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Theoretical study of buckling-based nonlinear transition near a static bifurcation point
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We theoretically investigate the nonlinear behavior of a buckled tip near the bifurcation point under external
stress. We present a mechanical model for the buckled tip and derive the governing equation that describes
the “buckling-to-flipping” nonlinear transition of the tip motion. Our minimal mechanistic model fully captures
the velocity-dependent flipping phenomena, in which the flip position of the tip varies with the speed of the
surface motion, as consistently observed in previous experiments. The present study could be applicable for
sensitive detection of directional surface motion such as seismic waves.
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I. INTRODUCTION

In nonlinear dynamics, a bifurcation represents a change in
the character of the solution as system parameters are varied
[1]. Near the bifurcation point, a nonlinear system would be
unstable and highly sensitive to external perturbations such as
mass loading or force change [2–7]. There have been reported
a large number of methods which utilize the bifurcation-
enhanced sensitivity in resonant dynamical systems [8–12].
Examples include amplification of small signals near the onset
of Duffing bistability [8], bifurcation-based mass detection
using piezoelectric microcantilevers [9], and the readout of
superconducting quantum bits near a dynamical bifurcation
point [11]. While the nonlinearity-assisted sensing is also
applicable to nonresonant “static” systems, only a few studies
have adopted the “static” bifurcation-based detection [13]. In
our previous experimental study, we realized a bifurcation-
based sensitive detection of surface acoustic wave by using
a static buckled microsized tip [14]. We demonstrated that
the detection sensitivity in the static system can be enhanced
near the bifurcation point. We observed a rapid directional
transition between two buckled states, as applying lateral
force to the tip.

Here we theoretically investigate the nonlinear transition
of “buckling-to-flipping” in the elastically buckled tip. We
model the system as a single particle in a double-well potential
subject to an external lateral force, which shows a sudden
transition in the buckled state as the lateral force applied to
the tip is varied. Our model essentially captures the velocity-
dependent transition of the state; the transition point alters
with the varying rate of the applied force, as consistently
observed in previous experiments [14].
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II. THEORY AND RESULT

When an elastic column of tip is axially compressed,
buckling takes place at a certain applied load [Fig. 1(a)]. The
buckling phenomenon is a bifurcation of equilibrium states of
the nonlinear system. For our elastic tip [14], the compressed
tip can be in one of the two buckled states; left-buckled or
right-buckled [Fig. 1(a)]. A buckled state can be changed
by laterally displacing the surface where the buckled tip is
pinned. For a left-buckled tip, when the bottom surface moves
to the right, the buckled structure is gradually erected and the
system suddenly flips into the right-buckled state [Fig. 1(b)].
We note that the initial direction of buckling is preferentially
made in a specific direction by slightly tilting the tip to the
specific direction, and we can displace the surface to the
direction. This allows us to describe the system by the one-
dimensional model (Fig. 1).

To derive the governing equation for the “buckling-to-
flipping” transition by surface displacement, we model the
buckled system as a single particle in a double-well potential,
where the particle is attached to a spring and a dashpot, and the
spring-dashpot is pulled to the right with a constant velocity
v, as shown in Fig. 1(c). The velocity v represents the velocity
of the lateral motion of the surface [Fig. 1(b)], and the spring
and the dashpot denote the system’s elastic and damping
constants, respectively. Further, if the system parameter v is
small, the total force exerted on the tip is always balanced, i.e.,
ẍ ≈ 0. For this slowly varying system, we obtain the equation
of motion,

bẋ + kx = kvt + bv + Fext (x), (1)

where k is the elastic coefficient of the spring, b the damping
coefficient of the dashpot, and Fext is the force induced by
the external potential Uext: Fext = −dUext/dx. To describe the
buckled state, we employ a double-well potential for Uext,

Uext (x) = U0
16

a4
x2(x − a)2, (2)
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FIG. 1. A buckling of an elastic tip and a mechanistic model for
the buckled tip. (a) An elastic tip is buckled under normal compres-
sion, and there exist two buckled states, left- and right-buckled states.
Refer to Ref. [14] for the experimental realization of the buckling.
(b) A buckled state can be suddenly changed by lateral displace-
ment of the surface; here the left-buckled state to the right state,
as the bottom surface moves to the right. (c) A mechanistic model of
the “buckling-to-flipping” nonlinear transition. A single particle in
the left well of a double-well potential, representing the left-buckled
tip, can flip to the other state, as the particle is pulled to the right,
where the spring and the dashpot exert the elastic and the damping
forces on the particle, respectively (see the text for details).

where U0 indicates the energy barrier between two local mini-
mum states and a is the width of the two wells. Although there
are several parameters in Eqs. (1) and (2), the dimensionless
forms of Eqs. (1) and (2) suggest three net parameters, a, bk−1,
and U0/(ka2); a = 67.5 nm, bk−1 = 13.5 ms, and U0/(ka2) =
5 were used for comparison with the experiment (see the
captions of Figs. 2 and 4 for details).

From the total potential energy of the system, we can
qualitatively predict the overall behavior of the tip motion. Let
us assume that the tip is initially in left-buckled state at t = 0.
The total potential energy of the system is given by the sum
of the double-well potential and the elastic energy associated
with the spring constant k [Fig. 1(c)],

Utot = U0
16

a4
x2(x − a)2 + 1

2
k(x − vt )2. (3)

Equation (3) indicates that the elastic energy is gradually
stored in the tip structure, as the surface displaces to the right.
The depth of the double-well potential represents the energy
required to restore the tip structure into the unbuckled struc-
ture, and thus the system bifurcates when the elastic energy,
stored in the tip by the surface displacement, is comparable
to the initial depth of the double-well potential Uext. If the tip

FIG. 2. Total potential energy of the system Utot [Eq. (3)], given
as the sum of the double-well potential Uext and the elastic energy,
as a function of the tip position x at different surface displacements
vt (= vt/a) = 0.1, 5, 10, and 15. The normalized total potential
energy is defined as U tot ≡ Utot/(ka2), the normalized tip position
as x = x/a, the normalized time as t ≡ t/(bk−1), and the normal-
ized velocity as v ≡ v/(ab−1k). Here the potential depth U0 = 5ka2

[Eq. (2)] was used for the numerical plot of Utot .

initially is in deeply left-buckled, the total potential energy
curve [Eq. (3)] at initial left-buckled state exhibits a nearly
symmetric shape. As the surface moves to the right, the elastic
energy increases, the energy barrier for the tip to reach the
other state gradually decreases, and finally the tip flips to
the right-buckled state, as described in Fig. 2. By adjusting
the surface displacement, one can therefore prepare a buckled
tip that is highly sensitive to external disturbances such as
acoustic waves, additional mass loading, or environmental
changes and can flip its state under the disturbances.

To determine the position of the tip [Fig. 1(b)], or equiva-
lently the position of the particle in the well [Fig. 1(c)], one
can solve the equation of motion, Eq. (1). If the system includ-
ing the tip and the surface [Fig. 1(b)] changes quasistatically,
then v ≈ 0 and ẋ ≈ 0, and Eq. (1) is reduced to the following
algebraic equation:

kx = kvt + Fext (x). (4)

Here we keep the term vt , because the system moves slowly
for long time and the term vt would be finite and vary with
time. By solving Eq. (4), we obtain the particle position x as a
function of the surface displacement vt (the black solid curve
in Fig. 3). Here the normalized position x is defined as x/a,
the normalized velocity v ≡ v/(ab−1k), and the normalized
time t ≡ t/(bk−1). For the initially left-buckled tip and the
surface moving to the right, we find multiple possible po-
sitions for the particle at a range of surface positions, as
shown in Fig. 3. The multiple valued characteristics lead to
the sudden jumps in the position of the tip, indicated by black
dashed lines, depending on the direction of the moving tip.
For the periodic lateral motion of the surface, this nonlinear
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FIG. 3. Velocity-dependent nonlinear transition of the buckling-
to-flipping for the buckled tip. For the tip initially in the left-buckled
state, the left state flips to the right as the surface displaces to the right
by vt . The flip point varies with the velocity of the surface motion v,
which occurs earlier for larger v (arrow on each dotted curve). The
black solid curve shows the tip position x for quasistatically varying
surface displacement vt with v ≈ 0 [Eq. (4)]. The black dashed lines
indicate the static bifurcations, and the four gray arrows, two arrows
on the solid black curve and two arrows on the dotted black curves,
show the direction in which the system evolves between the two
states.

response of the tip generates a hysteresis (gray arrows), and
the area of the associated force-distance hysteresis equals
twice the dissipated energy during one period of the forward-
backward flipping processes [14].

The “buckling-to-flipping” transition occurs when the
stored energy by the surface displacement is high enough to
overcome the initial potential barrier. Here we notice that the
damping interaction, indicated by the dashpot in Fig. 1(c),
dissipates substantial elastic energy stored in the system after
the flip, and thus the buckled tip does not settle back into the
initial position of the potential well after the bifurcation.

Experimentally, a parameter, here the surface displace-
ment, that controls nonlinear dynamics of a system is not
stationary but varies with time, i.e., is nonadiabatic. The
response of the system in such a case would be different
from the response of the adiabatic case. To fully describe
the experimental system, we now numerically solve Eq. (1)
to determine the tip position as varying the surface position
underneath the tip. Figure 3 shows the tip position x as a
function of the surface displacement vt for various surface
speeds from 1.5 m/s to 35 m/s. We note that the surface starts
to move initially at a given speed v, and so does the tip, as
expected from Eq. (1). This results in the initial slope of the
curves in Fig. 3, where the slope at t = 0 increases with the
speed v. Interestingly, we find that the flip position decreases
with increasing the speed of the surface motion, as shown
in Fig. 3. This velocity-dependent nonlinear transition is a
general characteristic behavior when the control parameter,
the surface displacement in our case is not stationary but
varies continuously and slowly [15]; The bifurcation or loss
of stability occurs away from the point at which the static

FIG. 4. The flip displacement of the surface, vt , as a function of
the speed of the surface motion v. (a) The red rectangles are obtained
by analyzing our previous experimental data (Fig. 3 in Ref. [14]).
For instance, the data plot, the red rectangle in the orange-shaded
area (light gray in print version), is obtained from the experimental
data shown in the inset. The inset shows the measured interaction
force between the buckled tip and the shear sensor, while moving the
surface laterally at a speed 15 μm/s (refer to Ref. [14] for details).
The transition of the buckled state is reflected by the sudden jump of
the interaction force at a specific displacement vt , indicated by the
vertical dashed line in the inset. The dashed red curve is the linear
fit to the experimental data excluding one outlier at v = 35 μ m/s.
(b) The plot of black circles is obtained from the theoretical data
shown in Fig. 3 (see the main text for details). The dashed curve is
the linear fit to the theoretical data (black circles). For comparison,
we have plotted the experimental data (red rectangles) normalized
by the constants, a = 67.5 nm and bk−1 = 13.5 ms, which were
determined by comparing the linear fits, dashed red in (a) and dashed
black curves in (b).

bifurcation occurs. This feature was consistently observed
in previous experiments [14]. In addition, the earlier flip
at higher speed is also predicted from Eq. (1), where the
velocity-dependent damping force bv acts to enhance the tip
motion. Provided a buckled tip near the bifurcation point, one,
therefore, can realize a surface velocity-dependent detection.
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Furthermore, the buckled tip flips its state only if the surface
displaces in the specific direction depending on the buckled
state. The left-buckled state is changed to the right under
only right displacement of the surface, and the left state
remains under left displacement. Therefore, the response of
the buckled tip is directional.

The displacement of the surface vt , at which the tip flips,
linearly decreases with the speed of the surface motion v. In
previous experiments [14], we qualitatively showed that the
flip point decreases with increasing the speed of the surface.
Figure 4(a) shows the flip displacement vt as a function of the
speed of the surface v for an initially left-buckled tip. Those
data in Fig. 4(a) were quantitatively obtained by analyzing the
experimental data, Fig. 3 in Ref. [14]. For example, the inset
shows the interaction force versus the surface displacement,
measured by using a sensor of quartz tuning fork, while
moving the surface with a speed of 15 μm/s. The flip of the
buckled state is then reflected by a sudden jump in the inter-
action force, so that we can determine the flip displacement
of the surface, as indicated by the vertical dashed line in the
inset of Fig. 4(a). For comparison, we show the theoretical
flip displacement vt as a function of the speed v, as shown in
Fig. 4(b). Here we obtained the flip displacement vt from the
transition curve in Fig. 3 in a way that we first find a point
in x − vt plane at which the slope is maximum during the
transition (as indicated by colored arrows in Fig. 3), and
we define the x value of the point as the flip transition
displacement vt . The flip displacement vt decreases with
increasing the speed v [black circles in Fig. 4(b)], as expected
in Fig. 3. Moreover, we find a linear dependence of the flip
displacement on the speed in Fig. 4(b), where the dashed black
curve is the linear fit to the theoretical data (black circles).
This linearity is consistently found in experimental results
(red rectangles), as shown in Fig. 4(b).

III. CONCLUSION

In conclusion, the bifurcation-based detection method us-
ing nonresonant static system, here the buckled tip, offers a
strategy to enhance the detection sensitivity that is very often
limited in linear systems. With a linear static system, e.g., a
microcantilever, one can detect external force by measuring
the cantilever displacement, which is given by the force
divided by the cantilever’s stiffness. Since a cantilever with
lower stiffness allows higher displacement for a given force,
one has to prepare a cantilever with desired stiffness, which
is a characteristic constant of the tip. On the other hand,
we can alter the detection sensitivity of the buckled tip on
demand, by changing the energy barrier to overcome via
the surface displacement. Interestingly, a seismoscope from
ancient China [16] adopted such a bifurcation-based detection
scheme, in which a lateral disturbance would flip small balls
inside the system out of its potential well, and the direction
of the surface wave could be determined. Our results would
be applicable to develop a new type of mechanical sensors of
surface acoustic waves, such as seismometers [17,18].
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