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Synchronization of oscillators via active media
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In this paper, we study pairs of oscillators that are indirectly coupled via active (excitable) cells. We introduce a
scalar phase model for coupled oscillators and excitable cells. We first show that one excitable and one oscillatory
cell will exhibit phase locking at a variety of m : n patterns. We next introduce a second oscillatory cell and show
that the only attractor is synchrony between the oscillators. We will also study the robustness to heterogeneity
when the excitable cell fires or is quiescent. We next examine the dynamics when the oscillators are coupled via
two excitable cells. In this case, the dynamics are very complicated with many forms of bistability and, in some
cases, chaotic behavior. We also apply weak-coupling analysis to this case and explain some of the degeneracies
observed in the bifurcation diagram. Further, we look at pairs of oscillators coupled via long chains of excitable
cells and show that small differences in the frequency of the oscillators makes their locking more robust. Finally,
we demonstrate many of the same phenomena seen in the phase model for a gap-junction coupled system of
Morris-Lecar neurons.
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I. INTRODUCTION

How coupled oscillators synchronize is an important and
much-studied phenomenon. In many analyses of coupled
oscillators, each element is a limit-cycle oscillator and tech-
niques such as weak coupling are applied. However, many
systems, such as neurons, have conditional oscillators; that is,
they oscillate only when given enough drive. This is the idea
of an excitable system that has a unique globally attracting
equilibrium point, but with a sufficiently large perturbation, it
can oscillate once before returning to the stable equilibrium.
What happens when there are oscillators coupled indirectly
via excitable systems remains an open question. For example,
in the early stages of aggregation of cellular slime molds, each
cell is excitable, but some of the cells become oscillatory and
the result is a global oscillatory system that induces the organ-
ism to ultimately organize into a slug (see Ref. [1]). Within
the smooth muscle of the intestine are a small number of
spontaneously active cells (interstitial cells of Cajal) that are
coupled and organized to form waves through the intervening
nonoscillatory cells (see Refs. [2,3]). Interactions between os-
cillatory and nonoscillatory glial cells are thought to underlie
synchronization for circadian rhythms (see Ref. [4]).

This problem has been studied in the context of global
all-to-all coupling where each element is connected to all
the other elements. For example, in Ref. [5] they couple two
populations of Stuart-Landau equations where one of the pop-
ulations has a stable equilibrium and the other is oscillatory
and analyze the ensemble dynamics as the relative numbers of
active and inactive elements varies. Similarly, in Ref. [6] the
authors analyze sinusoidally coupled mixtures of oscillators
and excitable cells where each cell is represented as a scalar
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phase model. Like Ref. [7], they study the onset of collective
synchrony as the ratio of oscillators changes. Others have
used the so-called Ott-Antonsen reduction to study collective
dynamics of mixtures of oscillatory and excitable elements
(see Refs. [8–10]).

The previous work on this problem relies on the fact that
all elements are globally coupled to each other. On the other
hand, the biological examples we have described are much
more locally coupled. This is the scenario that we focus
on in this paper. Synchrony between two neurons coupled
via passive dendrites has been studied in Ref. [11]. Others
have broadened this to include “quasiactive” dendrites, though
it is still a linear theory (see Refs. [12,13]). As an initial
attempt to understand interactions between oscillators and ex-
citable systems, we are interested in describing the dynamics
between two oscillatory cells distributed in a simple chain
with intervening excitable cells between them. We will use a
simple one-dimensional model for both the excitable and the
oscillatory cells and then show that similar phenomena hold
in more realistic neural models.

We first introduce the class of models that will be our
focus and then analyze small chains where there are one
or two excitable cells between the two oscillators. We will
vary coupling strengths, degree of excitability, and hetero-
geneities in the oscillators. In the case where the effects of
the oscillators on the excitable cells are sufficiently small
that they cannot induce the excitable cells to fire, we apply
weak-coupling analysis and show that the results match the
behavior of the full system. We demonstrate a variety of
different locking regimes as well as complex chaotic behavior.
We also briefly look at longer chains of excitable cells and
show that small differences in the oscillators make locking
between them much more likely when the excitable chains are
long. We finally show that similar dynamics in a gap-junction
coupled biophysical model and conclude with a discussion
about future directions.
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II. METHODS

There are two broad types of excitability [14]: Class II
which occurs for a system near a subcritical Hopf bifurcation
and Class I, which occurs when there is a saddle-node infinite-
cycle (SNIC) bifurcation. The latter type of excitability lends
itself to simple one-dimensional dynamics on a circle [15,16],
thus this will be the type of excitability we will consider in the
paper. The simplest version of this excitability takes the form

dy

dt
= 1 − b cos(y) =: f (y), (1)

where b � 0 is a parameter and y ∈ [0, 2π ) lies on the circle.
When b > 1, then (1) has two equilibria y± = ± arccos(1/b),
with y− (“rest state”) asymptotically stable and y+ (“thresh-
old”) unstable. Any initial data y(0) > y+ will traverse the
circle before returning to rest. As b decreases to bSN = 1, the
two roots merge and then for b < 1, dy/dt > 0 always and
there is a limit cycle. Henceforth, we will model the excitable
cells by (1) with b > 1. Oscillators are modeled as the simple
phase dynamics,

dx

dt
= ω,

where ω > 0 is the natural frequency. As with the excitable
system, x ∈ [0, 2π ) lies on the circle. In general, we will study
small chains of excitable systems driven by oscillators at each
end and then analyze the locking patterns

dx

dt
= ω + d + coe sin(y1 − x)

dy1

dt
= f (y1) + ceo sin(x − y1) + cee sin(y2 − y1)

dy j

dt
= f (y j ) + cee[sin(y j−1 − y j ) + sin(y j+1 − y j )]

dyN

dt
= f (yN ) + ceo sin(z − yN ) + cee sin(yN−1 − yN )

dz

dt
= ω − d + coe sin(yN − z), (2)

where j = 2, . . . , N − 1. Here x, z are oscillators (often re-
ferred to as O cells) with uncoupled frequencies of ω ± d
and the variables y j are excitable (referred to as E cells) with
b > 1. The coupling strength between cells are positive, that
is ceo, coe, cee > 0. We allow for some heterogeneity in the
oscillators via the parameter d , also positive. While this may
seem as a somewhat restricted parametrization for a model,
we note the normal form for a SNIC bifurcation is

dx

dt
= 1 − cos(x) + [1 + cos(x)]p

= (1 + p)

[
1 − 1 − p

1 + p
cos(x)

]
,

which, after rescaling time, is identical to our model dynam-
ics. For the biophysical simulations, we use the Morris-Lecar
model, where each cell obeys

V ′ = I − 4m∞(V )(V − 120) − 8w(V + 84)

− 2(V + 60) + Icoup

w′ = 0.3[w∞(V ) − w]/τw(V )

m∞(V ) = 1
2 {1 + tanh[(V + 1.2)/18]}

w∞(V ) = 1
2 {1 + tanh[(V − 12)/17.4]}

τw(V ) = sech[(V − 12)/34.8] (3)

with I = 43 for the oscillators and I = 39 for the excitable
cells. Coupling currents, Icoup have the form g(V̂ − V ), where
V̂ is the voltage of the cell to which V is coupled. The
parameter g varies and is provided in the figure captions.

III. RESULTS

Here we outline the results for various numbers of excitable
units. Henceforth, we say that an excitable cell fires if it
traverses the circle passing through y = π .

We first explore one OE pair to see the effects of the
oscillator on an excitable unit and then look at what happens
with chains of excitable cells.

A. OE pair

We start with the simple system

ẋ = ω + coe sin(y − x)

ẏ = f (y) + ceo sin(x − y), (4)

where we set b = 1.1, ω = 1 and vary the coupling parame-
ters coe and ceo. This is a system on a two-dimensional torus
and as long as coe < 1, there are no fixed points. Since this
is a flow on a torus and ẋ > 0, we can make a Poincare
section along an arbitrary value x = C which will lead to a
one-dimensional map. As the dynamics are in the plane, the
map is monotone and invertible, thus, there is a well defined
rotation number

ρ = lim
t→∞

y(t )

x(t )
,

which is a continuous function of the parameters. When ceo is
sufficiently small (e.g., ceo < (b − 1) is sufficient), then y(t )
will just oscillate around y−, the stable rest state, and the
rotation number is 0.

Figure 1 shows the behavior of (4) as the coupling strengths
vary. If ceo is small enough, then the excitatory cell will never
fire, while for ceo large enough, it will always fire in a 1:1
manner with the oscillator. As coe goes to 1 (the uncoupled
frequency of the oscillator), the oscillator slows its frequency
to 0 and in this case, x becomes nearly constant. With x slowly
varying, the equation for y can be treated adiabatically so that
ceo sin(x − y) is a constant lying between [−ceo, ceo]. Thus,
when ceo exceeds b − 1, ẏ will be positive and the excitable
system will fire. This explains why all the curves in the figure
converge at ceo = b − 1 when coe = 1. The inset in the figure
shows the rotation number as a function of ceo at different
values of coe. Higher values of coe slow down the oscillator so
that the critical coupling threshold approaches the minimum
value of b − 1. At the other extreme, when coe = 0, then the
rotation number has no open sets of parameters where there
are locking regimes other than 0:1 and 1:1.

We note that if coe � 1, then it is possible to find equilibria
in Eq. (4). Multiplying the ẏ equation by coe and the ẋ equation
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FIG. 1. Dynamics of Eq. (4) as the connectivity varies. Below
the red (bottom) curve, the excitable cell does not fire, while above
the blue (top) curve, it fires in a 1:1 manner with the oscillator. In
between, rational and irrational firing patterns occur; the 1:2 locking
regime is illustrated in between the two black (middle) lines. In fact,
all n:m lockings will occur for n � m; however, the regions may be
very small. Inset shows the rotation number for different values of
coe as a function of ceo. In the picture, coe = {0.1, 0.3, 0.5, 0.7} from
left to right.

by ceo and adding results in

ceoω + coe = coeb cos(y).

Thus, fixed points ȳ exist as long as coe > ceoω/(b − 1).
Furthermore, we also must have that coe � ω, since otherwise
ẋ > 0. Thus, there is a critical value of ceo = b − 1 where
there is a saddle-node bifurcation with coe = ω. In general, the
saddle-node bifurcation is ceo = (b − 1)coe/ω for coe > ω.

We close this section by noting that making b larger shifts the
curves in Fig. 1 toward higher values of ceo as it takes stronger
coupling to induce the excitable cell to fire. Decreasing the
uncoupled frequency of the oscillator from ω = 1 is similar to
increasing the coupling coe as both slow the oscillator down
giving the excitable system a better chance at firing.

B. OEO chain

The simplest way that two oscillators can interact via an
excitable cell is given by

ẋ = ω + d + coe sin(y1 − x)

ẏ1 = f (y1) + ceo[sin(x − y1) + sin(z − y1)]

ż = ω − d + coe sin(y1 − z). (5)

We set b = 1.1, ω = 1, d = 0 and varied coe, ceo to get a
big picture of the dynamics. Figure 2 shows boundaries for
these phase-locked solutions. For most values of the coupling
parameters, the dominant behaviors are 1:1 and 0:1 where the
E cells either fire on every cycle or do not fire at all. Within
a narrow sector of parameters, we find the 1:2 phase-locking,
where the E cell fires once for every two times the oscillators
fire, just like the OE system. We also find 1:3 locking but
only in a narrow band of (coe, ceo) values; note this existed
in the OE system too but it was also too small to show. The
boundaries of the OEO system are not very much different

FIG. 2. Dynamics of Eq. (5) as the connectivity varies. Again,
below the red (bottom) curve, the excitable cell does not fire, and
above the blue (top) curve, it fires in a 1:1 manner with the oscillator.
In between the black (middle) lines is the 1:2 locking.

from the OE system, although it takes smaller values of ceo

for the E cell to fire due to its receiving two oscillatory inputs.
We note that in all choices of (coe, ceo) there was always

synchrony between the oscillators x and z. Thus, asymptot-
ically, with x(t ) = z(t ), Eq. (5) is identical to (4) with ceo

doubled.

1. Heterogeneity

In Fig. 3, we explore how the change in oscillator fre-
quency affects existence of the phase-locked solutions. Rather
than vary coe or ceo, we have chosen to covary them along the
lines shown in Fig. 3(a) as this guarantees that the locking
pattern is constant. This also allows us to explore the efficacy
of the E cell in coupling the two O cells. From Fig. 3(b),
when the E cell fires, it has a much greater effect on the O
cells and thus allows them to lock over a much wider range
of heterogeneity. We remark that there is a “sweet” spot for
coupling strength along this line that maximizes the allowable
heterogeneity. Since coe, ceo varies along a straight line, this
point is not where the total coupling, ceo + coe, is maximal;
that occurs at either p = 0 or p = 1.

C. OEEO chain

With two E cells, we obtain the equations

ẋ = ω + d + coe sin(y1 − x)

ẏ1 = f (y1) + cee sin(y2 − y1) + ceo sin(x − y1)

ẏ2 = f (y2) + cee sin(y1 − y2) + ceo sin(z − y2)

ż = ω − d + coe sin(y2 − z). (6)

There is now one more parameter, cee, which governs the
strength of connectivity between the two E cells and thus
is important in communicating between the two O cells.
As above, we will set ω = 1 and restrict all the coupling
parameters to lie in (0,1).

The addition of another E cell makes the dynamics much
more complex with multiple stable attractors. If d = 0, then
x = z and y1 = y2 (the synchronous solution) is invariant
under the dynamics of Eq. (6) and, in this case, it reduces to
the dynamics or Eq. (4). However, if this synchrony manifold
is unstable, then we can expect to see more complicated
behavior.
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FIG. 3. The top figure shows the homotopy lines for the OEO
chain. These were computed as (coe, ceo) = (k1, c1) + p(dk, dc ) for
0 � p � 1. Light colored dots on the left of each line correspond
to p = 0 and dark colored dots on the right of each line are when
p = 1. For the 0:1-s homotopy, the bottom line goes from (coe, ceo) =
(0.1, 0.15) to (0.95, 0.05). The line between the black (1:2) goes from
(0.1, 0.22) to (0.95, 0.06). Last, the line in the 1:1 region on the top
goes from (0.1, 0.3) to (0.95, 0.075). In the bottom picture, the curves
correspond to the boundary when the specified phase-locked solution
switches from stable to unstable as d increases. It is clear that 1:1 is
more robust than the other solutions and as long as the E cell fires,
the locked solution will exist for a wider range of d .

Figure 4 shows a two-parameter diagram of some of the
behavior for cee = 0.5 in the (coe, ceo) plane. The simplest
types of dynamics are n:m-locking regimes where the E cells
fire n cycles for every m cycles of the O cells. For the
synchronous dynamics shown in this figure, 0:1,1:1,1:2 and
1:3 locking of the E cells to the O cells all appear to be
attractors of this system. The lines in the figure split the
(coe, ceo) plane into regions of stability. Above the blue line,
there is 1:1 synchronous behavior; between the black lines,
there is 1:2 synchronous behavior, between the green lines we
have 1:3 synchrony, and below the cyan curve, 0:1 synchrony.

In addition to the synchronous behavior, we also find other
stable behavior, where the E cells do not fire. There appear
to be three distinct types of this behavior: synchrony (0:1s),
antiphase (0:1a), and “mixed” (0:1m). This is quite different
than the OEO system where we were unable to find any stable
behavior when x and z were not synchronized. Antiphase
exists and is stable throughout the region bounded by the red
curve and the magenta curve. Synchrony without the E cells
firing is stable below the cyan curve. Between the cyan and

FIG. 4. Regions of different phase locking for the OEEO model
when cee = 0.5 as a function of the parameters ceo and coe. Ev-
erything above the blue curve is synchrony with y1,2 firing in 1:1
with x, z. Between the red curve and the magenta curve, x, z fire
in antiphase and y1,2 do not fire. Within the black curves, x, z are
synchronous and y1,2 fire in a 1:2 manner. Within the green curves,
x, z are synchronous and y1,2 fire in a 1:3 manner. Between magenta
and cyan, x, z have a mixed phase difference and y1,2 do not fire.
Finally, below the cyan curve, x, z are synchronous and y1,2 do not
fire. In other regions such as coe = 0.11, ceo = 0.49, we have found
apparent chaotic behavior.

the magenta curve, we find the so-called mixed state. Figure 5
shows these three types of behavior. We can best understand
the mixed state as follows. Fix coe at, say coe = 0.78 and ceo

at a value below the cyan curve where there is stable 0:1 syn-
chrony. Increasing ceo (a vertical line in Fig. 4 at coe = 0.78)
results in a pitchfork or symmetry-breaking bifurcation where
a stable branch of nonsynchronous asymmetric orbits arises

FIG. 5. The three types of subthreshold dynamics for y1,2 with
coe = 0.78, cee = 0.5. In (a), ceo = 0.1, we have 0:1 synchrony. In
(b), ceo = 0.13, we have the “mixed” state which is neither syn-
chronous nor antiphase. In (c) with ceo = 0.15, we have the antiphase
state. Last, (d) shows the pitchfork (symmetry-breaking) bifurcation
diagram showing the emergence of the mixed state. The top line in
the synchrony branch and as ceo increases, the line changes from
stable periodic orbits (green) to unstable periodic orbits (blue). While
on the bottom line, the antiphase branch changes from unstable
periodic orbits to stable periodic orbits as ceo increases.
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FIG. 6. Putative chaos in Eq. (6) when coe = 0.11, ceo =
0.49, cee = 0.5. Panel (a) shows phase space trajectories of z and
y2 vs x. Panel (b) is a Poincare section through x = 1, the thin dotted
green line in panel (a), showing y2 vs z.

with a phase difference between synchrony and antiphase.
This is shown in Fig. 5(d). The magenta and cyan curves
in Fig 4 depict these pitchfork bifurcations. (A zoomed in
version near coe = 1 is shown in Fig. 7.)

Other regions not accounted for include the region below
the 1:1 synchrony line and above antiphase line and the
top 1:2 line. This large space does not have any apparent
phase-locked pattern and appears to be chaos. For example,
when cee = 0.5, coe = 0.11, ceo = 0.49, Fig. 6 shows z and
y2 vs x in Fig. 6(a) and a Poincare section through x = 1 in
Fig. 6(b). We have crudely estimated the Liapunov exponent
to be about 0.04. If we restrict Eq. (6) to the synchrony
manifold, then we find quasiperiodic behavior for y1(t ). Our
general observation is that stable 1 : m locking for Eq. (4)
leads to stable synchrony for Eq. (6).

1. Bistability

The OEEO chain is the smallest chain we have found that
exhibits regions of bistability, that is, the long term dynamics
depend on the initial data. Figure 7 shows a zoomed in version
of Fig. 4. Regions labeled by Greek letters indicate regions of
bistability. Since 1:1 synchrony is stable above the blue line

FIG. 7. Zoomed in picture of Fig. 4 showing different regions
of bistability. In the region labeled δ, there is both 1:1 synchrony and
0:1 mixed, while in region α, 1:1 synchrony is bistable with antiphase
(0:1-a). Regions β and γ , antiphase behavior coexists with 1:2 and
1:3 locking, respectively, and regions ν and ω, mixed subthreshold
behavior coexists with 1:2 and 1:3 locking, respectively.

FIG. 8. In these pictures, we show where we take the homotopy
for the nonbistable regions. For the 1:1 locking, our parameters go
from (coe, ceo) = (0.1, 0.6) to (0.95, 0.2) and for 0:1-a locking, our
parameters go from (0.1, 0.35) to (0.7, 0.15). The second picture
shows our homotopies for the 1:2 and 1:3 regions. For these, we
have our parameters going from (0.1, 0.44) to (0.8, 0.174) and (0.2,
0.36) to (0.71, 0.19), respectively. Here we show how large the
heterogeneity can be in each of the nonbistable regions. The dots
on the bottom of this figure correspond to the dots labeling the left
endpoint of the lines in (a) and (b) and the dots on the top of this
figure correspond to the dots labeling the right endpoint of those
lined. As our homotopy parameter p increases, we increase coe and
decrease ceo according to the orange diagonal lines in (a) and (b). We
can see that 1:1 coupling is still the most robust and 0:1-a is the least
robust despite it having a large stability region.

and 0:1 antiphase (0:1-a) is stable below the red curve and
above the magenta curve, we see that in the region labeled
α, there is bistability between these two states. Similarly, in
region β (respectively, γ ), both 0:1-a and 1:2 (respectively,
1:3) are stable. In region ν (respectively, ω), the 0:1 mixed
(0:1-m) and 1:2 (respectively, 1:3) are stable.

2. Heterogeneity

We can apply similar numerical analyses to the OEEO
chain as with the OEO chain and compare the existence of
locked solutions as the oscillator frequencies vary from ω in
(6). However, unlike the OEO chain, we can also investigate
bistable regions as well; this will give us a more direct
comparison since in these regions, the parameters can remain
the same. First, we look at the four long-term dynamics
separately. Figures 8(a) and 8(b) shows the four homotopies
we take for each of the four main regions: 1:1, 1:2, 1:3, and
0:1-a. Using these, Fig. 8(c) shows the frequency behavior of
the four homotopies. It is clear that the 1:1 synchrony region
is the most robust based on changes in the frequency. What
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is interesting is although the 1:2 and 1:3 regions are much
smaller than the 0:1-a region, there is more tolerance with
1:2 and 1:3 as the heterogeneity parameter increases. This
could suggest that the excitable cells firing plays a key role in
maintaining locking as d increases. This is similar to what we
saw in the OEO system with Fig. 3. As with the OEO system,
there is a “sweet” spot where the system is most tolerant of
frequency differences.

We can also look at the regions of bistability. There are
two regions we looked into: when 0:1-a and 1:2 were both
stable and when 0:1-a and 1:1 were both stable. Besides the
β region in Fig. 7, 1:2 and 0:1-a are also bistable for coe

smaller [see Fig. 4 or 8(a)]. Furthermore, these regions are
the same region, one can see in Fig. 4 that the 0:1-a and 1:2
bistable region does not break as coe increases. So we did
two homotopies for this long skinny region: one line for the
top half and one line for the bottom half and we made sure
the two lines connected. Figure 9(a) shows what happens.
As the homotopy moves towards the very narrow region in the
middle (near coe = 0.4), the 1:2 becomes less tolerant with
d and the 0:1-a region becomes more tolerant. Then, as the
homotopy enters the β region, 1:2 locking allows a bigger
range of d before becoming unstable. The other region of
bistability we looked into was the α region in Fig. 7. We can
see initially the 1:1 synchrony and more tolerable but as we
move down into what was the δ region, it is the 0:1-a dynamics
that are more robust as d increases [see Fig. 9(b)].

D. Weak coupling via E cells

When ceo is small enough, the E cells do not fire and
there can be several types of dynamics including synchrony,
antiphase, and a nonsynchronous locked state (see Fig. 4 near
coe = 0.57). Based on this figure, it appears that in the limit
as ceo → 0, there is an abrupt transition from antiphase to
synchrony as coe crosses a critical value. We will now address
this point using weak-coupling analysis. This method extends
to arbitrary length chains but for simplicity, we just perform
the analysis for the OEEO chain. Let ceo = ε where 0 < ε �
1 is a small parameter and so we have

x′ = 1 + coe sin(y1 − x)

z′ = 1 + coe sin(y2 − z)

y′
1 = f (y1) + ε sin(x − y1) + cee sin(y2 − y1)

y′
2 = f (y2) + ε sin(z − y2) + cee sin(y1 − y2),

and as a reminder, f (q) = 1 − b cos(q). When ε = 0, we
can set y1 = y2 to be constant and we have y1,2 ≡ k =
− arccos(1/b). If 0 < coe < 1, then there is a T -periodic so-
lution, U (t ), to U ′ = 1 − coe sin(U ) with U (t + T ) = U (t ) +
2π. Note that

T =
∫ 2π

0

dx

1 − coe sin(x)
.

Thus for ε small, we expect that x(t ) ≈ k + U (t + θx ) where
θx is an arbitrary phase shift. To formalize this argument, we
use the method of multiple scales by letting s = t be the fast
time and τ = ε t be the slow time and expand x, z, y1,2 as a

FIG. 9. Effects of heterogeneity in bistable regions. The right y-
axis shows the homotopy starting and ending points for (coe, ceo). In
(a), the first homotopy begins at (0.15, 0.422) in between the black
lines and below the red line in Fig. 4 where 0:1-a and 1:2 are bistable,
and goes to (0.406, 0.308), where it is very narrow but still bistable.
The second homotopy starts at this point and continues into the β

region (see Fig. 7) where it ends at (0.82, 0.167). The black 1:2 line
(respectively, red 0:1-a line) shows the maximum d can be before
losing stability of the 1:2 (respectively, 0:1-a) locking. In (b), we
perform a homotopy in the α region (see Fig. 7), where 0:1-a and
1:1 are bistable. When d 	= 0, the 0:1-m region deflates and thus,
the α and δ region become one. Our homotopy went from (0.836,
0.17) to (0.981, 0.109). The blue 1:1 line (respectively, red 0:1-a line)
represents the maximum heterogeneity before 1:1 (respectively, 0:1-
a) stability is lost. It is interesting to note that the curves in both
panels cross nontrivially. Parameters b and cee remain constant at b =
1.1 and cee = 0.5.

power series in ε, e.g.,

x(t ) = x0(s, τ ) + εx1(s, τ ) + . . . ,

y1(t ) = y0
1(s, τ ) + εy1

1(s, τ ) + . . . ,

where we assert each term is T periodic in s. With this
ansatz, in the first-order expansion we see that x0(s, τ ) =
k + U [s + θx(τ )], z0(s, τ ) = k + U [s + θz(τ )], and y1,2 = k
where θx,z(τ ) are unknown. In the second-order expansion,

∂sx1 + U ′(s + θx )∂τ θx = coe cos[U (s + θx )]
[
y1

1 − x1
]

∂sz1 + U ′(s + θz )∂τ θz = coe cos[U (s + θz )]
[
y1

2 − z1
]

∂sy
1
1 = b sin(k)y1

1 + cee
(
y1

2 − y1
1

) + sin[U (s + θx )]

∂sy
1
2 = b sin(k)y1

2 + cee
(
y1

1 − y1
2

) + sin[U (s + θz )],
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where ∂γ = ∂

∂γ
. The last two equations can be written as

∂

∂s

⎛
⎝y1

1

y1
2

⎞
⎠ = A

⎛
⎝y1

1

y1
2

⎞
⎠ +

⎧⎨
⎩

sin
[
U (s + θx )

]

sin
[
U (s + θz )

]
⎫⎬
⎭,

where

A =
⎡
⎣b sin(k) − cee cee

cee b sin(k) − cee

⎤
⎦.

This matrix A has strictly negative eigenvalues and thus there
is a unique periodic solution to this linear system. Let W =
(w1,w2)T be the periodic solution to:

∂W

∂s
= AW + {sin[U (s)], 0}T .

Then y1
1(s, τ ) = w1(s + θx ) + w2(s + θz ) and y1

2(s, τ ) =
w1(s + θz ) + w2(s + θx ). Now that we have solved for y1

j , we
turn to x1, z1. Consider the linear operator on the space of
differentiable T -periodic functions:

M(s)x := ∂sx + coe cos[U (s)]x.

Since U ′(s) = 1 − coe sin[U (s)], we see that x = U ′(s) is
in the nullspace of M and thus M has a one-dimensional
nullspace. With the standard L2 inner product, ( f , g) =∫ T

0 f (s)g(s) ds, the operator M(s) has an adjoint, M∗(s)x =
−∂sx + coe cos[U (s)]x and a nullspace, 1/U ′(s). With this
notation, the equation for x1(s, τ ) can be written as:

M(s + θx )x1 + U ′(s + θx )∂τ θx

= coe cos[U (s + θx )][w1(s + θx ) + w2(s + θz )],

M(s + θz )z1 + U ′(s + θz )∂τ θz

= coe cos[U (s + θz )][w1(s + θz ) + w2(s + θx )].

Taking the inner product of both sides of the x1 equation with
1/U ′(s + θx ), we obtain the dynamics of θx:

T ∂τ θx =
∫ T

0

coe cos[U (s + θx )]

U ′(s + θx )
[w1(s + θx ) + w2(s + θz )] ds.

A simple change of variables gives ∂τ θx = H (θz − θx ) where

H (φ) = coe

T

∫ T

0

cos[U (s)]

U ′(s)
[w1(s) + w2(s + φ)] ds. (7)

Similarly, ∂τ θz = H (θx − θz ). Finally, we let φ = θz − θx and
use ∂τ θz and ∂τ θx to obtain the weak-coupling equation:

∂sφ = H (−φ) − H (φ) =: G(φ), (8)

where −G(φ)/2 is the odd part of H (φ). In Fig. 10(a), we
plot G(φ) for coe = 0.5 and coe = 0.7. As can be seen from
the figure, when coe = 0.5, synchrony (φ = 0) is unstable and
antiphase (φ = T/2) is stable and the reverse is true for coe =
0.7.

From Fig. 4, it appears that the synchrony and antiphase
boundary meet at exactly the same point on the coe axis. What
this means is that synchrony and antiphase change stability
at the same point for this choice of parameters. Stability
of synchrony (respectively, antiphase) is lost when G′(0)
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FIG. 10. The first picture shows G(φ) as a function of φ. The
different graphs describe the flipped behavior for coe = 0.5 and
coe = 0.7. In (b) and (c), we see how the critical coe value varies with
cee and b. In this section, b has been at 1.1 and cee has been at 0.5.
For coe > c∗

oe (respectively, coe < c∗
oe), synchrony is stable (unstable)

and antiphase is unstable (stable). The black dots in the bottom two
graphs signify the parameters we have used: b = 1.1 and cee = 0.5.

[respectively, G′(T/2)] changes from negative to positive. De-
note m(s) = cos[U (s)]/U ′(s) so from the definition of G(φ):

G′(0) = −2coe

T

∫ T

0
m(s)w′

2(s) ds

G′(T/2) = −2coe

T

∫ T

0
m(s)w′

2(s − T/2) ds.

Changing s to s − T/2 in the second integral and using the
observation m(s + T/2) = −m(s) due to the symmetry of
the function sin(x), this shows that G′(T/2) = −G′(0), so
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FIG. 11. Example of bistability in an OEEEO chain. The pa-
rameters are coe = 0.75, ceo = 0.25, and cee = 0.18. In (a), x = z,
and y1 = y2 and ym (the middle excitable cell) also fires all in
synchronous 1:2. In (b), the outer y1,2 fire with the O cells in 1:1
but the middle E cell ym does not fire and the oscillators do not
synchronize.

that synchrony and antiphase swap their stability at the same
value of coe independent of any other parameters. Hence in
Figs. 10(b) and 10(c), we also show how the critical coe value
varies as b or cee change. If we change the coupling function
between the O and the E cells to some more general odd
periodic function, say sin(x) + a sin(2x), then the symmetry
of m(s) is gone and the branches for synchrony and antiphase
will not meet at a point as ceo → 0.

E. OEEEO and beyond

For chains with three or more E cells between the O cells,
it is possible to have only the E cells that are coupled to the
O cells fire, while the E cells in the middle of the chain fail
to fire. For example, Figure 11(a) shows an OEEEO system
where the middle E cell fires and gives rise to 1:2 locking
between the oscillators and the excitable cells, while in panel
(b), with the same parameters the middle cell ym does not fire
and the O cells fire in 1:1 with the outermost E cells.

So far, we have seen that for small chains where all the E
cells fire, the only stable solution is synchrony and it is robust
to small changes in the relative frequencies of the O cells. Let
us now consider a long chain of E cells terminated by two O
cells acting as pacemakers. Consider the isolated E chain with
no oscillators. If we suppose that the coupling between the E
cells is strong enough, then one expects that initiating the first
E cell in the chain to fire will result in a traveling wave that
propagates down the chain. If at some time after the first E
cell is excited, then we initiate a wave at the other end, we
expect the two waves to collide somewhere in the middle of
the chain and could annihilate completely. This means that the
last E cell and first E cell are “unaware” the other E cell fired.
If we put the two oscillators on the ends, it seems to imply that

FIG. 12. Chain of two oscillators with 100 excitable cells in
between. (a) Phase plane showing the long-time behavior of the two
oscillators for four different initial data; right is a space-time plot.
(b) Same as (a) but ωx = 1.1, ωz = 0.9; a fixed 1:1 locking always
occurs. (c) Same as (a), but ωx = 1.5, ωz = 0.5 and a 1:2 locking
occurs.

they will not synchronize; rather they can maintain any phase
difference. For example, consider

x′ = ωx + coe sin(y1 − x)

y′
1 = f (y1) + ceo sin(x − y1) + cee sin(y2 − y1)

y′
j = f (y j ) + cee sin(y j−1 − y j ) + cee sin(y j+1 − y j )

y′
100 = f (y100) + ceo sin(z − y100) + cee sin(y99 − y100)

z′ = ωz + coe sin(y100 − z)

for j = 2, . . . , 99. For this section, we took coe = 0.7, ceo =
2, cee = 3, and b = 1.1. Figure 12(a) shows a simulation
when ωx = ωz = 1 for four different initial conditions.
The left panel shows us that the two oscillators lock but
the phase difference between x and z varies each time.
The right panel shows why this happens: Waves initiated
at the end points collide in the middle and, thus, cannot alter
the timing of their opposite oscillators. However, if we make
one oscillator faster than the other, then the point of intersec-
tion of the waves moves toward the slower oscillator as the fast
oscillator dictates the frequency and becomes a pacemaker.
Figure 12(b) shows this with ωx = 1.1 and ωz = 0.9. Once
there is a single phase-locked solution, there appears to be a
unique attractor. Increasing the frequency difference further
[Fig. 12(c)] leads to 1:2 locking where x goes two cycles
and the rest of the medium goes one cycle. Differences in the
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FIG. 13. (a) Regions of stability for the ML model as constructed
from a bifurcation analysis. Stable locking regions are delineated by
colored lines with arrows pointing to the boundaries. The symbols
s, m, a correspond to the oscillators being synchronous, mixed, or
antiphase. There are many regions of multistability; three are marked
α, β, δ corresponding to the regions in Fig. 7. Markers correspond to
parameters for the time series shown in (b)–(e). Values of (coe, ceo)
correspond to the markers in (a). (b) 0:1-m, (0.4, 0.05); (c) 2:3-m,
(0.5, 0.057); (d) 2:4-m, (0.63, 0.05); (e) 2:4-s, (0.1, 0.065). In (e),
Vx = Vz and Vy1 = Vy2 so they overlap.

frequencies of the oscillators allow for the timing information
to propagate down the chain and lock the oscillators.

F. Biophysical models

In this paper, we have used a one-dimensional model for
excitability that is equivalent to the normal form for a general
system near a SNIC. A simple and well-known neural model
that has a SNIC is the Morris-Lecar (ML) model given under
Methods. Thus, we turn our attention to this model and look
at the OEEO system. Similarly to Eq. (6), we hold cee = 0.1
and vary (coe, ceo) to compare this ML model to the dynamics
of Eq. (6).

Figure 13(a) shows the regions of stability as we vary
(coe, ceo) for the ML model. This figure was created by
following bifurcation points using AUTO in XPP (see
Ref. [17]), and then combining the two-parameter data and
tracing the curves using splines. We show a number of

different regions, but this is by no means exhaustive. We
compare this figure to Figs. 4 and 7. We first note that as
in the simple phase model, the largest regions correspond to
1:1 synchronous locking and 0:1 locking in either synchrony,
mixed, or antiphase for increasing values of ceo. A notable
difference from the phase model is the large region of 2:3-m in
the ML system. Interestingly, the O cells do not synchronize,
but operate in the mixed phase mode. Another difference
is that the region of 1:2-s is somewhat limited in the ML
model when compared to the phase model. We have labeled
three different regions, α, β, δ in which there is bistability,
similar to the phase model in Fig. 7. For example in region
β there is bistability between 1:2-s and 0:1-a. Both regions
α, δ have bistability between 1:1-s and 0:1. However, due
to the existence of the large 2:3-m region, there is actually
tristability with the 2:3-m state. The 2:4-s state occurs via a
period doubling bifurcation of the 1:2-s state (the upper curve
in the 1:2-s region). The 0:1-m state also loses stability via
a period-doubling bifurcation as coe increases (shown by the
gold C-shaped region on the right side of the 0:1-m region).
Like the phase model, all of the locked oscillatory regions
terminate as a stable fixed point emerges when coe is large
enough. This region is labeled 0:0. Figures 13(b)–13(e) show
representative voltage traces in some of the different regions
indicated by the markers in Fig. 13(a).

In summary, we have seen that the simple phase model
for interacting oscillatory and excitable cells is a good pre-
dictor of the qualitative dynamics of biophysical networks
of coupled oscillator and excitable cells. In particular, the
latter undergo many of the same bifurcations and transitions
between states as well as having similar regions of bistability.

IV. DISCUSSION

Throughout this project, we have studied some simple
networks in which a pair of oscillators is indirectly coupled
to active nonlinear elements, namely excitable systems. We
show several distinct qualitative behaviors that include in-
phase, antiphase, and mixed-phase synchronization both when
the excitable cells fired and did not fire. We also found
some regimes of seemingly chaotic dynamics in between
phase-locked regions. With the smallest of chains, bistabil-
ity between the phase-locked regions was impossible; how-
ever, if the chain increases in length, many bistable regions
can appear. We found that when the excitable cells were
silent, that is they operate in the subthreshold regime, the
interactions between the two oscillators could be analyzed
through weak-coupling analysis and was amenable to aver-
aging methods and phase reduction. We found that when the
excitable cells are active, the ability to phase-lock is more
robust to changes in the oscillator frequencies than when
the excitable cells are silent. We also saw that for very long
chains of excitable cells, a small difference in the intrinsic
frequency of the oscillators is more conducive to rapid and
stable phase-locking than if the oscillators are identical. While
this may seem counterintuitive, one can regard it as a case
when the faster oscillator becomes the “leader” and thus
the excitable cells and the slower oscillator are effectively
forced. The slow oscillator gets overpowered in the rhythm.
We also showed that the simple phase models that formed the
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bulk of the paper behaved quite similarly to systems of cou-
pled Morris-Lecar models, a simple biophysical model for a
neuron.

There are many unanswered questions that remain in this
paper concerning other types of indirect coupling. In the
present paper, we looked at one-dimensional chains. However,
a more biologically realistic scenario would involve a small

number of oscillators embedded in a two-dimensional net-
work of excitable cells. Indeed, this is a geometry more akin
to the examples that motivated this work in the Introduction.
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