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This work uses the statistical properties of finite-time Lyapunov exponents (FTLEs) to investigate the inter-
mittent stickiness synchronization (ISS) observed in the mixed phase space of high-dimensional Hamiltonian
systems. Full stickiness synchronization (SS) occurs when all FTLEs from a chaotic trajectory tend to zero for
arbitrarily long time windows. This behavior is a consequence of the sticky motion close to regular structures
which live in the high-dimensional phase space and affects all unstable directions proportionally by the same
amount, generating a kind of collective motion. Partial SS occurs when at least one FTLE approaches zero.
Thus, distinct degrees of partial SS may occur, depending on the values of nonlinearity and coupling parameters,
on the dimension of the phase space, and on the number of positive FTLEs. Through filtering procedures used to
precisely characterize the sticky motion, we are able to compute the algebraic decay exponents of the ISS and to
obtain remarkable evidence about the existence of a universal behavior related to the decay of time correlations
encoded in such exponents. In addition we show that even though the probability of finding full SS is small
compared to partial SSs, the full SS may appear for very long times due to the slow algebraic decay of time
correlations in mixed phase space. In this sense, observations of very late intermittence between chaotic motion
and full SS become rare events.
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I. INTRODUCTION

Synchronization in high-dimensional Hamiltonian systems
has been defined as a measure synchronization in Refs. [1,2].
In these works the authors use models consisting of two
coupled maps. By starting two distinct initial conditions from
the uncoupled system, which lead to a regular dynamics, they
observe what happens to them by adding a small coupling
between the maps. A kind of synchronized (collective) motion
appears named measure synchronization. As with the synchro-
nization of dissipative chaotic systems [3,4], synchronization
in generic Hamiltonian systems is also an interesting issue
since such systems present a mixed phase-space dynamics
which contains a rich variety of behaviors. However, it is
important to mention that the synchronization phenomenon
observed in dissipative systems is not possible in Hamiltonian
systems due to the Liouville theorem that prevents the full
collapse of the orbits to an invariant manifold, since volume
must be preserved in phase space.

For symplectic two-dimensional maps the chaotic com-
ponent is clearly separated from the regular motion [5,6].
However in higher dimensions the chaotic trajectory may visit
ergodically the whole phase space but, until this happens, it
may suffer a dynamical trapping (or sticky motion) [7,8] close
to quasiregular structures. The effect of the sticky motion
on the chaotic trajectory can be classified in distinct regimes
[9,10], defined by the spectrum of finite-time local Lyapunov
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exponents (FTLLEs). When all FTLLEs are positive, the
regime is chaotic; when all are zero, we have an ordered
regime. In between we have semiordered regimes. Separating
the dynamics in distinct regimes, like a filtering procedure,
not only a substantial increase in the characterization of the
sticky motion was achieved [11], but this also allowed finding
a synchronized-like state, leading to the intermittent stickiness
synchronization (ISS) discussed in the present work. Essen-
tially the ISS is characterized by the intermittent behavior
between the chaotic motion and a kind of transient measure
synchronization generated by stickiness. Such synchronized-
like states due to stickiness were also detected some years ago
and classified as common motion [12]. A somewhat similar
analysis allowed one to synchronize drive and slave coupled
standard maps [13]. In this case, since the coupling between
the two maps is unidirectional, once the synchronized state
is reached, it does not change along the simulations. Such
behavior changes when the coupling interaction between the
maps is bidirectional, as considered in the present work, which
uses global (all-to-all) interactions.

Since events with long times are associated with times for
which the trajectory was trapped to the nonhyperbolic com-
ponents of the phase space [8,14–18], in the present work the
ISS decay is qualitatively described using the time decay of
the ordered regime in the case of coupled maps. We mention
that other alternative approaches using finite-time Lyapunov
exponents (FTLEs) [19–25] can be used to characterize the
phase space of conservative systems, with recent applications
using large deviation techniques [26–28] and the cumulants
[12,29] of the FTLEs distribution.

Recently, a methodology that uses time series of local
Lyapunov exponents to define the above mentioned regimes
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FIG. 1. Phase-space dynamics for the uncoupled case (ξ = 0) using (a)–(d) K = 0.60 and (e)–(h) K = 0.65. In panels (a) and (e) we used
60 initial conditions, each one iterated 8 × 105 times. In (b) and (f) the colors (see the color bar) represent λ

(ω)
1 , for ω = 100, computed through

a trajectory of 4 × 108 iterations. Panels (c), (d) and (g), (h) are magnifications of the cases K = 0.60 and K = 0.65, respectively.

of ordered, semiordered, and totally chaotic motion was pro-
posed, making it possible to improve the characterization
of stickiness in Hamiltonian systems with few degrees of
freedom [11] and in non-Hamiltonian [30] systems.

The present work uses such filtering procedure [11] to
check precisely the algebraic decay exponents of the ISS in
higher-dimensional Hamiltonian systems. This investigation
is motivated by the low number of numerical studies related to
weakly chaotic properties and consequently the long time cor-
relations observed in higher-dimensional mixed phase spaces
of Hamiltonian systems (at least for small and moderate
numbers of homogeneously coupled two-dimensional maps).
We find that only the full stickiness synchronization (SS)
obeys a power-law decay, while all other partial SSs decay ex-
ponentially. Thus, sticky effects from the semiordered regimes
are almost irrelevant for long time ISS decay. Additionally,
the algebraic decay exponent of full SS seems to be inde-
pendent of (i) the number of coupled maps (at least for a
moderate number of them), and (ii) the coupling intensities
used here. Although it is still under debate whether such an
exponent persists in the weak-coupling regime, our investiga-
tion corroborates the claim suggested in [27] that predicts the
existence of a generic decay exponent for time correlations
χ ∼ 0.20 for Hamiltonian systems with few degrees of free-
dom, which is smaller than what is given in the conjecture
proposed in [16] to predict the existence of a universal decay
of Poincaré recurrences with γ ≈ 1.30–1.40 (see also [31]
for earlier work). The corresponding relationship between
these algebraic exponents is given by the well-known equation
χ = γ − 1.

The plan of this paper is presented as follows. Section II
presents the coupled-map model used for the simulations.
In Sec. III the precise definition of ordered, semiordered,
and chaotic regimes is given, which leads to the definition
of the synchronized-like state, together with some numerical

examples. In Sec. IV the ISS decay is discussed qualitatively,
and Sec. V summarizes our conclusions.

II. COUPLED-MAP MODEL

Consider the time-discrete composition T ◦ M of the in-
dependent one-step iteration of N symplectic 2-dimensional
maps M = (M1, . . . , MN ) and a symplectic coupling T =
(T1, . . . , TN ). This constitutes a 2N-dimensional Hamilto-
nian system. For our numerical investigation we use the 2-
dimensional standard map (SM)

Mi

(
pi

xi

)
=

(
pi + Ki sin(2πxi ) mod 1

xi + pi + Ki sin(2πxi ) mod 1

)
, (1)

and for the coupling,

Ti

(
pi

xi

)
=

(
pi + ∑N

j=1 ξi, j sin[2π (xi − x j )]
xi

)
, (2)

with ξi, j = ξ j,i = ξ√
N−1

(all-to-all coupling). This system is a
typical Hamiltonian benchmark tool with mixed phase space
presenting all essential features expected in complex systems.
It was studied in Refs. [15,32] using the recurrence time statis-
tic (RTS) and used in Ref. [11] to propose the classification of
Lyapunov regimes for improving stickiness characterization.
In all numerical simulations we used nonlinearity parameters
corresponding to a mixed phase space, namely 0.60 � K �
0.65 (see Fig. 1, which is discussed next).

III. DEFINITION OF REGIMES AND STICKINESS
SYNCHRONIZATION

The numerical technique uses the FTLLEs spectrum
{λ(ω)

i=1...N } computed along a chaotic trajectory during a
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window of size ω, where λ
(ω)
1 > λ

(ω)
2 , . . . , λ

(ω)
N > 0, and ex-

plores temporal properties in the time series of {λ(ω)
i } [11].

The window size ω has to be sufficiently small to guarantee
a good resolution of the temporal variation of the λ

(ω)
i ’s,

but sufficiently large in order to have a reliable estimation
(see Refs. [19,24,25]). Further details about the choice of
ω’s value and its influence on the numerical results are
given in Sec. IV A. The sharp transition towards λ

(ω)
i ≈ 0

observed earlier motivates the classification in regimes of
motion [9,10]. For a system with N degrees of freedom, the
trajectory is in a regime of type SM if it has M local Lyapunov
exponents λ

(ω)
i > εi, where εi � λ

(∞)
i are small thresholds.

Thereby, S0 and SN are ordered and chaotic regimes respec-
tively. Regimes SM with 0 < M < N are called semiordered.
For the computation of the FTLLEs we use the traditional
Benettin algorithm [33,34], which includes the Gram-Schmidt
re-orthonormalization procedure. On average, the FTLLEs are
in decreasing order. However, inversions of the order λ

(ω)
i+1 >

λ
(ω)
i may happen for some times t and we have chosen to

impose the order of λ
(ω)
i for all t .

A. Uncoupled case: N = 1

To get a better understanding of the involved complexity
in the dynamics and the behavior of the FTLLEs, Fig. 1
displays the phase-space dynamics for a chaotic trajectory for
one uncoupled (ξ = 0) SM together with the corresponding
positive FTLLE λ

(ω)
1 (see color bar) for ω = 100. In this case

the Lyapunov spectrum has only two Lyapunov exponents
of which, asymptotically, one is positive and the other one
negative. Thus, only two regimes are observed: (i) the ordered
one, if λ

(ω)
1 < ε1, and (ii) the chaotic one, if λ

(ω)
1 > ε1. While

the upper row in Fig. 1 presents the K = 0.60 case, the lower
row shows results for K = 0.65. For both cases, the phase
space has a large regular island located in the center, sur-
rounded by higher-order resonances. In Fig. 1(a) we observe
a 6-order resonance and in Fig. 1(e) an 8-order resonance
[better seen in Figs. 1(b) and 1(f), respectively]. It is well
known that additional higher-order resonances (not visible on
the scale of these panels) live around the island. These islands
lead to the dynamical trapping which can be stronger, or not,
depending on the topological structure of the islands. Such
dependency becomes more visible when the positive FTLLE
λ

(ω)
1 is calculated for the trajectories. This is shown in color

in Figs. 1(b) and 1(f) with some magnifications (see black
boxes) shown respectively in Figs. 1(c), 1(d) and 1(g), 1(h).
We observe that, when approaching the island borders, the
FTLLE decreases, as specified by the color bars in Figs. 1(d),
1(h). A very complex behavior is evident and only motions
very close to the regular islands have smaller FTLLEs. This
suggests that these motions close to the regular islands will
belong to the ordered motion.

B. Coupled case: N = 2

A nice visualization of the regimes becomes clear when
two coupled SMs are analyzed in phase space, as shown in
Fig. 2. Different colors represent points xt ∈ SM belonging
to regimes S0 (blue circles), S1 (red points), and S2 (green
points). These points were computed starting with a single

FIG. 2. Phase-space dynamics projected in (x1, p1) [(a), (c), and
(e)] and in (x2, p2) [(b), (d), and (f)] for different values of ξ .

trajectory in the chaotic sea of the coupled system and it-
erating it 107 times. Table I presents the values of Ki used
in the simulations and the thresholds εi used to define the
regimes of motion. Blue circles are the points in phase space
(x1, p1, x2, p2) for which λ

(ω)
i < εi, for i = 1, 2. The red color

indicates points for which λ
(ω)
1 > ε1 and λ

(ω)
2 < ε2. Green

points are used if both FTLLEs are larger than the respective
thresholds εi. We observe in Fig. 2 that by increasing the

TABLE I. Values of Ki used to couple the standard maps and the
thresholds εi.

Value of Ki N = 2 N = 3 N = 4 N = 5

K1 0.65 0.65 0.65 0.65
K2 0.60 0.63 0.64 0.64
K3 0.60 0.63 0.63
K4 0.62 0.62
K5 0.61

Threshold N = 2 N = 3 N = 4 N = 5
ε1 0.10 0.10 0.10 0.10
ε2 0.05 0.08 0.08 0.08
ε3 0.05 0.06 0.07
ε4 0.04 0.06
ε5 0.04
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FIG. 3. Distributions P(λ(ω=100)
i ) of the spectrum of FTLLEs

{λ(ω=100)
i } (i = 1, 2) for the case N = 2 with ξ = 10−3, obtained

using 106 values of λ
(ω=100)
i . The full trajectory was considered in (a).

In (b), (c), and (d) only the regimes S0, S1, and S2 were considered,
respectively.

value of the coupling strength ξ , the trajectory penetrates
the regular domain from the uncoupled case where there is
the island’s hierarchy, inside which only S0 and S1 regimes
occur. Thus, by increasing the coupling force between the
maps, the number of points which induce sticky motion
increases.

In Fig. 3 we show the distributions P(λ(ω=100)
i ) (i = 1, 2)

for the coupled case N = 2 with ξ = 10−3. Considering a full
trajectory initialized in the chaotic sea, the distributions of
the FTLLEs λ

(ω=100)
i are bimodal [24,25], as we can see in

Fig. 3(a). However, using our filtering procedure, it is possible
to separate the different behaviors found in Fig. 3(a). For
instance, in Fig. 3(b) only the regime S0 was considered, and
the profile of the resulting distribution of the FTLLE λ

(ω=100)
i

is similar to the profile of the long tail (∼0) of the P(λ(ω=100)
i )

for the full trajectory. On the other hand, Fig. 3(d) shows the
distributions for the chaotic regime S2 and, in this case, we
can see that values of λ

(ω=100)
i ∼ 0 are excluded. As result

we obtain a Gaussian-like distribution, characteristic of cases
where no sticky regions exist [24]. In Fig. 3(c) we plotted
P(λ(ω=100)

i ) for the semiordered regime S1, the case for which
λ

(ω=100)
1 > ε1 and λ

(ω=100)
2 < ε2.

C. Stickiness synchronization

From the above results it is easy to verify that for the
ordered regime the positions of the coupled maps tend to be
very close to the almost regular domains and to each other.
This can be checked more precisely by determining, for N = 2
for example, the distance |x1 − x2| as a function of time. This
is shown by the gray dotted line in Fig. 4 for two distinct
time windows. At a given time, the distance |x1 − x2| suddenly
approaches zero, leading to an approximated synchronization
of the positions of the coupled SMs. Since these positions are
not exactly equal, we say we have a synchronized-like state.
In both cases the synchronization occurs only for a finite-
time window. Surprisingly these time windows match those

FIG. 4. Time series of the spectrum of FTLLEs {λ(ω=100)
i } (i =

1, 2) for the maps (1)–(2) with N = 2 and ξ = 10−3. In (a) and
(b) the thresholds ε1 = 0.1 and ε2 = 0.05 are represented by black
dash-dotted and black dotted lines, respectively. The gray dotted line
indicates the distance |x1 − x2| and shows the synchronization of the
maps i = 1 and i = 2 in the intervals of time for which the regime S0

occurs.

times for which the ordered regime S0 is present. This can be
checked in the same picture, where we plot simultaneously
the two positive FTLLEs λ

(ω)
i as a function of time. Thus,

synchronization of the position of the maps coincides with
the full synchronization of the FTLLEs. For the regime S1

we observe in Fig. 4(b) that the distance |x1 − x2| is more
away from zero than this distance measured in the regime S0,
leading to a kind of “weaker” synchronization. In this case we
say we have a partial synchronization, since only one FTLLE
tends to zero. For S2 there is no synchronization.

The relation between the position synchronization of the
coupled maps shown above allows us to use the concept of
stickiness synchronization. We have checked this relation for
all S0 regimes along a chaotic trajectory of length t = 109.
Since all regimes SM with M < N are transient, and there
is an intermittent transition between these regimes, we say
we have ISS. Our results for higher dimensions can also
be interpreted as the synchronization of FTLLEs. It is in
fact a consequence of the synchronization of local expansion
and contraction rates along all unstable and stable direction
manifolds.
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IV. QUALITATIVE DESCRIPTION OF ISS

Numerical techniques used to characterize the sticky mo-
tion can now be used to describe the qualitative behavior
of the ISS decay in time. For this we use the consecutive
time τM spent by a trajectory in the same regime SM [11].
During a trajectory of length tL we collected a series of τM and
important results are obtained by analyzing the cumulative
distribution of τM , defined as

Pcum(τM ) ≡
∞∑

τ ′
M=τM

P(τ ′
M ). (3)

Applying this alternative procedure to obtain the Pcum(τM ),
we are able to estimate the decay exponent for the recurrence
times. This technique is much more appropriate to estimate
such an exponent when compared to the former one, based on
the cumulative distribution of Poincaré recurrence times (or
RTS), since it remains unclear how to estimate the timescale
over which a higher-dimensional system reaches its asymp-
totic regime under the process of weak Arnold diffusion [5].
As this technique is based on a filtering process, we can
select the events related to longer correlations and then obtain
decay curves with several decades. In addition, there is no
more dependence on the choice of recurrence set to obtain the
RTS [35].

A. Uncoupled case: N = 1

To apply the filtering method we have to specify the
threshold ε and the time window ω. Figures 5(a) and 5(b)
compare the cumulative distribution Pcum(τM ) for the regime
S0, obtained using ω = 100 and two values of ε, with the
RTS Pcum(τ ), both quantities calculated for uncoupled SMs
with two different values of K , specified in Fig. 5. For the
determination of the RTS (gray solid curve) we have (i) used
a recurrence region in the chaotic component of the phase
space delimited by 0 < x < 1 and 0.45 < p < −0.45, and (ii)
collected the lapses of time τ spent outside the recurrence
region by a trajectory started inside such predefined box.
Straight lines in Fig. 5 are consequences of the sticky motion.
We realize that while the usual RTS presents some oscillations
as a function of τ , leading to difficulties in the precise decay
exponent, the filtering method tends to decrease such oscilla-
tions, mainly if the threshold ε = 0.07 is used. These results
show that, for practical implementations, the thresholds can
be defined as εi ≈ 0.10〈λ(ω)

i 〉, where 〈. . .〉 denotes the average
over t , where t = 1, . . . , tL.

It is important to define how sensitive these results are in
relation to the time window ω used to calculate the FTLLEs.
For this, we compare Pcum(τ0) obtained using ω = 100 and
ε = 0.07 [blue dashed curves in Figs. 5(a) and 5(b)] with
Pcum(τ0) for ω = 50 and ω = 200, keeping the threshold ε =
0.07. Figures 5(c) and 5(d) show this comparison for the
cases K = 0.60 and K = 0.65, respectively, and the results
demonstrate that even though the choice of ω may affect
quantitatively the cumulative distributions Pcum(τM ), our con-
clusions about the algebraic decay obtained for the regime
S0 are not changed by oscillations around the chosen value
ω = 100 [11].

FIG. 5. Comparison between the filtering method and the RTS
(gray solid curve) for the uncoupled case (ξ = 0) in (a) for K = 0.60
and in (b) for K = 0.65. The blue dashed and red dash-dotted curves
are the cumulative distribution Pcum(τ0) of consecutive times τ0 in
the regime S0 (normalized for convenience of scale), obtained for
1011 values of τM , using two different values of threshold ε. The RTS
Pcum(τ ) was obtained for 1012 recurrences. In (c) and (d) we compare
Pcum(τ0 ) for different values of ω.

B. Coupled cases: N = 2, 3, 4, 5

We start determining the cumulative distribution Pcum(τM )
for the N = 2 case for which we have regimes S0, S1, and S2.
This is shown in Fig. 6(a) for coupling ξ = 10−3 and using
values of Ki and εi according to Table I. It shows that the
only power-law decay occurs for the S0 regime. Thus, while
full SS occurs for S0 regimes with a power-law decay of the
Pcum(τM ), all other regimes have a chaotic component leading
to an exponential decay. This indicates that only full FTLLEs
synchronized states tend to occur for consecutive very long
times, even though with small probability.

Looking at the distributions Pcum(τM ) in Fig. 6(a), we
observe for the semiordered regime M = 1 an exponential tail
after an initial power-law decay with scaling β ≈ 0.5 [15].
When the full SS takes place (M = 0), Pcum(τ0) ∝ τ

−γ

0 , with
γ = 1.16. As shown in Fig. 6(b), this scaling is compatible
with the result obtained using RTS. However, the cumulative
distribution Pcum(τ0) provides a better characterization of
algebraic decay (over several orders of magnitude), which
is essential when dealing with high-dimensional systems
(which may contain different pre-asymptotic regimes) and
for an accurate estimation of the stickiness exponent γ . In
Fig. 6(c) we show that Pcum(τ0) for the coupled case remains
(qualitatively) the same for different values of ω around
ω = 100.
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FIG. 6. (a) The cumulative distribution Pcum(τM ) of times τM

for the regime SM for the maps (1)–(2) with N = 2 and ξ = 10−3,
obtained using 2 × 1010 values of τM . The values of Ki and εi

used are indicated in Table I. (b) Comparison between our method
and the analysis based on RTS for the case N = 2 and ξ = 10−3.
The result obtained combining the curves M0 + M1 (normalized
for convenience of scale) is equivalent to cumulative distribution
Pcum(τ ), obtained for 1012 recurrences. In (c) we compare Pcum(τ0 )
for different values of ω.

Another very interesting quantity to be studied is the resi-
dence time P(SM ) in each regime as a function of the coupling
strength, defined by

P(SM ) = 1

β

tL∑
t=0

δt∈SM , (4)

where β = tL/ω is the factor of normalization. In Eq. (4),
δt∈SM = 1 if in time t the trajectory is in the regime SM ,
and δt∈SM = 0 otherwise. The P(SM ) is shown in Fig. 7(a)
for N = 2, in Fig. 7(b) for N = 3, in Fig. 7(c) for N = 4,
and in Fig. 7(d) for N = 5. For smaller couplings (ξ � 3 ×
10−2) the residence time decreases with M, namely P(SN ) >

P(SN−1) > . . . > P(SM ) > . . . > P(S1) > P(S0). This means
that the probability of finding the ordered regimes (M = 0)
is much smaller when compared to semiordered regimes
(0 < M < N) and so on. For larger couplings ξ > 10−1, the
probabilities of finding ordered and semiordered regimes have
roughly the same values and tend to decrease until zero. Only
the probabilities of fully chaotic regimes SN remain for larger
values ξ . It is important to mention that P(SM ) corresponds to
the (normalized) volume of the region related to regime SM in
the bounded phase space �. Hence the measure of the sticky
region is given by μ(S0) ∼ μ(�tori ) ≈ P(S0)/[1 + P(S0)], as
explicitly demonstrated in Ref. [11] for small couplings
ξ ≈ 0.

From Figs. 6 and 7 we conclude that even though the
probability of finding the full SS is small compared to the

FIG. 7. Residence time in each regime SM using ω = 100 and
(a) N = 2, (b) N = 3, (c) N = 4, and (d) N = 5. For each value of
ξ , P(SM ) was computed using a trajectory with length tL = 1010. The
values of Ki and εi used in each case can be found in Table I.

partial SS, it can occur for very long times due to the power-
law decay found for Pcum(τ0). In addition we mention that,
in distinction to usual synchronization found in dissipative
systems, here the ISS tends to decrease for larger coupling
between the maps [36].
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FIG. 8. The cumulative distribution Pcum(τ0) of consecutive
times τ0 in the regime S0 using different values of coupling ξ for
(a) N = 2 with 2 × 1010 values of τM and (b) N = 3 with 5 × 109

values of τM . The Ki and εi used in each case are indicated in Table I.

C. Characterizing the decay of synchronization: The ordered
regime

The next step is to precisely quantify the ISS decay for
distinct values of coupling ξ between N = 2, 3, 4, and 5
SMs. For this we used only the regime S0, which is directly
related with the full synchronization between the positions xi.
As demonstrated in Figs. 5(a), 5(b), and 6(b), the decay of
Pcum(τ0) provides an amazing characterization of the sticky
motion and allows obtaining accurately the exponent γ , so
that the RTS analysis becomes needless. The results of this
study are shown in Fig. 8(a) for N = 2 and in Fig. 8(b) for
N = 3, using distinct values of ξ , as specified in the figure.
The black dotted line is the average over all couplings of each
case and fitting this curve we obtain a power-law decay with
well-defined exponent γ ≈ 1.19, observed for 6 decades. For
ξ = 10−2, long-term trappings tend to disappear. It is worth
mentioning that the disappearance of the long-term sticky
motion manifests itself in the increasing lack of data for S0

as the coupling increases.
To finish we would like to present results for N = 4 and

N = 5. Figure 9 displays the cumulative distribution Pcum(τ0)
for the regime S0 and for distinct coupling values, specified
in the figure. We observe that for values of ξ � 10−4 the
exponent approaches γ ≈ 1.19 for almost 6 decades in

FIG. 9. The cumulative distribution Pcum(τ0) of consecutive
times τ0 in the regime S0 using different values of coupling ξ for
(a) N = 4 and (b) N = 5, both cases collecting 5 × 109 values of τM .
The Ki and εi used in each case are indicated in Table I.

Fig. 9(a), and γ ≈ 1.22 in Fig. 9(b), values obtained fitting the
black dotted line that is the average over all couplings. The
amount of long-term sticky motion decreases for ξ > 10−4

in both cases. Again, this manifests itself in the increasing
lack of data for S0. However, since we still have at least three
decades of power-law behavior, it can still be characterized as
sticky motion leading to the full SS.

V. CONCLUSIONS

This work analyzes qualitatively the intermittent sticki-
ness synchronization (ISS) decay in high-dimensional generic
Hamiltonian systems. Such synchronization is generated by
the regular structures on the chaotic trajectory, and can also
be interpreted as the synchronization of FTLLEs. It is a
synchronization of local expansion and contraction rates along
all unstable and stable direction manifolds. We connect the in-
termittent motion between ordered, semiordered, and chaotic
dynamical regimes with, respectively, the full, partial, and
absence of synchronization generated by stickiness. By using
the cumulative distribution of the consecutive times τM spent
in each regime SM , we demonstrate the ability of the recently
proposed filtering procedure [11] to precisely characterize the
ISS decay generated by the sticky motion. We also show that
even though the residence time in the full SS state is small
compared to the residence times in the partial SS states, it may
occur for consecutive very long times due to the power-law
decay of the Pcum(τ0).

In addition, our numerical results demonstrate that the
algebraic decay exponent tends to γ ≈ 1.20 for higher-
dimensional systems. This is completely in agreement with
the estimated decay exponent of time correlations χ ≈ 0.20
(both exponents are related by the well-known relationship
χ = γ − 1) obtained in [27] for N = 2, 3 symplectic maps
interacting through a nearest-neighbor coupling scheme. The
estimated decay exponents in these two works were obtained
through three different approaches and are somewhat smaller
than recent estimates [16] (such observations suggest a uni-
versality conjecture, at least for a moderate number of coupled
Hamiltonian maps).

Future investigations can analyze a possible relation be-
tween the ISS observed here and the hydrodynamic modes
found in many-body systems [37]. They present slow, long-
wavelength behavior in the tangent-space dynamics. In addi-
tion, the properties of the covariant Lyapunov vectors [38–41]
at the full SS might also be promising from the theoretical
point of view and in applications.
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