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Nonlinear acoustic metamaterials offer the potential to enhance wave control opportunities beyond those
already demonstrated via dispersion engineering in linear metamaterials. Managing the nonlinearities of a
dynamic elastic system, however, remains a challenge, and the need now exists for new strategies to model
and design these wave nonlinearities. Inspired by recent research on soft architected rotating-square structures,
we propose herein a design for a nonlinear elastic metasurface with the capability to achieve nonlinear acoustic
wave reflection control. The designed metasurface is composed of a single layer of rotating squares connected
to thin and highly deformable ligaments placed between a rigid plate and a wall. It is shown that during the
process of reflection at normal incidence, most of the incoming fundamental wave energy can be converted
into the second harmonic wave. A conversion coefficient of approximately 0.8 towards the second harmonic is
derived with a reflection coefficient of <0.05 at the incoming fundamental frequency. The theoretical results
obtained using the harmonic balance method for a monochromatic pump source are confirmed by time-domain
simulations for wave packets. The reported design of a nonlinear acoustic metasurface can be extended to a
large family of architected structures, thus opening new avenues for realistic metasurface designs that provide
for nonlinear or amplitude-dependent wave tailoring.
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I. INTRODUCTION

Acoustic metamaterials composed of local resonators have
proven to be of great interest, due to their ability to per-
form a variety of wave control functionalities at wavelengths
much longer than the dimensions of the resonant elements. A
wide array of novel acoustic phenomena such as slow sound
[1–3], negative refraction [4–10], subwavelength wave guid-
ing [11,12], sound absorption [13–20], and cloaking [21–24]
have been demonstrated in appropriately designed metama-
terials. Compared to the metamaterials composed of linear
resonators, nonlinear metamaterials offer a rich and diverse
set of nontrivial acoustic phenomena, including asymmetric
transmission [11,25–28], nonlinear pulse and soliton propa-
gation [29–31], harmonic generation [32,33], and breathers
[34,35]. Nevertheless, the design of nonlinear metamaterials,
which was initially investigated in optics for the purpose of
enhancing the higher harmonic generation [36–38], has been
studied much less extensively in the acoustic field [39].

The key limitations in developing nonlinear acoustic meta-
materials pertain to the typically weak efficiency of their
nonlinear response, combined with a lack of control over
this nonlinearity. Examples of tailoring the acoustic or elastic
wave nonlinearity of a system are found in granular crystals,
yet the tunability is intrinsically limited due to the Hertz-
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Mindlin contact behavior [40,41]. Being able to manage the
wave nonlinearity of a system, over a wider parameter space,
thus appears as the main challenge to developing nonlinear
acoustic metamaterials.

In studying a lumped-element model of a nonlinear meta-
surface [42], we recently demonstrated that nonlinear acous-
tic effects can be enhanced in a subwavelength metasurface
comprising nonlinear oscillators, because of the resonance
process. This process intrinsically increases the characteristic
interaction times as well as local wave amplitudes. We have
reported a nonlinear frequency conversion effect from the
incoming fundamental wave to the reflected second harmonic.
However, the key link between the lumped-element model of
this nonlinear metasurface and a realistic structure is missing.
More specifically, the method of designing elastic springs
with an effective quadratic nonlinearity still needs to be
determined.

Recent research has demonstrated that soft architected ma-
terials enable manipulating and controlling elastic and acous-
tic waves [31,43–48]. The intrinsic structure and property
of this class of architected materials are not only modifi-
able by harnessing the elastic buckling resulting from differ-
ent statically produced predeformations [44,46,47], but also
dynamically tunable over a broad range of frequencies by
taking advantage of geometric nonlinearities in the basic
building blocks [31,48]. As such, these nonlinearities provide
the opportunity to expand the ability of existing metamaterials
and enable them to support a wide variety of dispersive and
nonlinear wave propagation.
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Inspired by the latest research on the dynamics of soft
architected materials comprising rotating units [31,49], our
attention has been drawn to the fact that the local rotational
degree of freedom necessarily leads to the presence of sinu-
soidal functions of the angle of rotation in the motion equa-
tions. These nonlinear functions of wave variables constitute
geometric-type sources of wave nonlinearity and are found to
depend on the building blocks (elasticity, geometry, inertia) of
the architected structure. Consequently, in the aim of propos-
ing a realistic design of a nonlinear elastic metasurface that
accomplishes the same nonlinear conversion as in Ref. [42]
but with a higher efficiency and over a much larger parameter
space, the present paper analyzes a metasurface composed
of a single layer of rotating units that are connected with a
rigid moving plate and a wall, via thin and highly deformable
ligaments. Special focus is placed on the nonlinear reflection
process, thus leading to an optimal conversion from an inci-
dent sinusoidal wave towards its reflected second harmonic.
By adjusting the physical properties of the metasurface, the
desired nonlinear conversion is demonstrated to be feasible
over a wide parameter space, hence enabling the extension of
the proposed single design to a family of dynamic rotating-
element metastructures. The predictive theoretical framework
developed is also expected to help manage the wave nonlinear-
ity by metamaterials and moreover guide future experiments
in this field.

II. NONLINEAR ELASTIC METASURFACE DESIGN AND
THE REFLECTION PROBLEM AT NORMAL INCIDENCE

In the previous research on wave propagation in a soft
architected material made of rotating square units [31], it has
been demonstrated that the studied three-dimensional printed
material can be efficiently described by a lump elastic model.
Accordingly, based on the theoretical model employed in
Ref. [31], we propose herein a realistic design for a nonlinear
metasurface. Note that the spring stiffness can be tuned by
printing ligaments with different geometrical parameters or
geometries, or by changing the printed material, in principle.
As shown in Fig. 1, this design comprises periodically ar-
ranged rigid squares, connected via ligaments at their corners
to a moving rigid plate (at the front end of the single square
layer) and a fixed wall (at the back end of this square layer).
The moving plate is assumed to be nondeformable, and thus
its possible vibration modes are not considered here. The
ligaments are considered to be thin, massless and highly
deformable, thus playing the role of elastic springs. The
metasurface unit cell is composed of two identical squares
with elementary masses m sandwiched between the solid
plate with a surface mass density of 2m0 and the rigid wall.
The two unit cell squares, featuring the same initial angle of
rotation θ0 as defined in Fig. 1, are placed in symmetrical
positions at rest. Since a horizontal force applied to the
plate produces simultaneously square translation and rotation,
we take into account three different springs at each square
vertex, to simulate the elastic behaviors of the ligaments: a
longitudinal (compression or tension) spring with stiffness kl ,
a shear spring with stiffness ks, and a bending spring with
stiffness kθ . During the structure deformation, the connections
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FIG. 1. Nonlinear metasurface design: (a) Single layer of peri-
odically arranged rigid squares sandwiched between a moving rigid
plate and a fixed wall, with elastic springs running between all
the elements. The propagation medium (1) in front of the designed
metasurface is assumed to be semi-infinite. (b) The metasurface unit
cell is composed of two identical squares with elementary mass
m. The front rigid plate has an elementary mass 2m0. (c) Due to
symmetry, taking into account the motion of just one square of
mass m and the face plate with a mass per unit length of m0 is
demonstrated to be sufficient for the considered reflection problem
at normal incidence.

elements are maintained, as assumed in the work of Deng
et al. [31].

The proposed metasurface structure is assumed to be in-
finitely long along the vertical direction y, while the plate
thickness along x is assumed to be significantly less than that
of the single square layer. The considered design then is a
two-dimensional metastructure in the (x, y) plane; moreover,
the elementary lateral surface area of the metasurface unit cell
is denoted by S.

Throughout this paper, focus is placed on the reflection
process by the designed metasurface, with the propagation
medium (1) in front of the metasurface assumed to be semi-
infinite. More specifically, in order to reduce the complexity of
the considered nonlinear problem, only the normal incidence
is taken into account in our study. The metasurface width h
along the x direction is assumed to be much smaller than the
acoustic wavelength in medium (1), i.e., h � λ. Let us now
consider a plane stress wave σinc of amplitude Ainc incident
from −∞ and propagating along the positive x direction. The
problem therefore is one-dimensional, and the incident and
reflected waves can be written as a function of x − ct and
x + ct , respectively (using the time convention iωt), with c
denoting wave velocity in the propagation medium. The total
stress σ can be decomposed into an incoming stress wave and
a reflected stress wave σ = σinc + σref . The one-dimensional
wave equation,

ρ
∂2ux

∂t2
= ∂σ

∂x
, (1)
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with ρ as the mass density of the propagation medium and
ux the displacement along the x direction, must be satisfied
everywhere and especially on the metasurface at x = 0, which
leads to the following relationship between the incident and
reflected waves for the considered problem:

σref = σinc + ρc
∂u1

∂t
, (2)

where u1 denotes the displacement of the plate with a surface
mass density of m0.

Since the single square layer is periodically arranged and
assumed to be infinitely long, with homogenous excitation
along y, the two squares of each unit cell translate with
the same displacement and moreover rotate with the same
dynamic angle yet in opposite directions. Consequently, the
motions of just one square and of its face plate are sufficient
to describe the full dynamics.

For a systematic analysis, we introduce the following
dimensionless parameters: normalized displacements Ui =
ui/2l (i = 1, 2) of the plate and squares, respectively, with

2l denoting the diagonal length of the squares, pulsation
� = ω/ω0 with ω0 = √

kl/m, time τ = ω0t , inertial moment
of squares α = J/ml2, normalized shear, bending stiffnesses
Ks = ks/kl and Kθ = kθ /kl l2 respectively, and mass ratio
αm = m0/m.

Based on previous results and validations [31,49], the
springs are assumed to behave linearly, and dissipation is
accounted for via linear viscous damping associated with the
respective translation and rotation motions of each square.
The characteristic dissipation parameters �u and �θ are nor-
malized as ηu = �u/mω0 and ηθ = �θ/mω0 for the translation
and rotation, respectively. In Ref. [42] the effects of different
levels of metasurface intrinsic dissipation have been studied:
a stronger dissipation requires larger excitation amplitudes to
achieve the same quantitative nonlinear effects in reflection. In
the present work, it is considered that the dissipation remains
relatively weak with a dimensionless value of ηu = ηθ =
0.001. Thus, for each square and the front plate occupying a
lateral surface area S in the (y, z) plane, the governing motion
equations are written as

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

αm
∂2U1
∂τ 2 = − 2 finc(�, τ ) − γ ∂U1

∂τ
− U1 + U2 − ηu

∂U1
∂τ

+ ηu
∂U2
∂τ

+ 1
2

[
cos(θ0) − cos(θ0 + θ ) + ηθ sin θ0

∂θ
∂τ

]
,

∂2U2
∂τ 2 = U1 − 2U2 + ηu

∂U1
∂τ

− 2ηu
∂U2
∂τ

,

α ∂2θ
∂τ 2 = − 6Kθ

(
θ + ηθ

∂θ
∂τ

) + 2
(
U1 + ηu

∂U1
∂τ

)
sin(θ0 + θ ) + 6 sin(θ0 + θ )

[
cos(θ0 + θ ) − cos(θ0) − ηθ sin θ0

∂θ
∂τ

]
− 2Ks cos(θ0 + θ )

[
sin(θ0 + θ ) − sin(θ0) + ηθ cos θ0

∂θ
∂τ

]
,

(3)

where finc(�, τ ) = σinc(�, τ )S/2kl l denotes the normalized
force applied to the plate due to the incident stress wave,
γ = ρcS/mω0 the dimensionless impedance parameter rep-
resenting the ratio of the propagation medium (1) impedance
to the mechanical impedance of the metasurface.

When a normal incident stress wave interacts with the
metasurface, and under the condition that the squares are
initially rotated at nonzero angles θ0, the translation of the
front plate induces both translation and rotation of the squares,
along the x direction and around the z direction, respec-
tively. Under a linear assumption for all springs, the elastic
forces applied to each metasurface element are proportional
to the spring elongations. However, since the square units
rotate, the geometric nonlinearity of the structure is activated
due to the sinusoidal dependence of spring deformations on
the angle of rotation of the squares, as shown in Eq. (3).
Interestingly, as a consequence of this geometric nonlinearity
dependent on structural design, it can be tuned along with the
linear elastic properties in order to produce specific nonlinear
wave effects.

In the presence of nonlinearity, the reflected wave spectrum
from a monochromatic incident wave at frequency ω may
contain harmonics of the incident wave. Consequently, it
is assumed that at the boundary x = 0, the reflected wave
is composed of harmonics with the complex amplitude R̃n

(1 � n � N) relative to the incident wave amplitude, denoted
by Ãinc. In the following discussion and for the sake of
simplicity, R̃n and Rn will be used to represent the complex

reflection coefficient of the nth harmonic and its magnitude,
respectively.

III. ANALYSIS OF THE LINEARIZED METASURFACE:
PARAMETER DEFINITIONS AND

FREQUENCY RESPONSE

In the linear and weakly dissipative configuration, i.e.,
with fixed dissipation parameters ηu = ηθ = 0.001 and a
linear approximation of trigonometric functions as cos(θ0 +
θ ) ≈ cos θ0 − sin(θ0)θ and sin(θ0 + θ ) ≈ sin θ0 + cos(θ0)θ ,
the resonance frequencies ωi (i = 1, 2, 3) of the considered
metasurface depend on all the intrinsic parameters, i.e., the
initial angle of rotation θ0, the mass ratio αm, the inertial
moment α, the normalized shear stiffness Ks, and the bend-
ing stiffness Kθ . Using realistic materials studied earlier in
Ref. [49], it is assumed here that the normalized shear and
bending stiffnesses are both less than 0.1 and lie at the same
value, i.e., Ks = Kθ � 0.1. Additionally, the initial angle of
rotation θ0 is set smaller than 30◦. In Secs. III and IV the focus
is placed on the case of homogeneous squares, i.e., α = 1/3,
though other types of rotating elements with different inertial
moments are considered in Sec. V.

In a previous theoretical study of a lumped-element, dual-
resonance elastic metasurface model [42], it was demon-
strated that to conduct the optimal frequency conversion from
fundamental wave to second harmonic through the reflec-
tion process, a ratio of 2 between the two linear resonance
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FIG. 2. Eigenfrequencies and eigenvectors of the considered
metasurface. In the linear dissipative regime, three resonance
frequencies ωi (i = 1, 2, 3) are presented (a), related to either
a translation-dominated movement, denoted ωu, or a rotation-
dominated movement denoted ωθ , or a combination of both. When
the resonance frequency condition ωu = 2ωθ is satisfied, the mass
ratio αm is determined for different values of initial angles of rotation
θ0 and stiffnesses Ks and Kθ (b). The ratio of θ to U1 is examined
as a function of θ0 and Ks = Kθ as well, at resonance frequencies ωθ

and ωu in panels (c) and (d), respectively. The optimal value range of
stiffness and initial angle of rotation is indicated by the white dotted
line in both panels (c) and (d).

frequencies of the metasurface is needed. The targeted con-
version takes place with an excitation at the first resonance
frequency. Regarding the current metasurface design with
three degrees of freedom (rotation and translation of the
squares, plus translation of the front plate), three resonance
frequencies are involved ωi (i = 1, 2, 3) with ω1 < ω2 < ω3.
Since the (geometric) nonlinearity is primarily excited by
the rotation of squares, the excitation frequency ω should
coincide with the resonance frequency, denoted as ωθ , which
corresponds to a rotation-dominated mode. Moreover, one of
the other resonance frequencies, denoted here as ωu, should
match 2ωθ , in order to approximate the optimal conversion
efficiency.

To satisfy the condition ωu = 2ωθ , the mass ratio αm can
be determined in the linear and weakly dissipative case [see
Fig. 2(b)]. By simultaneously varying stiffnesses (Ks, Kθ ) and
initial angle of rotation θ0 in their considered intervals, the
eigenmodes can be characterized by the magnitude of the
ratio θ/U1 taken at the different resonance frequencies. A
ratio θ/U1 with a magnitude greater than unity indicates a
rotation-dominated mode, whereas a translation-dominated
mode occurs with a ratio less than unity. Figures 2(c) and 2(d)
illustrate this ratio at resonance frequencies ωθ and ωu, respec-
tively. It has been verified that within the considered range of
metasurface parameters, the absolute ratio θ/U1 is maintained
above 3 at ωθ and below 0.5 at ωu, i.e., ωθ (respectively ωu)

corresponds to a rotation (respectively translation)-dominated
mode.

However, once the displacement ratio θ/U1 deviates from
unity (with an absolute value becoming much smaller or much
larger than unity), the rotation motion and translation motion
turn out to be weakly coupled; consequently, the energy trans-
fer from fundamental harmonic to higher harmonics becomes
inefficient during the reflection process. In order to excite the
rotation mode of the metasurface as much as possible while
enhancing the intended nonlinear conversion, the ranges of
stiffness and initial angle of rotation are limited, thus allowing
for an absolute ratio θ/U1 less than 10 at frequency ωθ and
greater than 0.1 at frequency ωu. Among the chosen displace-
ment ratio threshold values, the optimal range of stiffness and
initial angle of rotation values can be obtained, i.e., defined as
Ks = Kθ ∈ (0, 0.04) and θ0 ∈ (3◦, 15◦), as enclosed by the
white dotted line in Figs. 2(c) and 2(d). The discussion in
Sec. V verifies that the above choice of parameter space is
indeed realistic and yields a high efficiency for the desired
nonlinear conversion.

For the study of the nonlinear case in Sec. IV, both
the stiffness and initial angle of rotation of the metasurface
are set as Ks = Kθ = 0.02 and θ0 = 10◦, which corresponds
approximately to the center of the optimal parameter space
region. The corresponding resonance frequencies in the linear
regime, as normalized by ω0, are, respectively, �1 = 0.7145,
�2 = 1.0858, and �3 = 2.1716. However, we found that as
the incident amplitude increases, resulting in the activation of
nonlinear effects, the metasurface resonance frequencies start
shifting relative to the linear frequencies. This resonance shift
will be considered in Sec. IV.

IV. NONLINEAR REFLECTION BY THE DESIGNED
METASURFACE: OPTIMAL FREQUENCY CONVERSION

Let us now consider a monochromatic source finc(�, τ ) =
Ainc cos(�τ ) in order to solve semianalytically the considered
problem [Eq. (3)] comprising nonlinear terms in the form of
sine and cosine functions. An expansion up to the fourth order
of all sinusoidal terms of [Eq. (3)] is first applied:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

cos(θ0 + θ ) ≈ cos θ0 − sin θ0θ − 1
2 cos θ0θ

2

+ 1
6 sin θ0θ

3 + 1
24 cos θ0θ

4,

sin(θ0 + θ ) ≈ sin θ0 + cos θ0θ − 1
2 sin θ0θ

2

− 1
6 cos θ0θ

3 + 1
24 sin θ0θ

4.

In the present study, which deals with the case of dy-
namic angles comparable to the initial angle of rotation, the
considered expansion is determined to be sufficient since it
yields reflection coefficient results with an accuracy to within
0.01 when compared to the numerical integration of the full
problem described further below. The system of equations
approximated by a polynomial form can now be solved using
the Harmonic Balance Method (HBM) [50].

According to HBM, the solution {q} = {U1, U2, θ}T is
developed as the sum of all generated harmonics:

{q} = {q0} +
N∑

n=1

[{Cn} cos(n�τ ) + {Sn} sin(n�τ )] (4)
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with {q0} = {C1
0, C2

0, C3
0}T

indicating the constant terms of
variables U1, U2, and θ , {Cn} and {Sn} grouping respectively
the magnitudes of cosine and sine terms of the three variables.
N denotes the finite number of harmonics under consideration,
which is set at N = 10, thus corresponding to a relative
error of less than 10−15, compared to the solution for N = 9.
According to the vectorial form of the solution containing all
considered N harmonics, the equation system [Eq. (3)] that
is already approximated into a polynomial form can be then
rewritten in a matrix form that enables finally the numerical
solution by applying the classical Newton-Raphson method.
Once displacement U1 is determined, the complex reflection
coefficient of the nth harmonic frequency component can be
deduced as

R̃n = δn1 + iγ n�
(
C1

n − iS1
n

)
, (5)

where δn1 is the Delta function, which always equals zero
except when n = 1. C1

n and S1
n denote the magnitudes of

sinusoidal terms cos n�τ and sin n�τ of displacement U1.
The reflection coefficients obtained by HBM are considered as
theoretical results and will be compared with the time domain
simulation results at the end of the current section.

When the incident amplitude is relatively weak, the re-
flection coefficients obtained by HBM are close to the linear
analytical solution. For instance, an excitation of dimension-
less magnitude Ainc = 10−7 leads to an absolute difference
in the reflection coefficient of less than 0.01%, compared
to the linear analytical solution. Therefore, for the following
discussion of nonlinear phenomena, the excitation magnitude
range considered extends from Ainc = 10−7 to Ainc = 10−4,
i.e., from the linear case to amplitudes three orders of mag-
nitude greater.

As mentioned at the end of Sec. III, once the excitation
level is significant, the nonlinear resonance frequencies of
the metasurface shift relative to the linear frequencies. Con-
sequently, taking into account excitation frequency detuning
with respect to the linear resonance frequencies becomes
necessary for the considered input amplitude range. In addi-
tion to the intrinsic parameters of the metasurface that have
already been defined in Sec. III, the nonlinear reflection also
depends on the propagation medium. By choosing herein two
different excitation amplitudes, i.e. a relatively weak one with
magnitude Ainc = 5 × 10−6 and a stronger one with Ainc =
5 × 10−5, the nonlinear reflection is thus being investigated
simultaneously as a function of both the excitation frequency
detuning �� (normalized by ω0) and the medium impedance
parameter γ , as shown in Fig. 3.

Through the reflection process and depending on input
intensity, the frequency conversion can be achieved for a
specific impedance value and for appropriate frequency
detuning (see Fig. 3). In the case of Ainc = 5 × 10−6,
by setting the impedance parameter at γ = 0.008 and
considering a very small frequency detuning of �� = −10−4,
a second harmonic reflection coefficient of R2 = 0.418 along
with a near-zero fundamental coefficient R1 = 0.0024 are
obtained. In comparison, as the source amplitude increases to
Ainc = 5 × 10−5, the frequency detuning necessary to reduce
reflection at the fundamental frequency becomes �� =
−1.7 × 10−3, thus yielding a second harmonic reflection

FIG. 3. Absolute reflection coefficients of the fundamental and
second harmonic components, denoted R1 and R2, respectively, as
a function of both the dimensionless impedance parameter γ and
the normalized excitation frequency detuning ��. The latter is
defined as the difference between the excitation frequency ω and
the linear resonance frequency ωθ , subsequently normalized by ω0,
i.e., �� = (ω − ωθ )/ω0. When the input intensity is relatively weak,
with a magnitude Ainc = 5 × 10−6, the required excitation detuning
is less (�� = −1 × 10−4), as the maximum value of R2 exceeds 0.4
(a), (b). Whereas with a stronger source of magnitude Ainc = 5 ×
10−5, a frequency detuning of around �� = −1.7 × 10−3 is needed
to totally absorb R1, which does not alter the amplitude of the second
harmonic R2 to reach a maximum value of nearly 0.8 (c), (d).

coefficient of R2 = 0.786, accompanied by a fundamental
coefficient R1 = 0.006 at γ = 0.0195. Furthermore, for the
parameter ranges presented in Fig. 3, the reflection coeffi-
cients of harmonics higher than the second order are all found
to be negligible compared to the second harmonic coefficient,
with absolute values consistently less than 0.001; hence, these
values will not be discussed any further in the present work.

The magnitude of excitation frequency detuning needed to
minimize incident fundamental wave reflection corresponds to
the resonance frequency shift of the metasurface with respect
to the linear resonance frequency, under the considered level
of excitation. More specifically, in order to analyze the reso-
nance frequency shifts for the various source amplitudes indi-
cated herein, i.e., weak level Ainc = 10−7 corresponding to the
linear configuration and nonlinear levels Ainc = 5 × 10−6 and
Ainc = 5 × 10−5, the metasurface kinetic energy at frequen-
cies close to the linear resonance frequencies ωθ and ωu has
been introduced. For excitation around the rotation-dominated
resonance frequency ωθ , it has been verified that the maxi-
mum kinetic energy, which indicates the frequency position of
the nonlinear resonance, actually shifts with increasing excita-
tion amplitude, as illustrated in Fig. 4. Compared to the linear
configuration defined by Ainc = 10−7, the resonance shift
remains negligible under a weak nonlinear level excitation

052209-5



GUO, GUSEV, TOURNAT, DENG, AND BERTOLDI PHYSICAL REVIEW E 99, 052209 (2019)

FIG. 4. Kinetic energy Ekinetic of the metasurface at various ex-
citation levels, from a linear configuration with Ainc = 10−7 to a
weakly nonlinear configuration with Ainc = 5 × 10−6 and a highly
nonlinear configuration Ainc = 5 × 10−5, respectively, for the cases
of (a) excitation frequencies ω close to the linear rotation-dominated
resonance frequency ωθ , and (b) excitation frequencies ω close to
the linear translation-dominated resonance frequency ωu verifying
ωu = 2ωθ . During the kinetic energy test, the metasurface is excited,
at each excitation frequency, by 1000 periods of a sine signal. The
dotted black line in panel (a) indicates the resonance shift under
excitation Ainc = 5 × 10−5, which corresponds exactly to the optimal
excitation detuning introduced in Fig. 3.

with Ainc = 5 × 10−6, while it becomes significant when the
excitation level increases to Ainc = 5 × 10−5. The frequency
shift between the nonlinear and linear resonance frequencies
coincides exactly with the optimal excitation detuning, as
introduced previously in Fig. 3, in order to minimize reflection
of the fundamental wave.

Nevertheless, for excitation around ωu corresponding to a
translation-dominated motion [Fig. 4(b)], as opposed to exci-
tation around ωθ , the excitation level does not influence the
kinetic energy curve. Hence, when the excitation frequency is
detuned to compensate for the frequency shift of resonance
ωθ , the reflection of the fundamental wave can become mini-
mized, whereas the second harmonic (which is detuned twice
as fast as the fundamental harmonic) will barely change its
reflection coefficient R2. This result is due to the fact that
the corresponding frequency detuning around resonance ωu

does not introduce as much of a variation in kinetic energy
as the detuning around ωθ . Accordingly, the excitation detun-
ing simultaneously enables minimizing the reflection of the
fundamental wave while maintaining the nonlinear conversion
efficiency into the reflected second harmonic wave.

In Fig. 5 the evolution of both the fundamental and second
harmonic reflection coefficients are examined over the gradual
increase in excitation amplitude, from the linear case to the
case enabling activation of nonlinear effects. The comparison
between cases, whether or not excitation detuning has been
taken into consideration, is presented as well. These findings
serve to confirm that the excitation detuning primarily affects
the fundamental wave reflection and much less so the conver-
sion towards second harmonic frequency.

When excitation detuning is not introduced (the source
finc = Ainc cos ωt at frequency ω = ωθ coincides with the lin-
ear rotation-dominated resonance), the reflection coefficients
R1 and R2 are plotted in Fig. 5 for an excitation amplitude
range starting from the linear configuration Ainc = 10−7. With
an increasing excitation amplitude, due to the introduced

FIG. 5. Absolute reflection coefficient of fundamental (R1) and
second harmonics (R2), as investigated by varying the excitation
amplitude from a linear level (Ainc = 10−7) to a nonlinear level
(Ainc = 10−4). Frequency detuning is introduced in order to eliminate
reflection of the fundamental wave at the desired excitation ampli-
tude, such that (a) Ainc = 5 × 10−6 and (b) Ainc = 5 × 10−5, with
the impedance parameter defined as γ = 0.008 and γ = 0.0195,
respectively.

frequency matching, i.e., 2ω = 2ωθ = ωu, the quadratic non-
linear effect is significantly amplified and appears first, thus
yielding an efficient growth of R2.

When the source amplitude is further increased, cubic
nonlinear effects start to appear, stemming from both the
cubic nonlinear terms of the expansions in the full problem
(3) and the nonlinear cascade process (next-order interaction)
from the quadratic terms. Cubic nonlinear effects induce a
variation of R1 via self-action on ω while the quadratic via
interactions between ω and 2ω, respectively. Given the result
of excitation matching ω = ωθ , the nonlinear part of R1 is
magnified, yielding a clear increase in R1 following an initial
decrease, as shown in Fig. 5. However, the third harmonic
component, which is also generated due to the nonlinear
effect yet mismatched with the system resonances, remains
negligible with a magnitude of less than 0.001.

By taking advantage of excitation detuning, the extreme
value of R1, occurring due to the activation of cubic nonlinear
effects, can thus be minimized or even eliminated under a
specific impedance parameter value γ . Nevertheless, since the
higher resonance ωu is less sensitive to excitation detuning
than the rotation-dominated resonance ωθ , the second har-
monic reflection coefficient R2 is not influenced to the same
extent as R1 for the fundamental wave. For excitation level
Ainc = 5 × 10−6, by introducing frequency detuning �� =
−1 × 10−4 and setting γ = 0.008, the fundamental wave
reflection coefficient is minimized to R1 = 0.0024, while the
second harmonic can reach a reflection coefficient of R2 =
0.418, as shown in Fig. 5(a). In contrast, a frequency detun-
ing of �� = −1.7 × 10−3 enables R1 = 0.006 at excitation
level Ainc = 5 × 10−5 under γ = 0.195, along with a second
harmonic reflection coefficient as high as R2 = 0.786, see
Fig. 5(b). Note that these parameters are the same as those
used in Fig. 3. In terms of energy, the two above configura-
tions correspond to around 17% and 62% of energy concen-
trated on the second harmonic under excitation magnitudes
Ainc = 5 × 10−6 and Ainc = 5 × 10−5 respectively, both with
less than 0.01% energy reflected in the fundamental wave.

Since an analytical solution does not exist for the full
nonlinear problem (HBM is applied to the problem approx-
imated by a polynomial expansion of all the nonlinear terms),
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FIG. 6. Theoretical and numerical results for the nonlinear meta-
surface reflection, as obtained with the Harmonic Balance Method
(HBM) and the fourth-order Runge-Kutta (RK4) method, respec-
tively, for the case of a relatively weak excitation with amplitude
Ainc = 5 × 10−6 (a), (b), and for the case of a stronger excitation
with amplitude Ainc = 5 × 0−5 (c), (d). The frequency axes are
normalized by the detuned excitation frequency. By considering a
wave packet source with characteristic width NT = 4000T , the RK4
results are compared to the theoretical HBM results. Magnitudes
of short-term Fourier transforms taken at fundamental and second
harmonic frequencies, by showing the temporal variation in the re-
flected wave spectrum (a), (c), and by exploring the Fourier transform
of the central 1000 periods of the reflected temporal wave (b), (d),
respectively.

numerical solutions to the full nonlinear problem with HBM
results can now be compared. System Eq. (3) is solved nu-
merically using the classical fourth-order Runge-Kutta (RK4)
integration method [51], and the excitation is a Gaussian-
modulated wave packet source of the form,

σinc(�, τ ) = Ainc finc(�, τ ) = Ainc sin(�τ )e− (τ−τ0 )2

(ωT )2 ,

with τ = ωt , T the characteristic temporal width of the wave
packet, and τ0 the dimensionless time center of the packet.
The reflected wave signal is obtained with the help of relation
Eq. (2) once the temporal displacement u1 of the front plate
has been determined.

The time-frequency analysis of the reflected signals can
therefore be performed using the spectrogram method, in
yielding a reflected time-dependent spectrum at the funda-
mental and second harmonic frequencies, i.e., ω and 2ω,
as shown in Figs. 6(a) and 6(c), for the considered exci-
tation amplitudes 5 × 10−6 and 5 × 10−5, respectively. The
wave packet source has a characteristic half-height duration
of 4000 periods. It has been demonstrated that the RK4
simulation reaches the theoretical results of HBM when the
excitation amplitude lies close to the maximum magnitude

FIG. 7. Optimal frequency conversion effect achieved for various
physical properties of the proposed metasurface, under an excitation
level of Ainc = 5 × 10−5. The maximum absolute value of the reflec-
tion coefficient of the second harmonic R2 is identified by varying
the impedance parameter and excitation frequency detuning simulta-
neously, for stiffnesses in the range Ks = Kθ ∈ (0, 0.1) and an initial
angle of rotation set at 10◦ and 20◦ in panel (a), and for an initial
angle of rotation in the range θ0 ∈ (0◦, 30◦) and stiffnesses set at 0.02
and 0.06 in panel (b). Shaded zones indicate the optimal ranges of
initial angle of rotation and stiffnesses, i.e., Ks = Kθ ∈ (0, 0.04) and
θ0 ∈ (3◦, 15◦), thus yielding an efficient second harmonic reflection
with R2 greater than 0.4. The results presented have been output
by HBM.

Ainc. Figures 6(b) and 6(d) present the comparison between
HBM results and RK4 simulations when the signal spectrum
is computed over the 1000 center periods of the reflected tem-
poral signal. A good level of agreement is observed between
the two methods for both plotted excitation amplitudes, each
with an absolute difference of less than 0.01.

V. DISCUSSION

According to the proposed metasurface design, which
comprises rotating squares, the desired frequency conversion
from the incoming fundamental wave to the reflected second
harmonic can in fact be achieved. In addition to the specific
design presented above in Sec. IV (with fixed intrinsic pa-
rameters such as inertial moment α = 1/3, shear and bend-
ing stiffnesses Ks = Kθ = 0.02 and initial angle of rotation
θ0 = 10◦), it is possible to explore an even wider parameter
space, offering greater tunability opportunities.

With an initial angle of rotation set at θ0 = 10◦ and θ0 =
20◦, respectively, and for stiffness in the range Ks = Kθ ∈
(0, 0.1), the optimal conversion is sought by varying the
impedance parameter γ and introducing the excitation fre-
quency shift ��. The optimal results of reflection coefficient
R2 as a function of stiffness Ks = Kθ are shown in Fig. 7(a).
Note that the impedance parameter γ = ρcS/mω0 can be
modified by changing the size or the mass of the squares,
which allows for impedance tuning. The final parameter of the
metasurface is the mass ratio between front plate and rotating
squares, denoted αm. This parameter is defined to be positive
and such that it satisfies the necessary frequency condition
ωu = 2ωθ in the linear regime.

A similar analysis has been repeated for stiffnesses
set at Ks = Kθ = 0.02 and Ks = Kθ = 0.06, respectively.
The maximum second harmonic reflection coefficient has
been estimated for initial angles of rotation θ0 ∈ (0◦, 30◦),
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FIG. 8. Optimal frequency conversion effect achieved for various
metasurface unit cell shapes, i.e., for different inertial moments
α of rotating elements. The maximum conversion is determined
as a function of α over the range of [0.02, 0.66] by varying the
impedance parameter γ , excitation frequency detuning ��, and
stiffness Ks = Kθ simultaneously. In order to lessen the calculation
burden, the initial angle of rotation has been set at 10◦ and 8◦

respectively, as these values are found to be favorable for producing
the desired reflection over the entire inertial moment range.

as illustrated in Fig. 7(b). The excitation level is set at
Ainc = 5 × 10−5 for both parametric studies conducted in
Figs. 7(a) and 7(b). It is shown that in the case of rotating
square masses, i.e., α = 1/3, the generation of a second
harmonic remains significant over the entire optimal value
ranges for stiffness Ks = Kθ ∈ (0, 0.04) and initial angles of
rotation θ0 ∈ (3◦, 15◦), as enclosed by the white dotted lines
in Fig. 2 of Sec. III. Within this optimal parameter range,
according to the results in Fig. 7, R2 is observed to be greater
than 0.4, while R1 remains less than 0.05.

Furthermore, the desired nonlinear phenomena can be de-
rived for various rotating unit shapes, as characterized by dif-
ferent inertial moments α. Let us recall that a point mass cor-
responds to a zero inertial moment α = 0, whereas a hollow
square (the entire mass distributed at the edges) has an inertial
moment of α = 2/3. An inertial moment α ∈ [0.02, 0.66] is
thus considered (although in theory this moment could be
removed from the value range by, for example, using gyro-
scopes in the design). Within the considered range of inertial
moment and for the sake of computational efficiency, the
initial angle of rotation has been set at 10◦ and 8◦, respectively,
as these values are found to be favorable for generating the
desired reflection over the entire range of inertial moment. The
maximum generation of reflected second harmonic along with
the minimum fundamental reflected wave can be determined
by simultaneously varying all other intrinsic metasurface
parameters, i.e., stiffness Ks = Kθ , impedance parameter γ ,
and required excitation detuning ��. Like in the previous
study presented in Fig. 7, the last parameter αm, i.e., the mass
ratio, is chosen so that the necessary condition ωu = 2ωθ is
satisfied.

According to the results shown in Fig. 8, R2 is always
greater than 0.4 over the entire range of inertial moment α

and possibly greater than 0.74 for inertial moment in the
range α ∈ (0.2, 0.66), the energy distribution on the second
harmonic is thus remained within the range (16%, 55%).
Hence, not only can the proposed design composed of homo-
geneous squares having an inertial moment α = 1/3 produce
the desired nonlinear frequency conversion, but other rotating

periodic structures are also capable of efficiently generating
the second harmonic through the reflection process, provided
that the inertial moments of their unit cells are included in the
above value range α ∈ (0.2, 0.66). The possible metasurface
rotating element shapes may, for instance, be square, rectan-
gular or diamond-shaped; contain holes or additional masses;
constitute the centrally symmetric four-corner structure such
as a cross (the inertial moment α depends on the exact length-
to-width ratio of each edge but is generally slightly less than
1/3); or even extend to other novel shapes based on regular
polygons or centro-symmetric structures.

VI. CONCLUSION

In conclusion, through a realistic metasurface design in-
spired from recent results on the dynamics of soft architected
rotating square structures [31,49], the possibility of achieving
near-perfect absorption of the incoming fundamental wave has
been demonstrated herein, along with an efficient conversion
into the second harmonic frequency. By introducing appro-
priate excitation frequency detuning, which compensates for
the nonlinear frequency shift of one rotation-dominated res-
onance ωθ of the metasurface, the reflection of the incom-
ing fundamental wave can be as low as R1 < 0.05. Since
the translation-dominated resonance has a broader frequency
response and a barely noticeable nonlinear frequency shift
compared to the rotation-dominated resonance, the efficiency
of the conversion towards the second harmonic frequency is
much less influenced by the introduced frequency detuning.
The corresponding reflection coefficient R2 can be consis-
tently maintained above 0.4 and even reach values exceeding
0.8 depending on the excitation level.

In order to validate the theoretical results obtained with
HBM in considering a monochromatic source, the nonlin-
ear reflection of a wave packet has also been examined by
numerically integrating the system of fully nonlinear motion
equations. An excellent level of agreement has been obtained
between the theoretical results output by HBM and the imple-
mented numerical results, provided the characteristic temporal
width of the wave packet signal is large enough, in accordance
with expectations. Moreover, the value ranges of intrinsic
metasurface parameters that efficiently lead to the desired
frequency conversion have also been determined, i.e., for
the metasurface unit cell consisting of homogeneous rotating
squares (α = 1/3), the stiffness and initial angle of rotation in
the range of Ks = Kθ ∈ (0, 0.04) and θ0 ∈ (3◦, 15◦), respec-
tively, thus allowing for efficient second harmonic generation
with a reflection coefficient R2 always greater than 0.4.

The proposed metasurface design, which is capable of
enhancing the nonlinear effect, has been found to be ex-
tendable to a series of designs with rotating unit cells, not
only of a square shape but other available structures as well,
possessing an inertial moment within the value range of
α ∈ [0.02, 0.66]. The second harmonic reflection coefficient
may indeed exceed 0.74 if α ∈ [0.2, 0.66], corresponding to
around 55% of energy concentrated on the second harmonic
together with extremely small energy (<0.01%) reflected in
the fundamental wave. According to the present study and the
previous work [42], one should notice that the achievement
of the desired nonlinear conversion needs a matching between
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the intrinsic resonances of the considered metastructure and
the frequencies of the generated harmonics, which can be
enabled by the appropriate metasurface design, i.e., structural
parameters within specific value ranges. Furthermore, the
proposed family of metasurface made of rotating unit cells
can also provide other types of nonlinearity, depending on the
choice of the structural parameters. The proposed metasurface
design rules apply not only to the presented second harmonic
enhancement, but could also optimize other types of nonlinear
effects, such as the third harmonic generation.

Nevertheless, the reported acoustic or elastic wave control
by the scattering process is limited herein to reflection at nor-
mal incidence. Consequently, the considered nonlinear con-
version would need to be investigated in other configurations,
such as transmission by a thin and resonant meta-interface.

The presented types of designs with rotating units, given
the possibility of managing their dispersive and nonlinear
elastic properties, open avenues for enhancing nonlinear wave
control. By considering a larger number of layers with varying
properties, the rather rudimentary scattering process studied
herein could potentially be extended to broader operating fre-
quency ranges as well as to other nonlinear processes. More-
over, such nonlinear wave scattering properties could become
useful for applications in wave pulse mitigation, acoustic
diode design, and nonreciprocal transmission systems.
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