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Stable dissipative solitons are perfect carries of optical information due to remarkable stability of their
waveforms that allows the signal transmission with extremely dense soliton packing without losing the
encoded information. Apart from unaffected passing of solitons through a communication network, controllable
transformations of soliton waveforms are needed to perform all-optical information processing. In this paper we
employ the basic model of dissipative optical solitons in the form of the complex Ginzburg-Landau equation with
a potential term to study the interactions between two stationary dissipative solitons under the control influences
and use those interactions to implement various logic gates. In particular, we demonstrate NOT, AND, NAND, OR,
NOR, XOR, and XNOR gates, where the plain (fundamental soliton) and composite pulses are used to represent the
low and high logic levels.
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I. INTRODUCTION

Dissipative optical solitons, localized waves in noninte-
grable systems far from equilibrium whose properties depend
dramatically on the internal energy balance, were realized at
the beginning of 1990s [1,2]. Due to the subsequent theo-
retical and experimental studies of these solitary waves and
unification of their features, the ideas of self-organization,
common for the animate and inanimate worlds, were elabo-
rated in the development of the concept of dissipative solitons
[3–5]. The theoretical framework for the study of dissipative
solitons is based on the complex Ginzburg-Landau equa-
tion (CGLE), which accounts for the supply and absorption
of energy in the presence of a nonlinear and dispersive
(diffractive) environment, crucially important conditions for
the development of localized dissipative structures [6–8]. The
CGLE admits a few classes of stable solutions representing
the rich variety of dissipative solitons and nontrivial behavior
of their evolution [9]. In fact, the localized waves governed
by the one-dimensional CGLE can evolve as solitons with
stationary [10–15], periodically, quasiperiodically, and aperi-
odically (chaotically) pulsating waveforms [16–18], moving
pulses [14], exploding solitons [17–21], solitons with periodic
and chaotic spikes of extreme amplitude and short duration
[22–24], and multisoliton solutions [25] and in the form of
stable dynamic bound states [26]. Remarkably, these different
forms of dissipative solitons coexist with each other when the
equation coefficients belong to certain regions [14,17–19,27].
Moreover, the basic CGLE can easily be extended to more
general models accounting for the impact of such high-order
effects as third-order dispersion, fourth-order spectral filter-
ing, self-stepping, and stimulated Raman scattering [28–32]
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as well as an external control [33,34]. In fact, more specific
models have been used to study the turbulentlike intensity
and polarization rogue waves in a Raman fiber laser [35],
stationary solitary pulses in a dual-core fiber laser [36], the
interaction of stationary, oscillatory, and exploding coun-
terpropagating dissipative solitons [37,38], the existence of
stable three-dimensional dissipative localized structures in
the output of a laser coupled to a distant saturable absorber
[39], the emergence and the stability of temporally localized
structures in the output of a semiconductor laser passively
mode locked by a saturable absorber in the long-cavity regime
[40], and dissipative solitons in Bose-Einstein condensates
[41–46].

The significant stability of dissipative solitons with respect
to the distortion effects allows the soliton passing with very
dense pulse packing without losing the encoded information
that makes them ideal carriers of information in new optical
systems. The development of such systems for performing
the all-optical information processing requires robust devices
on the dissipative optical solitons, similarly to those for the
conservative ones [47]. First of all, the devices can be imple-
mented in the framework of the soliton-soliton interactions.
In particular, the AND and OR logic gates based on the self-
interactions of bright dissipative polariton solitons have been
demonstrated theoretically in [48]. On the other hand, the
interactions of dissipative solitons can explicitly be controlled
by the externally applied influence. In fact, this control has
repeatedly been added to equations governing the soliton
dynamics in the form of an external potential. In particular,
the diffusion-induced turbulence has been modeled on the
basis of the CGLE with an additional term accounting for
the global delayed feedback [49] and a gradient force [50].
Spatial localization and dynamical stability of Bose-Einstein
condensates of exciton polaritons in microcavities were ex-
amined in [43,44]. The nonlinear Schrödinger equation with
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a longitudinal defect [51], an external δ potential [52], and a
longitudinal potential barrier [53] appear in optical applica-
tions for beam splitters. The complex dynamics of dissipative
solitons in active bulk media with spatially modulated refrac-
tive indices in the form of a sharp potential barrier [54] and
umbrella-shaped [55] and radial-azimuthal [56] potentials has
been studied on the basis of the one- and two-dimensional
cubic-quintic CGLEs.

Accounting for the external magnetic field in nonlinear
magneto-optic waveguides leads to another example of con-
trollable optical solitons [57]. Due to the applied magnetic
field the time-reversal symmetry is locally broken, which
leads to significantly different propagation conditions of coun-
terpropagating dissipative optical solitons whose envelopes
are governed by the cubic-quintic CGLE with a potential
term [33,34]. Recently, this robust model was successfully
used to perform a selective lateral shift within a group of
stable noninteracting fundamental dissipative solitons [58],
to replicate dissipative solitons and vortices [59,60], and to
induce the waveform transitions between different dissipative
solitons [61,62].

Since one of the central challenges in the development of
promising optical systems based on stable dissipative solitons
is getting full control over soliton interactions, we further
employ the one-dimensional cubic-quintic CGLE with a po-
tential term to implement logic gates on two different sta-
tionary dissipative solitons. Each of these logic gates operates
due to a specific control potential applied locally along the
propagation distance.

The rest of the paper is organized as follows. In Sec. II
we introduce the basic mathematical model of dissipative
solitons in the form of a one-dimensional cubic-quintic CGLE
with a potential term. This model supports coexistence of two
stationary dissipative solitons (plain and composite pulses)
with significantly different waveforms and spectra as well as
describes their interactions under the control of applied poten-
tial. In Sec. III, having applied appropriate control potentials,
we demonstrate NOT, AND, NAND, OR, NOR, XOR, and XNOR

gates on dissipative solitons, where the plain and composite
pulses represent the low and high logic levels. Conclusions
and remarks finalize the paper in Sec. IV.

II. MATHEMATICAL MODEL OF CONTROLLABLE
DISSIPATIVE SOLITONS

The cubic-quintic CGLE supplemented by a potential term
with an explicit coordinate dependence forms the background
for simulations of dissipative solitons in many optical appli-
cations. In particular, this equation appears in the theory of
planar nonlinear magneto-optic waveguides [33,34,58] and
describes the evolution of electromagnetic fields in nonlinear
optical media with a spatially modulated refractive index
[53–56]. Here we adopt the notation used in optics and write
the CGLE in the form

i
∂�

∂z
+ iδ� +

(
1

2
− iβ

)
∂2�

∂x2
+ (1 − iε)|�|2�

− (ν − iμ)|�|4� + Q(x, z)� = 0, (1)

where �(x, z) is the complex slowly varying envelope of the
transverse x and longitudinal z coordinates. We assume that
the coordinates and envelope function are normalized vari-
ables. A particular normalization follows from the origin of
a physical system. For example, in planar nonlinear magneto-
optic waveguides the transverse and longitudinal coordinates
are normalized by the effective soliton width w0 and the
Rayleigh length k0w

2
0, respectively [33,34]. In other words,

to express the coordinates in natural units one has to use
the scaling x′ = w0x and z′ = k0w

2
0z, where k0 is the wave

number of the quasimonochromatic optical field centered at
the angular frequency ω0. This normalization provides the
natural timescale to estimate the operation time of logic gates
demonstrated below.

All coefficients of Eq. (1) are assumed to be positive
quantities. This implies that δ and β account for the linear
absorption and diffusion, ν stands for the self-defocusing
effect due to the quintic nonlinearity, and ε and μ are the
cubic gain and quintic loss coefficients, respectively. We note
that due to the quintic nonlinear terms, Eq. (1) has numerous
stable solutions in the form of both solitons and background
[10,63].

The potential Q(x, z) accounts for the influence of linear
conservative forces applied externally to control the evolution
of the complex envelope �(x, z). Its particular spatial distri-
bution depends on the physical origin of applied forces. For
example, in some optical applications the potential Q(x, z)
can account for the linear magneto-optic effect [33,34] and
spatial modulation of the refractive index [54–56,64,65]. For
control purposes it is logical to assume that the potential
acts locally along the propagation distance having a finite
supporter along the z axis. Without loss of generality, we
choose the longitudinal dependence of the potential in the
form of a piecewise constant function and write the potential
as

Q(x, z) =
N∑

i=1

qi(x)[h(z − ai ) − h(z − bi )], (2)

where N is the number of control manipulations, qi(x) is the
transverse variation of the potential during the ith control
manipulation, h(·) is the Heaviside step function, and ai < bi

are some points on the z axis at which the potential changes
its transverse distribution. The transverse profiles qi(x), end
points ai and bi, and number N should be chosen to perform
certain control over soliton waveforms. Here they are speci-
fied to implement logic gates as discussed later on.

The CGLE admits the existence of a few different attractors
at the same values as its coefficients, which means coexistence
of different stable dissipative solutions for a given set of
parameters [14,17–19,27]. In particular, in wide regions of the
parameter space the CGLE allows coexistence of two stable
stationary dissipative solitons with different waveforms [14].
One of them is the fundamental soliton, which is also called
the plain pulse, while the other one is the so-called composite
pulse. Figure 1 shows the typical intensity distributions and
normalized power spectra of these two solitons, where the red
dotted and blue solid lines indicate the plain and composite
pulses, respectively. Moreover, Fig. 1 shows the energies of
both solitons calculated in the coordinate space (Epp, Ecp)
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FIG. 1. Two stable stationary dissipative solitons coexisting for
the same set of equation coefficients (δ = 0.5, β = 0.5, μ = 1,
ν = 0.1, and ε = 2.52) represent low (0) and high (1) logic levels:
(a) intensities and (b) normalized power spectra.

and in the Fourier domain (Êpp, Êcp), where the subindices
stand for the pulse abbreviations. To plot the waveforms of
coexisting solitons [Fig. 1(a)] and their spectra [Fig. 1(b)]
at some point z = z0 we numerically solve Eq. (1) using
the set of coefficients δ = 0.5, β = 0.5, μ = 1, ν = 0.1, and
ε = 2.52 and having applied zero potential, i.e., Q(x, z) = 0.
We use the same set of numerical values for the coefficients
of Eq. (1) here, in all our numerical simulations, which are
performed using the exponential time differencing method as
well as its Runge-Kutta modification of second- and fourth-
order accuracy in the Fourier domain [66]. We apply the
fast Fourier transform to the complex amplitude �(x, z) with
respect to the transverse coordinate x transforming it to its
Fourier amplitude �̂(kx, z). This imposes the periodic bound-
ary condition

�(x, z) = �(x + Lx, z) ∀(x, z) ∈ R × [0,+∞), (3)

with some period Lx > 0. Therefore, the computational do-
main is reduced to the finite rectangular [−Lx/2, Lx/2] ×
[0, Lz], where its width Lx = 100 is chosen to ensure that all
non-negligible parts of the waveforms are within the domain,
while its length Lz is chosen to ensure the completion of sim-
ulations. Typically, it varies in the range 900 � Lz � 3000.
We sample the computational domain with Nx = 210 points
along the transverse coordinate x and use the step 	z = 10−3

to discretize the domain along the longitudinal coordinate z.
Being stationary solutions to Eq. (1), the plain and com-

posite pulses can easily be excited by numerous appropriate
waveforms used as initial conditions. In fact, for the specified
coefficients of Eq. (1) the plain and composite pulses quickly
develop from the initial waveforms �pp(x) and �cp(x), which

are respectively defined as

�pp(x) = sech(x), �cp(x) = exp

(
− x2

25

)
. (4)

III. LOGIC GATES

In this section we demonstrate the implementation of logic
gates on dissipative solitons in our simulations based on the
numerical analysis of the model (1)–(3). In particular, we
exploit two stable stationary solitons admitted by Eq. (1) to
represent logic levels. To be specific, we assume that the plain
pulse represents the low (0) logic level, while the composite
pulse represents the high (1) level. These pulses have differ-
ent waveforms [Fig. 1(a)] and strictly distinguished spectra
[Fig. 1(b)]. Moreover, the plain and composite pulses can also
be considered as two isolated stable fixed points (attractors)
in an infinite-dimensional phase space of the system (1) [9].
This means that the waveforms and spectra of the pulses
are unchangeable along the propagation distance as long as
the equation coefficients are fixed and the potential is not
applied. In other words, there can be no uncontrollable overlap
between the plain and composite pulses that allow them to
represent logic levels ideally.

On the other hand, having applied the external potential (2),
one can get control over the soliton waveforms, for example,
to transit the plain pulse to the composite pulse and to return
its waveform [62]. In general, such transitions induced by an
external potential can be possible between an arbitrary pair of
stable coexisting dissipative solitons if an appropriate control
potential is applied [61,62]. We can imagine a particular
waveform transition as a forced displacement of a point in
the phase space from a basin of attraction of a given attractor
to a vicinity of another attractor. Here we further elaborate
the ideas of induced waveform transitions [58–62] in the
development of controllable interaction between the plain and
composite pulses that finally lead us to the implementation of
all the logic gates. Below we subsequently demonstrate the
most important of them.

A. The NOT gate

We start with the consideration of a NOT gate, which
performs the operation of inversion, changing one logic level
to the opposite level. In terms of the introduced soliton bits, it
changes the plain pulse to the composite pulse [Fig. 2(a)] and
the composite pulse to the plain pulse [Fig. 2(b)]. In fact, to
complete the description of the NOT gate in the framework of
the model (1)–(3) we have to specify the unknown number of
manipulations N , start and end points ai and bi, and the trans-
verse dependences qi(x) in the potential (2) used to implement
the NOT gate. We should note that these parameters chosen in a
different way can lead to multiple implementations of the NOT

gate, i.e., there is no unique choice for them. In particular, we
assume that each of the transverse dependences qi(x) is the
sum of a few scaled sech(x) functions, which are used as trial
functions to approximate the transverse dependence of the
potential. For example, the potential (2) suitable to implement
the NOT gate contains three control manipulations N = 3 with
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FIG. 2. Truth table for a NOT gate and its implementation on the dissipative soliton bits due to externally applied potential Q(x, z) with the
parameters (5): (a) and (b) soliton envelope intensity plots for two-input combinations and (c) plot of control potential.

the parameters

ai ∈ {100, 300, 500}, bi ∈ {200, 400, 800},

q1(x) = 1

10
sech(2x + 10) − 1

4
sech

(
x − 2

2

)

+ 1

2
sech

(
x − 10

4

)
− sech(x − 15),

q2(x) = sech(x + 10) + sech(x),

q3 = 1

20

[
sech

(x

5

)
− sech

(
x + 19

10

)

− sech

(
x − 19

10

)]
.

(5)

The two-dimensional spatial distribution of the potential (2)
with the parameters (5) is plotted in Fig. 2(c), while the
evolution of the plain and composite pulses under its influence
is shown in Figs. 2(a) and 2(b), respectively, where one can
see two-dimensional intensity plots of complex envelopes
|�(x, z)|2 of these pulses. More precisely, in Fig. 2(a) we
see that the input plain pulse is transited by the potential
(2) with (5) to the output composite pulse, while according
to Fig. 2(b) we conclude that the same potential transits
the input composite pulse to the output plain pulse; thereby
potential (2) with the parameters (5) produces the inverted
output pulse with respect to the given input pulses. This
operation is summarized in the table inserted in Fig. 2,
where X and Y stand for the input and output soliton bits,
respectively. This table is just the truth table for a NOT

gate.
As mentioned above, the potential (2) with (5) inverts the

input soliton bits performing three subsequent control stages,
which can be clearly seen in Fig. 2(c). At the first stage,
the applied potential has the asymmetrical transverse distri-
bution q1(x), which is chosen to act selectively on the input
plain and composite pulses whose waveforms are initially

centered at x = 0. In fact, it shifts the plain pulse along the
negative direction of the x axis [Fig. 2(a)] and changes the
composite pulse stretching its waveform along the opposite
direction [Fig. 2(b)]. Between the first and second stages, the
shifted plain pulse keeps its position unchanged [Fig. 2(a)],
while both fronts of the perturbed composite pulse move
along the positive direction of the x axis [Fig. 2(b)], which
leads to stronger spatial separation of pulses. At the second
stage, the two-peaked symmetrical potential q2(x) transits
the shifted plain pulse to the composite pulse [Fig. 2(a)],
while the perturbed composite pulse is transited to the plain
pulse [Fig. 2(b)]. Between the second and third stages, the
pulses released from the potential influence evolve gradually
to their unperturbed waveforms. Finally, at the third stage,
the relatively weak potential with symmetrical profile q3(x)
is applied to shift the peak of the inverted plain pulse at the
initial point x = 0 [Fig. 2(a)]. The waveform of the inverted
composite pulse was centered around the point x = 0 during
the second stage. Therefore, its position is not changed during
the third stage [Fig. 2(b)]. We should note that the third
stage is the longest one because the lateral shifting of the
composite pulse [Fig. 2(a)] can only be performed by a weak
attractive potential, which slowly shifts the composite pulse
without considerable squeezing of its waveform. Otherwise,
being attracted by a strong potential, the composite pulse can
collapse to the plain pulse [62].

B. The AND and NAND gates

Now we consider the implementation of an AND gate
with two inputs using the controllable model (1)–(3), which
supports the dissipative soliton bits in the form of plain and
composite pulses (Fig. 1). The AND gate produces the com-
posite pulse output only when both of the inputs are composite
pulses [Fig. 3(d)]. When either of the inputs is a plain pulse,
the output is a plain pulse [Figs. 3(a)–3(c)]. In fact, the
implementation of the two-input AND gate presented in Fig. 3
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FIG. 3. Truth table for a two-input AND gate and its implementation on the dissipative soliton bits due to externally applied potential Q(x, z)
with the parameters (6): (a)–(d) soliton envelope intensity plots for all four input combinations and (e) plot of control potential.

is performed using the potential (2) with the parameters

ai ∈ {350, 650, 1550, 1750, 1850},
bi ∈ {650, 1550, 1750, 1850, 2650},

q1(x) = tanh(x + 3.5)

cosh(x + 3.5)
+ tanh(x − 3.5)

cosh(x − 3.5)
,

q2(x) = −sech(10x + 200) − sech(10x − 275),

q3(x) = sech
(x

3

)
+ sech(x − 20),

q4(x) = sech(x) + sech(x − 15) + sech(x − 25),

q5(x) = 1

20
sech

( x

10

)
+ 1

25
sech

(x

5

)
.

(6)

Figures 3(a)–3(d) show the two-dimensional intensity plots
|�(x, z)|2 representing the waveform evolution for all possible
combinations of two input pulses, where the peaks of the left
and right input pulses are respectively located at the points
x = −7.5 and x = 7.5, while the output pulse is centered
around the point x = 0. In each of the four cases presented
in Figs. 3(a)–3(d), the waveform evolution of two input pulses
is controlled by the potential (2) with the same parameters (6)
whose two-dimensional spatial distribution Q(x, z) is plotted
in Fig. 3(e). This control potential selectively transits the
pairs of input pulses to a certain single pulse in five stages
(N = 5), leading to the different output pulses depending on a
particular combination of input pulses. In particular, Fig. 3(a)
shows the controllable evolution of two plain pulses to one
plain pulse that corresponds to the first row in the truth table
for a two-input AND gate presented in Fig. 3. Moreover, in

Figs. 3(b) and 3(c) we see how two different pairs comprised
of the plain and composite pulses are transited to the plain
pulse. These two transitions correspond to the second and
third rows in the truth table in Fig. 3. Finally, in Fig. 3(d)
the last possible input combination of two composite pulses
is transited to the composite pulse corresponding to the fourth
row in the truth table in Fig. 3.

In other words, in Figs. 3(a)–3(d) we demonstrate the
four basic rules for multiplying the soliton bits, where each
multiplication is represented by the controllable interaction
of two-input pulses induced by the external potential (2)
with (6). Looking at Eqs. (6) and Fig. 3(e), we see that
this potential is chosen to perform the rules for five control
manipulations over soliton waveforms. First of all we apply
q1(x) from Eqs. (6) to perturb the waveforms of input pulses
selectively, i.e., accounting for the soliton bit combination of
input pulses. Then we apply the second manipulation q2(x)
to release the selectively perturbed waveforms as well as to
prevent the wide spreading of released waveforms along the
transverse direction. As a result, the perturbed waveform of
two input composite pulses is significantly moved along the
positive direction of the x axis [Fig. 3(d)], while for other
input pulses the waveforms are slightly shifted along the
positive direction of the x axis [Fig. 3(c)] or are shifted in
the opposite direction [Figs. 3(a) and 3(b)], leading to the
spatial separation of waveforms along the x axis. Further, we
apply q3(x) to transit all the transformed and shifted wave-
forms to the plain pulses. However, the waveform evolved
from two composite pulses is transited to the plain pulse
whose peak is located at the point x = 20 [Fig. 3(d)], while
other waveforms are transited to the plain pulse with a peak
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FIG. 4. Truth table for a two-input NAND gate and its implementation on the dissipative soliton bits due to externally applied potential
Q(x, z) with the parameters (6), where the last two control manipulations are replaced by Eqs. (7): (a)–(d) soliton envelope intensity plots for
all four input combinations and (e) plot of control potential.

at x = 0 [Figs. 3(a)–3(c)]. The fourth control manipulation
q4(x) is applied to transit the plain pulse centered around
the point x = 20 to the composite pulse [Fig. 3(d)] and to
prevent the lateral shift of the plain pulses centered at the
point x = 0 [Figs. 3(a)–3(c)]. The last manipulation q5(x)
is applied to shift the composite pulse at the point x = 0
[Fig. 3(d)], while the transverse positions of the plain pulses
are not changed because they have already been centered
at the point x = 0 [Figs. 3(a)–3(c)]. Thus, we complete the
implementation of the two-input AND gate on the dissipative
soliton bits.

Having replaced the last two control manipulations q4(x)
and q5(x) in Eqs. (6) by

q4(x) = sech(x + 5) + sech(x − 5) + sech(x − 20),

q5(x) = 1

25

[
sech(x) + sech

(x

5

)]

− 3

10

[
sech

(
x + 22

5

)
+ sech

(
x − 22

5

)]
,

(7)

we get the appropriate potential to implement a two-input
NAND gate whose operation is opposite to that of the AND gate
in terms of the output level. As it is summarized in the truth
table presented in Fig. 4, for a two-input NAND gate, output Y
is low only when inputs X1 and X2 are high; Y is high when
either X1 or X2 is low or when both X1 and X2 are low. We
demonstrate the implementation of the two-input NAND gate
on the dissipative soliton bits in Figs. 4(a)–4(d), where each
graph shows the evolution of the soliton intensity |�(x, z)|2
under the influence of the control potential (2) with the same
parameters (6) used to implement the AND gate except for the

last two manipulations q4(x) and q5(x), which we now take in
the form of Eqs. (7). The two-dimensional spatial distribution
of this potential Q(x, z) is plotted in Fig. 4(e).

We see that the graphs presented in Figs. 4(a)–4(d) are
similar to those shown in Figs. 3(a)–3(d), respectively. More-
over, the first three control manipulations are identical for
both gates. However, we apply the fourth control manipulation
q4(x) to transit the plain pulses centered around the point
x = 0 to the composite pulse [Figs. 4(a)–4(c)] and to prevent
the waveform change of the plain pulse centered at the point
x = 20 [Fig. 4(d)]. The last manipulation q5(x) is applied to
shift the plain pulse laterally from the point x = 20 to the point
x = 0 [Fig. 4(d)] and save the waveforms of composite pulses
already centered at the point x = 0 [Figs. 4(a)–4(c)]. That
implements the two-input NAND gate based on the dissipative
solitons.

C. The OR and NOR gates

Below we demonstrate the implementation of an OR gate
with two inputs in the framework of the model (1)–(3) sup-
porting the coexisting plain and composite pulses presented
in Fig. 1. An OR gate produces a high level on the output
when either of the inputs is high. The output is low only when
both of the inputs are low. The operation of a two-input OR

gate is described in the truth table presented in Fig. 5, where
the inputs are labeled X1 and X2 and the output is labeled Y .
The implementation of an OR gate with two dissipative soliton
inputs is demonstrated in Figs. 5(a)–5(d), where each graph
shows the intensity plot |�(x, z)|2 that represents the possible
evolution of two input pulses into a single output under the
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FIG. 5. Truth table for a two-input OR gate and its implementation on the dissipative soliton bits due to externally applied potential Q(x, z)
with the parameters (8): (a)–(d) soliton envelope intensity plots for all four input combinations and (e) plot of control potential.

control of the potential (2) with the parameters

ai ∈ {250, 950, 1250}, bi ∈ {750, 1150, 2150},

q1(x) = −sech

(
x + 15

4

)

− sech(x − 13) − sech(10x − 20),

q2(x) = sech

(
x + 7.5

3

)

+ sech(x − 7) + sech(x − 13),

q3 = 1

20

[
sech

(x

5

)
− sech

(
x + 19

10

)

− sech

(
x − 19

10

)]
. (8)

Again, we stress that the two-input OR gate presented in
Figs. 5(a)–5(d) has been implemented due to the proper choice
of parameters (8) of the potential (2). The two-dimensional
distribution of the potential Q(x, z) with the parameters (8) is
plotted in Fig. 5(e). When applied this potential induces the
plain pulse output only when both inputs are the plain pulses
as shown in Fig. 5(a). On the other hand, when either of the
two inputs (including both of them) is the composite pulse,
the output is the composite pulse [Figs. 5(b)–5(d)]. Therefore,
looking at the plain and composite pulses as Boolean variables
whose values are respectively either binary 0 or binary 1, we
conclude that Figs. 5(a)–5(d) also implement the basic rules
for Boolean addition.

The applied potential (2) with the parameters (8) performs
the OR gate in three control stages, which are shown in
Fig. 5(e). First of all, we apply q1(x) to transit four different

pairs of input pulses to so-called moving pulses [14,62]. The
asymmetrical profile of q1(x) is properly chosen to transit
two input plain pulses to the moving pulse with a transverse
drift along the negative direction of the x axis [Fig. 5(a)],
while all other input combinations are transited to the moving
pulse with the opposite transverse drift [Figs. 5(b)–5(d)].
The second stage succeeds the first one after some delay.
During that delay the moving pulses are released from the
potential influence that allows them to freely travel along the
x axis as seen in Figs. 5(a)–5(d). At some moment the pulses
traveling in opposite directions get sufficient spatial separa-
tion between them, which allows us to apply the potential
q2(x) to transit the left-shifted waveform to the plain pulse
[Fig. 5(a)] while the right-shifted waveforms are transited to
the composite pulse [Figs. 5(b)–5(d)]. Finally, having applied
the weak potential q3(x), we symmetrically arrange the plain
and composite pulses around the point x = 0 and complete the
implementation of the OR gate.

It is logical to note that if during the second stage we transit
the left-shifted (right-shifted) waveform to the composite
(plain) pulse we implement a two-input NOR gate, which is
the same as the OR except the output is inverted (see the truth
table in Fig. 6). Therefore, we replace the potential parameter
q2(x) in Eqs. (8) by

q2(x) = sech(x + 10.5) + sech(x + 4.5)

+ sech

(
x − 7.5

3

)
(9)

to get the potential suitable for the implementation of a two-
input NOR gate on dissipative soliton bits. The implementation
of this NOR gate is shown in Fig. 6. All plots in Fig. 6 are
similar to those in Fig. 5. Indeed, the graphs in Figs. 6(a)–6(d)
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FIG. 6. Truth table for a two-input NOR gate and its implementation on the dissipative soliton bits due to externally applied potential Q(x, z)
with the parameters (8), where the second control manipulation is replaced by Eq. (9): (a)–(d) soliton envelope intensity plots for all four input
combinations and (e) plot of control potential.

show the two-dimensional intensity plots |�(x, z)|2, while
Fig. 6(e) depicts the spatial distribution of the control potential
Q(x, z) with the parameters (8), where the parameter q2(x) is
replaced by Eq. (9).

D. The XOR and XNOR gates

Finally, we discuss the implementation of an XOR gate,
which performs modulo-2 addition. Its operation is summa-
rized in the truth table shown in Fig. 7. To implement an
XOR gate on dissipative soliton bits we again employ the
controllable model (1)–(3) supporting the same plain and
composite pulses (Fig. 1) as we used above. In Figs. 7(a)–7(d)
we demonstrate the four possible input combinations and the
resulting outputs for the XOR gate implemented on the plain
and composite pulses, where in each graph we plot the evolu-
tion of soliton intensities |�(x, z)|2. These simulations of the
XOR gate have been performed using the control potential (2)
with the parameters specified as

ai ∈ {250, 950, 1150}, bi ∈ {650, 1050, 1750},

q1(x) = −sech(10x) − sech

(
x + 15

4

)
− sech

(
x − 15

4

)
,

q2(x) = sech(x + 16) + sech(x + 10)

+ sech(x) + sech(x − 10) + sech(x − 16),

q3 = 1

20

[
sech

(x

5

)
− sech

(
x + 19

10

)
− sech

(
x − 19

10

)]
.

(10)

The two-dimensional spatial distribution of this control poten-
tial is illustrated in Fig. 7(e).

Since the high output level occurs in an XOR gate only when
the inputs are at opposite levels, we first apply the potential
q1(x) that selectively transits the pairs of input pulses depend-
ing on whether the same or different pulses are launched to the
gate. Indeed, two plain pulses [Fig. 7(a)] as well as two com-
posite pulses [Fig. 7(d)] are transited by the potential (2) with
the parameters (10) to the plain pulse, while the combinations
of plain-composite [Fig. 7(b)] and composite-plain [Fig. 7(c)]
pulses are transited to the moving pulses with positive and
negative drifts along the x axis, respectively. Between the first
and second control manipulations is some lag leading to the
significant displacements of moving pulses along the x axis
as illustrated in Figs. 7(b) and 7(c). After that, we apply the
potential q2(x) to transit the shifted moving pulses to the com-
posite pulse [Figs. 7(b) and 7(c)] and keep the plain pulses un-
changed [Figs. 7(a) and 7(d)]. Finally, we apply the weak po-
tential q3(x) to arrange all the pulses around the point x = 0.

Thus, we has completed the implementation of the XOR

gate and found a simple way to implement the XNOR gate
whose outputs are opposite to those of the XOR gate, as
summarized in the truth table for an XNOR gate shown in
Fig. 8. In fact, to implement the XNOR gate we again use the
potential (2) with the parameters (10) except for the last two
control manipulations, which are now chosen in the form

q2(x) = sech(2x + 6) + sech(2x − 6)

+ sech

(
x + 13

3

)
+ sech

(
x − 13

3

)
,

q3(x) = 1

20
sech(x) − sech

(
x + 15

2.5

)
− sech

(
x − 15

2.5

)
.

(11)
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FIG. 7. Truth table for an exclusive-OR (XOR) gate and its implementation on the dissipative soliton bits due to externally applied potential
Q(x, z) with the parameters (10): (a)–(d) soliton envelope intensity plots for all four input combinations and (e) plot of control potential.

Having performed the first stage and having waited for
some lag between the first and second manipulations, we
proceed to the second stage. During the second stage we
now apply the potential q2(x) from Eqs. (11) to transit the

plain pulses to the composite pulse [Figs. 8(a) and 8(d)]
and the laterally shifted (moving) pulses to the plain pulse
[Figs. 8(b) and 8(c)]. Finally, we apply the potential q3(x)
from Eqs. (11) to center the shifted pulses with respect to the

FIG. 8. Truth table for an exclusive-NOR (XNOR) gate and its implementation on the dissipative soliton bits due to externally applied
potential Q(x, z) with the parameters (10), where the last two control manipulations are replaced by Eqs. (11): (a)–(d) soliton envelope intensity
plots for all four input combinations and (e) plot of control potential.
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point x = 0 and complete the implementation of XNOR gate.
We replace the last control manipulation q3(x) to move the
shifted plain pulses [Figs. 7(b) and 7(c)] faster than we moved
the corresponding composite pulses in Fig. 7.

IV. CONCLUSION

In our numerical simulations presented in Figs. 2–8 we
have demonstrated the implementation of basic logic gates,
where two logic levels are represented by two stationary
dissipative solitons with distinguished waveforms and spectra.
The simulations have been carried out in the framework of the
one-dimensional cubic-quintic CGLE with a potential term
(1). This equation accounts for the most important features of
dissipative solitons while admitting the existence of a wide
range of sophisticated solutions. That makes it one of the
basic mathematical models of dissipative solitons in many
applications. In particular, Eq. (1) admits the coexistence of
two stationary solutions in the form of plain and composite
pulses (Fig. 1), which were used here to represent the low
and high logic levels, respectively. Moreover, Eq. (1) contains
the external potential Q(x, z), which we applied to control the
evolution of solitons within the system. In fact, the potential
has a vital impact on the soliton dynamics and plays the
most important role in the implementation of logic gates.
In each simulation we applied the potential (2) with some
parameters properly chosen to implement a given logic gate.
These particular parameters were given in Eqs. (5)–(11),
where the transverse profiles qi(x) were chosen in the form
of combinations of scaled sech(x) functions. However, they
contain all the significant properties of the potentials suitable
to implement the logic gates. In general, an appropriate poten-
tial implements a logic gate in three basic control stages. This
operation can be stated as follows.

(i) The potential selectively transforms and shifts along the
transverse direction the pairs of input pulses depending on
their input combinations. In other words, during the first stage
we perform the transverse spatial selection of input solitons,
i.e., different combinations of input pulses get different lateral
shifts.

(ii) The potential transits each spatially separated pulse to
the proper output. During the second stage some of the pulses
can also be shifted along the transverse direction.

(iii) The potential gradually performs a lateral shift of the
output pulses to arrange all the outputs around the same point.
We should note that each of these stages can consist of
one or several particular control manipulations. For example,
the first stage for all the gates discussed here (Figs. 2–8)
consists of two control manipulations. For the AND (Fig. 2)
and NAND (Fig. 3) gates the first stage has been performed
by two functions q1(x) and q2(x) from Eqs. (6), but the
same stage of all other gates (Figs. 4–8) has been performed

by the corresponding functions q1(x) and subsequent control
manipulations with zero transverse functions as shown in
Figs. 4(e)–8(e). On the other hand, the third stage for each
of the logic gates has been performed by a single control
manipulation. For the AND and NAND gates it is the function
q5(x) in Eqs. (6) and (7), while for the other gates it is the
function q3(x) in Eqs. (8)–(11), respectively.

In this paper we have demonstrated a numerical imple-
mentation of the basic logic gates with two inputs applying
external potentials to get control over soliton waveforms. In
particular, we have found the potentials which allow us to get
the proper output soliton waveforms depending on a given
input. Due to our numerical simulations, we have shown
that such potentials should contain three vital control manip-
ulations over input pulses, i.e., transverse spatial selection,
waveform transition, and output arrangement, as summarized
above.

In our simulations we have used the normalized model (1)
written in dimensionless coordinates. It allows us to consider
the implementation of logic gates in various physical systems
supporting stationary dissipative solitons. Moreover, these
general simulations can be used to estimate some operation
characteristics of logic gates implemented in a given physical
system. In particular, for the aforementioned example with a
planar nonlinear magneto-optic waveguide, the longitudinal
coordinate z is measured in Rayleigh lengths, which allows
us to estimate the propagation time of soliton bits through
the logic gates. According to Figs. 2–8, we see that the
operation time of the demonstrated logic gates varies from 700
Rayleigh lengths for the NOT gate (Fig. 2) to 2300 Rayleigh
lengths for the AND and NAND gates (Figs. 3 and 4). Since our
main goal is the demonstration of logic gates implemented on
stationary dissipative solitons, we consider the typical logic
gate extension of 2000 Rayleigh lengths, which is enough at
this stage of our study. Such questions as optimization of logic
gate characteristics and how they depend on losses, diffusion,
and nonlinearity are subjects left for further study.

Traditionally, digital electronics is built on universal NAND

gates, whose combinations can be used to produce any logic
function. However, in this case, we have a planar technology,
where switching between pulses across tracks is difficult.
Therefore, we have considered various logic gates imple-
mented in the planar form.

This approach can also be used to implement other logic
gates with two or more inputs as well as to model such optical
devices as splitters, demultiplexers, cellular automata, etc.,
where the dissipative solitons are employed as logic levels
(bits). Moreover, the ideas discussed here can be useful for
experimental studies on dissipative optical solitons.
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