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Taming intrinsic localized modes in a DNA lattice with damping, external force,
and inhomogeneity
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The dynamics of DNA in the presence of uniform damping and periodic force is studied. The damped and
driven Joyeux-Buyukdagli model is used to investigate the formation of intrinsic localized modes (ILMs).
Branches of ILMs are identified as well as their orbital stabilities. A study of the effect of inhomogeneity
introduced into the DNA lattice and its ability to control chaotic behavior is conducted. It is seen that a single
defect in the chain can induce synchronized spatiotemporal patterns, despite the fact that the entire set of
oscillators and the impurity are chaotic when uncoupled. It is also shown that the periodic excitation applied
on a specific site can drive the whole lattice into chaotic or regular spatial and temporal patterns.
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I. INTRODUCTION

Discrete breathers also termed intrinsic localized modes
(ILMs) are spatially localized, temporally periodic excitations
with an exponentially localized profile in nonlinear lattices
[1,2]. Because they occur in discrete systems, they have
been termed discrete breathers (DBs) in reference to their
continuum analogs, called breathers, which were first discov-
ered in completely integrable and continuous nonlinear wave
equations [3]. While discrete breathers share many traits with
solitons, they stand out because of their localization, which is
brought about by a delicate sensitivity to lattice discreteness
[3]. Discrete breathers have been ubiquitously studied in a
wide variety of physical systems and have been the subject of
intense theoretical and numerical scrutiny [1,2]. Although dis-
sipation and driving are typically key experimental features,
most of the theoretical and numerical studies found in the liter-
ature excluded such effects. It was not until quite recently that
the effects of dissipation and uniform periodic driving have
been considered in numerical studies of discrete breathers
in nonlinear physical systems, including (but not limited
to) the Frenkel-Kontorova chain and a ladder of Josephson
junctions [4,5], coupled pendulums [6–8], discrete electrical
transmission lines [9–14], and a micromechanical cantilever
array [15,16]. Accounting for such constraints allowed these
researchers to generate and control the dynamics of DBs as
well as to stabilize them [4–16].

The majority of biomolecules are assembled under the
form of lattices, and they are constantly submitted to fluid
frictional forces induced by biological plasmas and exposed
to external periodic electromagnetic radiation. Thus they rep-
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resent a worthwhile contextual framework in which a DB
would certainly play an important role, and dissipation and
driving cannot be ignored. The biomolecules called DNA
represent a system in which localization and energy transfer
emerge as prevailing regulatory factors [17]. The Peyrard-
Bishop-Dauxois (PBD) model of double-stranded DNA is
arguably one of the most successful models for describing
this local pairing-unpairing (breathing) dynamics because it
reproduces a wide variety of qualitative results closer to ex-
periments related to strand-separation dynamics [18]. Joyeux
and Buyukdagli (JB) refined this model in such a way that it
can account for on-site finite stacking enthalpy [19,20]. Such
a modification yielded phase-transition curves in agreement
with the denaturation observed by Raman spectroscopy, and
it ensured a sharp melting transition [19,20]. Therefore, the
JB model is selected as the core model in this study. On the
one hand, the JB model was further analyzed free of external
forces and without damping in order to look for analytical
semidiscrete solutions and investigate their modulational sta-
bility [21–24]. On the other hand, motivated by the fact that
oscillating terahertz (THz) drive applied in DNA can generate
breathing states linked to gene expression [25–28], the PBD
model was modified in order to include a monochromatic
drive in the THz frequency range, and it was suggested
to represent a simplified model for DNA dynamics in the
presence of THz radiation [29–32].

Several studies taking into account the effects of dissipa-
tion (and/or of the periodic force) were performed on the DNA
models presented in Refs. [29–32], but none of these stud-
ies generated ILMs by taking into account both dissipation
and periodic force. In this study, we discuss the generation
of ILMs that are locked to a uniform periodic driver and
dissipation based in the JB model. The emphasis is on the
characterization and stability of these modes. The spatial and
temporal control of the chaotic behavior, as well as the effect
of inhomogeneity and an external force, are also analyzed.
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It is worth noting that numerous authors have studied
the effect of periodic forces on DBs of nonlinear lattices
without dissipative forces by separating the space and time
components [33–39]. Such a modification can straightfor-
wardly reduce the system to a single degree of freedom
embedding the parameters that are suitable for the generation
of a generalized shape for the DB [36], which can further be
analyzed using classical methods to study nonlinear dynam-
ical system responses, nonlinear resonance, and bifurcations
[40,41]. Surprisingly, none of the previous studies, including
damping and uniform periodic driving in nonlinear lattices,
attempted to conduct such an analysis with DBs. In addition,
these studies did not account for the effect of linear dispersion
[33–39]. To the best our knowledge, highly spatially confined
or compactlike DBs in a DNA lattice subjected to a uniform
oscillating radiation field and damping, and with the presence
of linear dispersion, have yet to be investigated. The present
study focuses on DNA responses in a variety of DBs under
such a physical context, including nonlinear resonance and
spatiotemporal chaos.

It has been reported that impurities in driven and dissipa-
tive lattices can trap, reflect, or partially transmit propagating
waves [42–44]. Although many authors have suggested that
in the absence of dissipation and periodic driving force, an
impurity in a DNA chain can trap and partially transmit the
breather during its propagation [45–53], to the best of our
knowledge taming the spatial and temporal dynamics of a
driven and damped DNA lattice through an impurity has not
yet been investigated.

To extend the previous work in this area, this paper in-
vestigates the existence of ILMs, orbital stability, and chaotic
dynamics in a DNA model, including an impurity. Following
the Introduction (Sec. I), the rest of the paper is structured as
follows: In Sec. II, the JB model as well as its linear dispersion
relation are derived. The ILMs are investigated by using the
space-time separation of variables and the anticontinuum limit
method. Also, the orbital stability is studied by means of
Floquet’s theory. In Sec. III, the nonlinear response of a single
based pair as well as chaos taming using an impurity are
analyzed. Section IV is devoted to a discussion of the obtained
results as compared to what was observed in the literature. In
Sec. V, the major achievements of the study are summarized,
and a conclusion is provided.

II. THE DNA LATTICE MODEL

Let us consider the Joyeux-Buyukdagli (JB) model for
DNA, whose Hamiltonian is given by [19,20]

H =
∑

n

1

2m
P2

n + D[1 − exp(−ayn)]2

+ �H

C
[1 − e−b(yn−yn−1 )2

] + Kb(yn − yn−1)2, (1)

where Pn = mẏn is the momentum, yn represents the trans-
verse stretching of the nucleotide pair at site n, and m denotes
the mass of a nucleotide. The variables D and a are the depth
and inverse width of the Morse potential. �H is a finite
stacking energy, Kb is the harmonic elastic constant, and b is
a spatial scale factor.

The dimensionless equation of motion corresponding to the
Hamiltonian Eq. (1) is

d2Yn

dτ 2
+ 2Kb

a2D
(2Yn − Yn+1 − Yn−1) − 2(e−Yn − 1)e−Yn

+ 2b�H

a2DC
[(Yn − Yn−1)e− b

a2 (Yn−Yn−1 )2

]

− 2b�H

a2DC
[(Yn+1 − Yn)e− b

a2 (Yn+1−Yn )2

] = 0, (2)

where Yn = ayn and τ = t
√

a2D/m.
Breathers of small amplitudes qualitatively describe the

DNA breathing modes and are thought to be the precursors
of the bubbles that appear prior to the transcription processes
[17,18]. To computationally study small-amplitude breathers,
the original approach in [54] is used, and it is assumed that the
oscillations of bases are large enough to be anharmonic, but
still insufficient to break the bond since the plateau of Morse’s
potential is not reached. It is then presumed that the base
nucleotides oscillate around the bottom of Morse’s potential.
On the one hand, the wave amplitude is considered big enough
that the nonlinear effect that plays an essential role in the DNA
molecules can still be incorporated [17,18]. On the other hand,
it is still very small compared with the amplitude of a total
separation of DNA nucleotide pairs. We can therefore expand
the terms exp [− b

a2 (Yn±1 − Yn)2] and exp [−Yn] in Eq. (2) up to
second and third order, respectively [21–24]. Note that various
regimes of motion (e.g., soliton, breather, and compacton)
were investigated via likewise approximations, and they are
supported by the original JB model [21–24].

To take into account the effect of viscosity of the medium
as well as the influence of an external field, the JB original
model is modified by incorporating Fn(t ) = An cos(ωt ) and ν

representing an external ac field and the effective damping of
the system, respectively. From a physical viewpoint, external
radiation effects on DNA are usually studied by means of
artificial time-periodic external radiation that can be applied
to the biomolecule from a laser source, an electronic device
using a frequency up-conversion scheme, or an accelerat-
ing electron-based source [26]. Irradiations from biomedical
imaging can be another controllable external source as well
[25]. Therefore, the equation of motion can be written as

Ÿn + �Ẏn − k2(Yn+1 − 2Yn + Yn−1)

+ω2
g

(
Yn + αY 2

n + βY 3
n

) − F0 cos(	τ )

+ k4[(Yn+1 − Yn)3 − (Yn − Yn−1)3] = 0. (3)

The remaining coefficients of Eq. (3) are

� = ν

a

√
m

D
, k2 = 2

a2D

(
Kb + b�H

C

)
, ω2

g = 2,

F0 = An

aD
, k4 = 2�Hb2

CDa4
, α = −3

2
, β = 7

6
,

	g =
√

a2D

m
, 	 = ω

	g
. (4)

By assuming yn(τ ) ∝ cos[qn − ϒ(q)τ ] in Eq. (3), retaining
only linear terms, and discarding dissipation and driving,
we can derive the following dispersion relation given by
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TABLE I. Numerical values for the parameters [12,13].

Parameter Value Unit

m 300 amu
D 0.04 eV
a 4.45 Å−1

b 0.10 Å−2

�H 0.44 eV
Kb 10−5 eV Å−2

C 2 no unit

ϒ(q) =
√

ω2
g + 4k2 sin2(q/2). It thus appears that the JB

model is a pass band filter with a phonon band frequency
between ωmin = ωg and ωmax =

√
ω2

g + 4k2 . In the first Bril-
louin zone (q ∈ [0 π ]) [55], using the values of parameters
in Table I, the allowed frequency band is bound by the fre-
quencies ωmin = 1.4142 and ωmax = 1.4907. In the following
subsection, the existence of discrete breathers of Eq. (3) is
investigated.

A. Discrete-breather generation by the time-space
separability method

Let us assume that the nonlinear excitation solution of
Eq. (3) is under the stationary form Yn(τ ) = φnG(τ ) [34–39],
with an arbitrary time-dependent amplitude G(τ ) describing
uniform oscillations of all the sites. After substitution of the
previously mentioned ansatz Yn(τ ) into Eq. (3), the following
equation is obtained:

φnG̈(τ ) + �φnĠ(τ ) − k2(φn−1 − 2φn + φn+1)G(τ )

+ k4G3(τ )[(φn+1 − φn)3 − (φn − φn−1)3]

+ω2
g

[
φnG(τ ) + αφ2

nG2(τ ) + βφ3
nG3(τ )

]
− F0 cos(	τ ) = 0. (5)

To understand the dynamics of different classes of so-
lutions of Eq. (5), it is useful to start with a straightfor-
ward case restricted to the dynamics of a few coupled base
pairs. This simple model gives a rather good approxima-
tion for the sites of a DB core, which are practically not
affected by the presence of long-range interactions [35].
A simplification is further operated by taking into account
only symmetric DBs centered at site j = 0 in the form
φn = (0, . . . , 0, φ−2, φ−1, φ0, φ1, φ2, 0, . . . , 0), and then set-
ting φ±( j+1) = (−k0) j+1φ0, with j = 0, 1, and k0 a real pa-
rameter smaller than 1 (|k0| < 1). This model approximation
is a clear-cut scheme to design more complicated types of DBs
with a tunable shape (varying φ0 and k0) [35]. After inserting
this form of φn in Eq. (5), we obtain for the case n = 0 and 1
the following set of equations:

φ0G̈ + �φ0Ġ + [
ω2

g + 2k2(1 + k0)
]
φ0G + αω2

gφ
2
0G2

+ [
βω2

g − 2k4(1 + k0)3
]
φ3

0G3 − F0 cos(	τ ) = 0, (6)

k0φ0G̈ + k0�φ0Ġ + [
k0ω

2
g + k2(1 + k0)2

]
φ0G

−αω2
gk2

0φ
2
0G2 + [

βω2
gk3

0 − k4
(
1 + k3

0

)
(1 + k0)3

]
φ3

0G3

+ F0 cos(	τ ) = 0. (7)
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FIG. 1. (a) Real roots of Eq. (8) in the (k0, φ0 ) plane. In this
figure, the dashed lines indicate the critical values of k0 with k−

0cr =
−0.0653 and k+

0cr = 0.0056. (b) DB frequency ωb vs φ0 for ILMs
obtained in I−, I+, and III of the (k0, φ0) plane. The dashed lines
indicate the location of the phonon band.

It should be noted that due to the symmetric term in Eq. (5), it
is not possible to separate the space and temporal parts as in
Refs. [34–39]. Inserting Eq. (6) into Eq. (7), one obtains the
following nonlinear algebraic equation (see the details in the
Appendix):

k4G3φ3
0k6

0 + 3k4G3φ3
0k5

0 + k4G3φ3
0k4

0 − [
βω2

gG3φ3
0

+ 4k4G3φ3
0

]
k3

0 + [
αω2

gφ
2
0G2 − 3k4φ

3
0G3 + k2φ0G

]
k2

0

+ [
k4φ

3
0G3 + βω2

gφ
3
0G3 + αω2

gφ
2
0G2 − F0

]
k0 − k2φ0G

+ k4φ
3
0G3 − F0 = 0. (8)

Without any loss of generality, it is assumed that G(τ = 0) =
G = 1. It is also assumed that the chain is initially nonexcited
[F0(τ = 0) = 0]. The resolution of Eq. (8) makes it possible
to know the couples (k0, φ0) for which the DBs exist. This res-
olution is made by means of the Newton-Raphson algorithm.

In Fig. 1(a), we report the roots of Eq. (8) in the range of
parameters (k0, φ0). For the region k0 � k−

0cr, there are two
branches of the values of φ0 that are solutions of Eq. (8),
in particular the upper branch indexed by I− represented
by a black hexagon, and the lower branch indexed by II−

represented by a red circle. For k0 ∈ ]k−
0cr, k+

0cr[, Eq. (8) has
no solution. When k0 � k+

0cr, Fig. 1(a) exhibits one branch of
solution that is further divided into three parts: III, I+, and
II+, represented by blue squares, black hexagons, and red
circles, respectively. It can be noticed that for low values of
φ0, the solutions are resonant with phonon modes (II− and II+

branches) since their frequencies are in the allowed phonon
band as depicted in Fig. 1(b) (zone in the red circle). I− and
I+ give localized mode solutions with dominant frequencies
located in the lower forbidden band gap but closer to ωmin

[see the curve in the black hexagon in Fig. 1(b)], while part
III gives localized mode solutions with frequencies located in
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the upper forbidden band gap [see the curve in the blue square
in Fig. 1(b)]. These DBs with fundamental frequencies in the
forbidden band gaps (III and I±) are prone to less radiation
and might have the propensity to keep their shape for longer
times [1,2]. It will therefore be interesting to carry out a
stability analysis of the ILM belonging to the branches I−,
I+, and III in order to see if such excitation is suitable for the
energy localization and transfer in the DNA in the context of
periodic driving and dissipation.

In physical applications, it is expedient to consider the
solutions that are stable against small perturbations. Thus
once a given DB solution Ŷn(τ ) is obtained, we add a small
perturbation to it [Yn(τ ) = Ŷn(τ ) + εn(τ )] and linearize the
equation of motion (3) with respect to εn(τ ):

ε̈n − k2(εn+1 − 2εn + εn−1) + ω2
g

(
1 + 2αŶn + 3βŶ 2

n

)
εn

− 3k4[(Ŷn+1 − Ŷn)2(εn+1 − εn)

+ (Ŷn−1 − Ŷn)2(εn−1 − εn)] = 0. (9)

Let us note that to obtain Eq. (9), the coefficient of dissipa-
tion is canceled since we seek nondissipative initial solutions.
To identify the orbital stability of these solutions, Floquet’s
analysis can be performed. Floquet’s method is the commonly
accepted method for DB stability analysis. A solution Ŷn(τ ) is
considered stable when, for any initial conditions, the linear
perturbation εn(τ ) does not grow exponentially with time.
When Ŷn(τ ) is time-periodic with period Tb, then Eq. (9) de-
fines a linear symplectic map between the initial perturbation
at τ = 0 and the perturbation at time τ = Tb, expressed by a

matrix M = M(Ŷn), known as the monodromy matrix:[
εn(Tb)
ε̇n(Tb)

]
= M

[
εn(0)
ε̇n(0)

]
. (10)

The complex eigenvalues λ and eigenvectors of the 2N × 2N
monodromy matrix M provide information about the stability
of the DB. If all eigenvalue moduli |λ| are less than (or
equal to) 1, then the DB is linearly (or marginally) stable.
Otherwise perturbations persisting and growing with time
(typically exponentially) correspond to a linearly unstable
DB.

The study of the orbital stability of ILMs derived from
Fig. 1(a) is performed over an interval of five DB periods (τ =
5Tb with Tb = 2π/ωb). The results are represented in Fig. 2,
which shows three types of solutions taken on branches I−, I+,
and III, with the corresponding Floquet multiplier on a unit
circle, as well as the corresponding power spectrum. We can
also observe that some solutions in branches I− and I+, which
possess nondominant frequencies inside the phonon band, are
linearly unstable since some eigenvalues of their monodromy
matrices leave the unit circle outward [see Figs. 2(b) and
2(e)]. However, the intrinsic localized modes of branch III of
Fig. 1(a) are marginally stable [see Fig. 2(h)].

B. Discrete breather generation by continuation to the
anticontinuous limit: Effects of dissipation and external driving

From the previous analysis, the DBs were estimated with-
out dissipation and external force for specific values of system
parameters. Thus in what follows, taking into account those
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FIG. 2. Discrete breather profiles taken in branches I−, I+, and III for (a) k0 = −0.8426, φ0 = 0.6546; (d) k0 = 0.0267, φ0 = −0.4915;
and (g) k0 = 0.0061, φ0 = −1.415, respectively, and corresponding Floquet multiplier spectra [middle column (b), (e), and (h)]. The right
column [(c), (f), and (i)] depicts power spectra of each ILM (the dashed lines indicate the location of the phonon band). For all these panels,
F0 = 0 and � = 0.
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FIG. 3. Evolution with respect to the DB frequency ωb of the
maximum modulus of the Floquet multiplier with F0 = 0, � = 0.

effects, the ILM with arbitrary frequency fb = ωb/2π in the
forbidden band gap is estimated regardless of the restrictions
imposed by the branches of existence calculated previously.
The DBs are spatially localized time-periodic solutions to the
nonlinear system of equations of motion in terms of Yn(τ ).
They are calculated as fixed points of the map,

P :

[
Yn(0)
Ẏn(0)

]
�−→

[
Yn(Tb)
Ẏn(Tb)

]
, (11)

where Tb = 1/ fb is the temporal period of the DB. The
estimate of the periodic DB solution of Eq. (3) is made by
using Newton’s method combined with the anticontinuous
limit described in [56]. This procedure is useful for obtaining
solutions with relatively high accuracy.

Figure 3 shows the absolute value of Floquet’s multipliers
λ for a one-site DB versus the driving frequency ωb. It can be
seen that there are very few values of ωb for which the discrete
breathers centered on one site are unstable.

Figure 4 illustrates two types of solutions whose DB
frequencies are worth, respectively, ωb = 0.8 [Fig. 4(a) for
F0 = 0, � = 0 and Fig. 4(c) for F0 = 0.75, � = 0] and ωb =
0.75 [Fig. 4(b) for F0 = 0, � = 0 and Fig. 4(d) for F0 = 0.75,
� = 0]. These solutions, obtained by the anticontinuous limit,

have their Floquet multipliers projected on the unit circle
(inset curve). The corresponding power spectrum of these
solutions (not shown here) reveals that these discrete breathers
have their frequency above the upper cutoff frequency of the
forbidden band of the phonon’s mode. The linear instability of
the solution obtained for ωb = 0.75 in the absence of viscosity
and periodic force is certainly due to the interaction of the
weak frequencies of its corresponding power spectrum with
the phonon’s mode. Curves (c) and (d) of Fig. 4 illustrate the
intrinsic localized modes in the presence of the driving force
only, and it arises that these solutions are linearly unstable for
the value F0 = 0.75.

For the choice of frequency ωb = 0.8, we also generated
DBs by taking into account simultaneously the viscosity of
the medium and the external force. These discrete breathers
take form for small values of � and F0 as predicted in [57].
Figure 5(a) represents this discrete breather and its corre-
sponding Floquet spectrum arising from its linear stability.
After building this discrete breather in the presence of dis-
sipation and external driving, the robustness of this solution is
subsequently checked. Figures 5(b) and 5(c) depict the abso-
lute value and argument (inset curves) of the eigenvalues of
the DB with ωb = 0.8, F0 = 0.06. An instability is observed
for a critical viscosity νcr = 0.087 ps−1 [Fig. 5(b)], while in
Fig. 5(c) there is a very close domain where the constructed
discrete breather is marginally stable. Let us note that for
increasingly significant values of F0, the generated discrete
breathers become increasingly unstable.

In the following section, we will analyze the influence
of the impurity on DNA dynamics subjected to periodic
excitation.

III. EFFECT OF THE IMPURITY ON DNA DYNAMICS

It is well known that the DNA molecule can be subjected to
genetic changes during the transmission of hereditary features
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FIG. 4. Discrete breather profiles for ωb = 0.8 [(a) F0 = 0, � = 0; (c) F0 = 0.75, � = 0] and for ωb = 0.75 [(b) F0 = 0, � = 0; (d) F0 =
0.75, � = 0]. The inset shows the corresponding Floquet multiplier spectra of these DBs.
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FIG. 5. (a) Discrete breather profiles under periodic driving and
viscosity and the corresponding Floquet multiplier spectra for ωb =
0.8, 	 = 2ωb, F0 = 0.06, and � ≈ 1.95 × 10−4. Panels (b) and
(c) display the absolute value and argument (inset) of the eigenvalues
of the continued discrete breather.

from one generation to another. These changes can have
dramatic consequences on the descendents of a specie. The
genetic changes can be centered in a precise site, or extended
on a portion of the DNA. In the present section, we are
interested in the change that is centered on a site. Taking into
account the fact that in the DNA molecule the hydrogen bonds
between adenine and thymine are about 2, whereas between
guanine and cytosine they are about 3, a change of this

configuration can lead to another sequence that can be view as
an impurity. Thus, the impurity throughout this section will be
defined by the coefficients of the Morse potential, symbolizing
the interaction between the pairs of bases.

It is of primary importance to start with the study of only
one base pair subjected to the action of a periodic force
and the viscosity. This will enable us to gain insight into
the characteristics of the amplitude response of the system
according to the frequency of the external force. It allows
us to better probe and spot which features of the single cell
are crucial for the emergence of the collective phenomenon of
localization in the lattice. Thus, the dynamics of an uncoupled
basic pair (k2 = k4 = 0) is given by the equation

Ÿn(τ ) + �Ẏn(τ ) +
3∑

j=1

α jY
j

n (τ ) = F0 cos(	τ ),

α1 = ω2
g, α2 = αω2

g, α3 = βω2
g. (12)

Due to the nonlinearity of Eq. (12), it is very difficult to
obtain the exact solution. However, techniques were devel-
oped in the literature to approach an analytical solution. One
of these is the harmonic balance method, which approximates
periodic solutions of nonlinear differential equations by finite
sums of trigonometric functions [40]. To do so, it is assumed
that the periodic-like response of Eq. (12) can be written as

Yn(τ ) = B0 + A1 cos(	τ ) + A2 sin(	τ ), (13)

where B0, A1, and A2 are the coefficients to be determined.
Substituting Eq. (13) into Eq. (12) and equating the coeffi-
cients of the constant term and the first-harmonic components,
we obtain

−�	A1 + [(
3B2

0 + 3
4 A2

)
α3 + 2α2B0 + α1 − 	2

]
A2 = 0,[(

3B2
0 + 3

4 A2
)
α3 + 2α2B0 + α1 − 	2

]
A1 + �	A2 = F0,(

B2
0 + 3

2 A2
)
α3B0 + (

B2
0 + 1

2 A2
)
α2 + α1B0 = 0,

(14)

where A2 = A2
1 + A2

2. The decoupling of B0 from A1 and A2

in Eqs. (14) yields after some arrangements the following
nonlinear algebraic equation:

9∑
j=0

e jB
j
0 = 0, (15)

where the coefficients e j are

e0 = 2F 2
0 α2

3,

e1 = 4α1α2

[
(	2 − α1)2 + 	2�2 + 9F 2

0 α3

2α1

]
,

e2 = 4α2
(
α2

2 + 6α1α3
)
	4 + 4α2

[
(�2 − 6α1)α2

2 + 3α1α3(�2 − 3α1)
]
	2 + 4α2

[
5α2

1α
2
2 + 3α3

1α3 + 27

2
F 2

0 α2
3

]
,

e3 = 4α3
(
9α1α3 + 7α2

2

)
	4 + 4α3

[
9α1α3(�2 − α1) + (7�2 − 38α1)α2 − 4

α4
2

α3

]
	2 + 32α1α

4
2 + 54α3

3F 2
0 + 9α2

3α
3
1

+ 100α2
1α

2
2α3,
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e4 = 60α2α
2
3	

4 + 4α2α3
[
3α3(5�2 − 26α1) − 31α2

2

]
	2 + 16α5

2 + 171α2
1α

2
3α2 + 220α1α3α

3
2,

e5 = 36α3
3	

4 + 12α2
3

[
3α3(�2 − 6α1) − 29α2

2

]
	2 + 99α2

1α
3
3 + 136α3α

4
2 + 579α1α

2
2α

2
3,

e6 = 5α2α
2
3

[−84α3	
2 + 93α2

2 + 138α1α3
]
,

e7 = −180α4
3	

2 + 15α3
3

(
21α1α3 + 53α2

2

)
,

e8 = 675α2α
4
3,

e9 = 225α5
3 . (16)

For any value of B0 obtained from Eqs. (15), A1 and A2 can
be determined using Eqs. (14). Then, the amplitude-frequency
response relationship can be calculated by

A = |B0| +
√

A2
1 + A2

2. (17)

Using the Newton-Raphson algorithm, one finds B0 when the
frequency 	 varies.

Figure 6 shows the extreme amplitude-frequency
[max(Yn) = A ] and the response of the single base pair,
obtained analytically and numerically by integrating Eq. (12)
with the standard fourth-order Runge-Kutta algorithm. This
figure shows the value of the frequency of the external force
to be avoided because it is responsible for the occurrence
of the resonance as well as jump phenomena. Thus, in the
rest of the paper it is considered that 	 = 1.2. Taking into
account the fact that F0 has an enormous influence on the
amplitude response of the system, it is primordial to know
the response of the unit cell for varying values of the
amplitude F0. Figure 7 represents the bifurcation diagram of
a single base pair under periodic excitation. One observes in

Ω
1 1.2 1.4 1.6 1.8

m
a
x
(Y

n
)

0

0.1

0.2 Analytical
Numerical(a)

Ω
1 1.2 1.4 1.6 1.8

m
a
x
(Y

n
)

0

0.5

1

1.5
(b)

F0 = 0.03

F0 = 0.01

F0 = 0.005

FIG. 6. (a) Extreme amplitude-frequency responses of a single
base pair [max(Yn) = A ], obtained analytically (shown by a dot) and
numerically (shown by a circle) from the integration of Eq. (12) with
F0 = 0.005. (b) Extreme amplitude-frequency response of a single
base for different values of drive intensity and with � = 1.952 ×
10−2 [the numerical curves with the same method of (a) were found
concordant with this analytical result of (b). It was not shown here
for the sake of clarity and to avoid an overload of the graphs].

this figure that there are values of F0 for which the dynamics
of a unit cell exhibits chaotic, quasiperiodic, or periodic
behavior.

Knowing the chaotic behavior of the unit cell under peri-
odic excitation, it is of primary importance to explore the dy-
namics of the coupled system in the presence of an impurity.
Let us analyze the influence of a specific impurity in the DNA
by taking into account the presence of a periodic force and
viscosity. For that purpose, the new coefficients of the Morse
potential, including the impurity localized at a site n0, are
a′

n = [(μ − 1)δnn0 + 1]a and D′
n = [(μ − 1)δnn0 + 1]D, with

0.399 � μ � 1.5 and δnn0 denoting the Kronecker symbol.
For all the upcoming numerical simulations, the driving

amplitude and the frequency values are chosen as F0 = 8 and
	 = 1.2. Moreover, free boundary conditions are assumed.
For these previous specific values, a single DNA base pair
exhibits a strange attractor, a large number and dense set of
orbits in the phase space, and a strictly positive Lyapunov
exponent (results not shown in the paper). To detect the chao-
tic behavior of a whole DNA molecule subjected to the
influence of the impurity, it is more convenient to measure
the average speed of the pairs of bases given by

σ ( jT ) = 1

N

n=N∑
n=1

Ẏn( jT ), (18)

at times that are integer multiples of the forcing period T =
2π/	. This measure is computed at each period, and it is
plotted as a function of jT , i.e., at each subsequent period.

Figure 8 shows the average base-pair velocity σ (τ ) at τ =
30T, 31T, . . . , 40T as a function of μ. This global bifurcation
of the whole lattice according to the value of the impurity is

F0
5.5 6 6.5 7 7.5 8

Y
n

-2

0

2

4

FIG. 7. Bifurcation diagram of a single base pair as a function of
F0 with 	 = 1.2.
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μ0.4 0.6 0.8 1 1.2 1.4

σ

2.8

3

3.2

3.4

μ0.4 0.6 0.8 1 1.2 1.4

σ

0.2

0.4

0.6

0.8

1

(a)

(b)

FIG. 8. Chaotic and regular dynamics as a function of the de-
gree of impurity. The average velocity at τ = 30T, 31T, . . . , 40T
is shown for each value of impurity parameter μ. Top panel: for
n 	= n0, VM = 0.8D(e−0.8ayn − 1)2; bottom panel: for n 	= n0, VM =
1.2D(e−1.2ayn − 1)2.

depicted. It can be clearly seen that when the parameter μ

of the impurity matches that of the other sites of the lattice,
all the base pairs vibrate collectively with a high number of
local minima. This means that the coupling between DNA
base pairs does not inhibit the chaotic dynamics of isolated
elements indicated before. In comparison with the bifurcation
curve given in Fig. 8, we observe that when the Morse
potential is not very deep, the behavior of the chains subjected
to an impurity exhibits two quasiperiodic zones obtained for
0.399 � μ � 0.921 and 1.152 � μ � 1.272 [see Fig. 8(a)].

F0
0 2 4 6 8 10 12

σ

-0.2

-0.1

0

0.1

0.2

0.3

FIG. 10. Chaotic and regular dynamics of a single excited DNA
base pair at site n0 vs the amplitude of the exiting force F0. 	 = 1.2,
D = 0.04 eV, and a = 4.45 Å−1.

The chain becomes chaotic for all other values of μ out
of these intervals. Figure 8(b) obtained for a deeper Morse
potential exhibits three zones where the chain has a chaotic
behavior (for 0.399 � μ � 0.623, 0.783 � μ � 1.188, and
1.28 � μ � 1.44) and quasiperiodic dynamics elsewhere. It
is observed that a nonintrinsic localized mode can remain
quasiperiodic with time (Fig. 9, top left and bottom left), or it
can still be present without inhibition of the collective chaotic
vibration of the lattice (Fig. 9, top right and bottom right).
Surprisingly, the same phenomena occur when only a single
site of the lattice is excited (Fig. 10). For a homogeneous DNA
chain, periodic driving applied to one site can induce either
chaotic or regular collective motion.

IV. DISCUSSION

Most of the analytical studies devoted to the understanding
of driven and damped nonlinear lattices in which DBs are
explicitly constructed by an exact separation of their time
and space dependence possessed models with either purely

FIG. 9. Spatiotemporal position patterns for chaotic and regular dynamics in an array of N = 31 coupled DNA base pairs. Top left
panel: for n 	= n0, (a′

n, D′
n) = 0.8(a, D), at n = n0 (a′

n, D′
n) = 1.215(a, D); top right panel: for n 	= n0, (a′

n, D′
n) = (a, D), at n = n0 (a′

n, D′
n ) =

1.215(a, D). Bottom left panel: for n 	= n0, (a′
n, D′

n ) = 1.2(a, D), at n = n0 (a′
n, D′

n ) = 0.688(a, D); bottom right panel: for n 	= n0, (a′
n, D′

n ) =
1.378(a, D), at n = n0 (a′

n, D′
n) = 1.2(a, D). These coefficient values of the Morse potential are taken from Figs. 8(a) and 8(b), respectively.

052210-8



TAMING INTRINSIC LOCALIZED MODES IN A DNA … PHYSICAL REVIEW E 99, 052210 (2019)

anharmonic short-range interaction potentials, nonlinear on-
site potential, or nonlinear dispersion [33–39]. By using a
simplified DB core structure as in Ref. [36], the present
study provided rich families and several branches of ILM
solutions in which there are branches of orbital stability and
instability as well as the mixing of them. We showed that
the dominant frequency of the DBs falls mostly outside the
phonon band, which is naturally expected for nonlinear ILMs
[3,57]. Note that this method of separation of variables was
mostly applied in nonlinear lattices, where there is no linear
dispersion and thus no phonon band [34,36]. This is not the
case in the present study. In the current research work, the
core model is reduced into an algebraic equation in which
the existence of discrete ILMs is demonstrated. Note that
Ndjoko et al. [23] and Gninzanlong et al. [24], respectively,
obtained highly spatially confined solitons from continuous
and discrete versions of the JB model without external driving
and dissipation.

It was reported that impurities in driven and damped
nonlinear electrical lattices can be used for movement control
of ILMs [10,14], as well as for phase synchronization of
vibrations of coupled pendulums [58,59]. These imperfections
in the lattice modify the nonlinear frequency response of the
system [60–62]. As compared to the previously mentioned
studies [10,14,58–60,62], here it is demonstrated that a
single defect in the local potential energy of the nonlinear
chain can produce a nonintrinsic localized mode as well
as synchronized spatiotemporal patterns when the entire
set of oscillators and the impurity exhibit chaotic behavior.
Moreover, it is shown that the periodic excitation applied at
a specific single site can create regular spatial and temporal
patterns in the whole lattice even if all sites are in a chaotic
environment. This implies that the impurity and driving can be
used as control parameters on the dynamics of the nonlinear
chain. The nonlinear frequency response of a homogeneous,
driven, and damped nonlinear lattice was analyzed [63–66].
However, the discrete waves constructed in these studies were
not exponentially localized, possibly due to the resonance
between phonon modes and the ILM [67].

The localized mode formation in driven and damped DNA
was studied mostly by observing bifurcations and numerical
simulations in the Dauxois-Peyrard-Bishop model [29–32].
Stacking interactions between neighbor bases along the DNA
axis stabilize the secondary DNA structure. They hold one
base over the next one and form a stack of bases [17]. This
stacking interaction, however, does not incorporate any char-
acteristic energy associated with it [18]. Inspired by the anhar-
monic model suggested by DPB, Joyeux and Buyukdagli (JB)
proposed a new model based on site-specific enthalpy that is
closer to the statistical models [19,20]. This study accounted
for the damping and driving as in Refs. [29–32], but it in-
vestigated the generation of staggered or unstaggered discrete
ILMs and their stability based on the JB model. The nonlinear
response of the DNA as a function of driver amplitude and
frequency was also analyzed. In the absence of dissipation
and periodic driving force, the impurity in the DNA chain
can trap, partially transmit, or reflect the breather during its
propagation [45–53]. Here it is demonstrated that a base pair
with different potential energy of interaction (impurity) can
suppress or induce the spatial and temporal chaotic dynamics.

The model used here has been proposed by Joyeux and
Buyukdagli to explain homogeneous and inhomogeneous
DNA denaturation and the finite stacking enthalpy energy of
base pairs [19,20]. This underscores the fact that our results
can be useful to explore some properties of DNA chains. To
illustrate this, if a DNA molecule exposed to external radiation
and viscous damping can corner the energy at the inhomo-
geneity, these factors can therefore foster the occurrence of a
transcription bubble [17]. These trapped ILMs may therefore
operate as energy pools and can reassign this encapsulated
energy to a localized and propagating transcription bubble.
It is reported that periodic excitation on a DNA lattice can
induce stable or unstable base-pair vibration or accelerate the
separation of the double helix into single helices [29–32].
However, in the presence of such external forcing and damp-
ing, as expected for most nonlinear systems, the DNA lattice
can undergo a transition to chaos. Nevertheless, the results
obtained in the present study suggest that a suitable balance
between the effect of these external factors and inhomogeneity
can prevent and control the chaotic spatiotemporal dynamics.

V. CONCLUSION

In this paper, the formation of ILMs, their stability, and
their chaotic dynamics are studied in damped and periodically
driven DNA. The effect of inhomogeneity on the spatiotem-
poral dynamics is also investigated. The regions of existence
and stability of one-peak unstaggered ILMs were character-
ized. These coherent localized modes of different kinds were
also classified on the basis of stability properties and their
corresponding Floquet spectra. It is demonstrated that a chain
of chaotic DNA base pairs can be frequency-locked into a
spatiotemporal pattern by incorporating a proper impurity at a
site in the lattice. In most cases, a single impurity can tame
chaos. It is found that a single nonchaotic defect with an
appropriate Morse potential depth can control and organize
the dynamics of the lattice. Increasing the potential depth
increases the depth domain of the impurity base pair for which
the organization can be observed. It is shown that when the
periodic excitation is only applied at a specific single site, it
can create regular spatial and temporal patterns in the whole
lattice even when all the sites are in a chaotic regime.
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APPENDIX: DERIVATION OF EQ. (8)

In this Appendix, we explain the procedure that allowed
us to obtain the algebraic equation (8). Let us rewrite
Eqs. (6) and (7) as the following Eqs. (A1) and (A2),
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respectively:

φ0G̈ + �φ0Ġ = F0 cos(	τ ) − [
ω2

g + 2k2(1 + k0)
]
φ0G − αω2

gφ
2
0G2 − [

βω2
g − 2k4(1 + k0)3

]
φ3

0G3, (A1)

k0φ0G̈ + k0�φ0Ġ = −F0 cos(	τ ) + αω2
gk2

0φ
2
0G2 − [

βω2
gk3

0 − k4
(
1 + k3

0

)
(1 + k0)3

]
φ3

0G3 − [
k0ω

2
g + k2(1 + k0)2

]
φ0G.

(A2)

The multiplication of Eq. (A1) by k0 leads to

k0φ0G̈ + k0�φ0Ġ = k0F0 cos(	τ ) − k0αω2
gφ

2
0G2 − k0

[
βω2

g − 2k4(1 + k0)3]φ3
0G3 − k0

[
ω2

g + 2k2(1 + k0)
]
φ0G. (A3)

It can be observed that the left-hand side of Eq. (A3) is identical to the left-hand side of Eq. (A2). With a substitution of the term
(k0φ0G̈ + k0�φ0Ġ) obtained from Eq. (A3) by its expression into Eq. (A2) and by collecting the terms in k0, we obtain

k4G3φ3
0k6

0 + 3k4G3φ3
0k5

0 + k4G3φ3
0k4

0 − [
βω2

gG3φ3
0 + 4k4G3φ3

0

]
k3

0 + [
αω2

gφ
2
0G2 − 3k4φ

3
0G3 + k2φ0G

]
k2

0

+ [
k4φ

3
0G3 + βω2

gφ
3
0G3 + αω2

gφ
2
0G2 − F0 cos(	τ )

]
k0 − k2φ0G + k4φ

3
0G3 − F0 cos(	τ ) = 0. (A4)

Equation (A4) is reduced to Eq. (8) by setting τ = 0.
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