cos ωt . Solving numerically Eqs. (2.1) and
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FIG. 3. The response amplitude for the oscillators (first oscilla-
tor: solid line; second oscillator: dotted line) calculated numerically
using Eq. (3.3) as a function of G, the strength of rapidly varying
field for the set of parameters mentioned in Fig. 1, displaying
antiresonance minimum in between two vibrational maxima for the
first oscillator (units arbitrary).

(2.2) for x1(t ) and x2(t ) followed by evaluation of the sine
and cosine components for the two oscillators, one obtains the
amplitude of the response function

α(i)(ω) =
√[

B(i)
s (ω)

]2 + [
B(i)

c (ω)
]2

/F, (3.3)

and the phase shift

θ (i)(ω) = tan−1
[
B(i)

s (ω)/B(i)
c (ω)

]
, (3.4)

for the response function of the ith oscillator. In Fig. 3, we
depict the variation of the response function for the weakly
driven and for the undriven oscillators by continuous and dot-
ted curves, respectively, with the strength of high frequency
force G for the aforesaid parameter values. It is evident that
the vibrational antiresonance appears in between the two max-
ima corresponding to vibrational resonances for an optimal
value of G for the driven oscillator. The antiresonance dip is
absent for the undriven oscillator. We observe a qualitative
agreement between the theoretical and numerical values of
Gmin for the position of antiresonance dip. The variation of os-
cillation phase of the driven and undriven oscillators with G is
shown in Fig. 4. The large phase shift calculated numerically
clearly corresponds qualitatively to that for the theoretically
calculated value. However, there are some disagreements
regarding the shape of the profiles. To be precise, theoretical
profiles for the amplitude (Fig. 1) and the phase (Fig. 2)
appear sharper compared to the corresponding numerically
simulated profiles (Figs. 3 and 4). This may be understood as
follows. Since the numerical simulation of the dynamics of the
coupled nonlinear systems involves multiple frequencies, the
required destructive interference between the coupling and
the weak forcing is not complete because of these frequen-
cies resulting in broadening of the profile of the response
function. Our theoretical scheme on the other hand relies
on two distinct time scales and an effective linearized slow
dynamics around the steady state based on Eqs. (2.12) and
(2.13) after elimination of fast variables. The width of the
antiresonance dip therefore appears to be narrower and the
corresponding variation of phase is sharper in the theoretical

FIG. 4. The phase of the response function for the oscillators
(first oscillator: solid line; second oscillator: dotted line) calculated
numerically Eq. (3.4) as a function of G, the strength of rapidly
varying field for the set of parameters mentioned in Fig. 1, displaying
a negative phase shift for the first oscillator (units arbitrary).

profiles as compared to those for the numerical ones. Further-
more, a little step adjacent to Gmin appears in the numerical
simulation in Fig. 3. This is absent in the corresponding
analytical profile for the linearized version. Our numerical
experience reveals that this step almost vanishes when the
nonlinear coefficient β is raised to a high value, say to 0.2
for the present parameter set. A possible reason may be that
for relatively high β, the nonlinear oscillators destructively
interfere with the high frequency field in a more effective way,
giving rise to a smooth profile. The discrepancies notwith-
standing, the observation of vibrational antiresonance from
theoretical calculations and numerical simulations appears
as a phenomenon that reflects the constructive role of high
frequency field. Finally, we mention that we have assumed
equal coupling coefficients g1 = g2. A numerical scrutiny
reveals that a disparity in the values of coupling coefficients
does not affect the position of Gmin; only a little difference in
the relative amplitude of the vibrational resonance maxima is
observed.
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FIG. 5. The variation of antiresonance minimum for the first
oscillator, calculated by numerical simulations (×) as a function of
�, the frequency of the rapidly varying field for the parameter set
γ1 = γ2 = 0.5, g1 = g2 = 0.05, β1 = β2 = 0.1. The continuous line
represents the theoretical curve (units arbitrary).
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FIG. 6. The variation of antiresonance minimum for the first
oscillator calculated by numerical simulations (×) as a function
of β (β1 = β2 = β ), the nonlinear coefficient for the parameter
set: γ1 = γ2 = 0.5, g1 = g2 = 0.05, � = 10.0. The continuous line
represents the theoretical curve (units arbitrary).

Although the conventional antiresonance remains insen-
sitive to the variation of the driven system parameters like
damping coefficient or response frequency, the position of
vibrational antiresonance minimum depends on the high
frequency field G cos �t . This is because the effective linear
frequency �i depends on G/� ratio. In Fig. 5, we depict the
variation of Gmin as a function of the high frequency � as
calculated numerically (denoted by crosses ×). The numerical
simulation is based on estimation of Gmin from the variation
of the amplitude of the response function α(1)(ω) according
to Eq. (3.3) as a function of G, for a given value of �. The
procedure is repeated for several values of � while all other
parameters are kept fixed. The continuous curve represents the
corresponding theoretical variation of Gmin. The agreement is
found to be excellent. Finally, we note that a crucial element
in the phenomenon of vibrational antiresonance concerns
nonlinearity generating multiple frequencies in the dynamics.
The high frequency field effectively interferes with them
so that the effective coupled dynamics follows a linearized
dynamics around a steady state on a slow time scale. It is
therefore likely that the nonlinearity of the dynamics would
affect antiresonance. In Fig. 6, we illustrate the numerical
variation of Gmin as a function of the nonlinear parameter
β(=β1 = β2 as denoted by crosses) and compared with the
theoretical curve (denoted by a continuous line) for the same
set of parameters. It is evident that the antiresonance dip
appears for lower values of strength of the high frequency field
for higher nonlinearity. The theoretical curve is found to be in
good agreement with numerics.

IV. CONCLUSION

In this paper we have demonstrated a high frequency
field-induced counter-resonance phenomenon corresponding
to vibrational resonance. In contrast to conventional antireso-
nance as observed in a single nonlinear system or in coupled
linear systems, this vibrational antiresonance accompanied
by a large phase shift occurs only in a system of coupled
nonlinear oscillators each of which, in addition, is driven
by a high frequency field and the response of the weak-
field-driven oscillator is optimized for an appropriate choice
of amplitude of the high frequency field. While vibrational
resonance depends on the properties of all the component
oscillators of the coupled system as well as the coupling
strength, vibrational antiresonance depends solely on the
weakly driven oscillator. The position of this vibrational an-
tiresonance dip is dependent on the high frequency of the
strong field, similar to that for vibrational resonance. In real
systems antiresonance is traditionally used for characteriza-
tion of individual components in multicomponent systems.
Our analysis of antiresonance in a minimal model of a pair
of coupled bistable oscillators, based on the equations of
slow motion, supported by direct numerical simulations can
be extended to an array of nonlinear bistable, multistable, or
excitable systems, to capture the essential characteristics of
individual components. Two distinct dynamical mechanisms
are apparent. First, the rapidly varying field interferes with
various high frequencies due to the inherent nonlinearity of
the system on a fast time scale. This leads us to the effective
dynamics on a slow time scale. On the other hand, the low
frequency drive acting on the oscillator destructively inter-
feres with the coupling to the other oscillator on a slow time
scale. This results in antiresonance. Keeping in view the two
underlying time scales in the dynamics, the system parameters
can be suitably manipulated to enhance, suppress, or modulate
the antiresonance dip by taming the strong field. Because of
the simplicity of the model, we believe that this vibrational
antiresonance in coupled nonlinear systems is amenable to
experimental verification using suitably designed electronic
circuits.
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