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A renormalized perturbation method is developed for quantum maps of periodically kicked rotor models to
study the tunneling effect in the nearly integrable regime. Integrable Hamiltonians closely approximating the
nonintegrable quantum map are systematically generated by the Baker-Hausdorff-Campbell (BHC) expansion
for symmetrized quantum maps. The procedure results in an effective integrable renormalization, and the
unrenormalized residual part is treated as the perturbation. If a sufficiently high-order BHC expansion is used
as the base of perturbation theory, the lowest order perturbation well reproduces tunneling characteristics of
the quasibound eigenstates, including the transition from the instanton tunneling to a noninstanton one. This
approach enables a comprehensive understanding of the purely quantum mechanisms of tunneling in the nearly
integrable regime. In particular, the staircase structure of tunneling probability dependence on quantum number
can be clearly explained as the successive transition among multiquanta excitation processes. The transition
matrix elements of the residual interaction have resonantly enhanced invariant components that are not removed
by the renormalization. Eigenmodes coupled via these invariant components form noninstanton (NI) tunneling
channels of two types contributing to the two regions of each step of the staircase structure: one type of channel is
inside the separatrix, and the other goes across the separatrix. The amplitude of NI tunneling across the separatrix
is insensitive to the Planck constant but shows an essentially singular dependence upon the nonintegrablity
parameter. Its relation to the Melnikov integral, which characterizes the scale of classical chaos emerging close
to the saddle on the potential top, is discussed.
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I. INTRODUCTION

Poincaré proved that an arbitrary small perturbation ap-
plied to integrable systems almost always makes it nonin-
tegrable, and he stressed that the study of perturbed inte-
grable systems is the “fundamental problem of dynamics”
[1], because topologically the phase space of a perturbed
integrable system becomes pathological. Later, Kolmogorov,
Arnold, and Moser (KAM) proved that in nearly integrable
systems the nonintegrability is noncatastrophic in the sense of
measure, as it should be [2]. Indeed, in nearly integrable
systems most of the tori which fill the phase space in the
integrable limit still survive as the KAM tori and the mea-
sure of chaotic region is exponentially small as ∼e−const/ε1/2

,
where ε is the strength of perturbation [3,4].

Quantum mechanically, the tori filling the phase space
in the integrable limit are quantized according to the semi-
classical rule of action quantization and form the support of

eigenfunctions. Each torus is analytic in the real plane, and
it can be analytically continued into the complex domain and
forms the set supporting the tunneling part of wave function.
The section of the complexified torus with the real plane
representing the observable is called the instanton [5]. In the
nearly integrable regime, almost all of the KAM tori still
survive, and they are quantized according to the Einstein-
Brillouin-Keller (EBK) quantization rule [6], which is a gen-
eralized version of the action quantization rule. Thus, the
effect of nonintegrability on the quantized state is negligibly
small in the real phase space. However, the significant change
of dynamical structure caused by nonintegrability first mani-
fests itself in the complexified phase space [7,8].

The effect of nonintegrability first emerges on the com-
plexified part of the torus as the natural boundary [8], a
dense set of singularities, which destroys the analyticity
of the KAM torus in the complex domain. The instanton
is thus in general interrupted by the natural boundary [9].
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The tunneling component of the EBK quantized wave func-
tion may drastically be distorted beyond the natural boundary.
The tunneling theory based on classically integrable com-
plexified tori [10] may not be applicable in the nearly inte-
grable regime [11]. Indeed, a numerical study revealed that
the tunneling component starts to drastically increase beyond
the natural boundary [12]. This suggests that nonintegrability
manifests itself very sensitively as tunneling phenomena.

Over the last two decades the interest in nonintegrabil-
ity and tunneling has been gradually growing [13,14]. With
Ref. [15], the complex domain semiclassical theory [16] was
first applied to the study of chaotic tunneling in quantum map
systems, and it has been revealed that the complexified stable-
unstable manifolds (CSUMs) of unstable saddles form the
skeleton of tunneling orbits [17], which physically means that
chaos attracts the tunneling orbit toward the real phase space
[18]. This is a complex-semiclassical interpretation for the
remarkable enhancement of tunneling probability by chaos
[19], which is often called chaos-assisted tunneling [20,21].
Mathematically, the CSUM mechanism means that the Julia
set plays a central role in tunneling problem [17].

On the other hand, the complex semiclassical method
was developed for a continuous-time nonintegrable scattering
system in Ref. [22], and it was confirmed that the CSUM
mechanism plays the central role [23,24] and it was shown
that a crossover from the instanton to the CSUM mechanism
occurs. However, in this model chaos does not exist in the
real phase space. In most general cases of a nearly integrable
regime chaos exists in the real phase space, although its
measure is exponentially small. It has still not been clarified
how the transition from instanton to some other tunneling
process takes place in a nearly integrable regime.

Since nonlinear resonances emerge when a perturbation is
added to integrable systems, it would be natural to examine
their effect on quantum tunneling. The idea of the so-called
resonance-assisted tunneling (RAT) is that utilizing the cou-
pling via nonlinear resonances one may obtain more efficient
tunneling channels, which bypass the original instanton. The
actual calculation scheme based on such an idea was first
proposed in Ref. [25] and applied to a couple of systems later
[26,27]. After some improvements, the validity of the scheme
was further tested for more controlled situations [28–30]. In
parallel, the RAT calculation was performed for a one-dimen-
sional normal form Hamiltonian [31], which is supposed
to ideally model RAT. In the same spirit integrable approx-
imation to nonintegrable situations has been developed [32].

The transition from the instanton to noninstanton tunnel-
ing, which we hereafter refer to as the instanton-noninstanton
(I-NI) transition, is an important issue, which has not been
elucidated yet. The complex semiclassical theory for the I-NI
transition has been presented only for scattering systems in
which chaos does not appear in the real phase space [22–24].

In a previous paper we have closely studied 1/h̄-
dependence of tunneling splitting in a nearly integrable regime
and found that the splitting curve should be viewed as the
staircase-shaped skeleton accompanied by spikes. In partic-
ular we have revealed that the plateau, whose origin has often
been a problem [26–28], is formed as a result of tunneling
coupling across the separatrix [33,34], and so it would be
beyond the perspective of the RAT theory.

In the present paper, we investigate the quantum mech-
anism dominating the characteristic behavior of a nonin-
tegrable tunneling process including the I-NI transition in
the nearly integrable regime. Instead of observing 1/h̄-
dependence of tunneling probability, we investigate the quan-
tum number dependence of the tunneling probability as the
main tunneling characteristic.

The method used here is a renormalized perturbation
method proposed in Ref. [34]: it uses an integrable Hamil-
tonian very closely approximating the quantum map as the
renormalized base, which is constructed systematically by
the Baker-Hausdorff-Campbell expansion. Taking the un-
renormalized residual interaction as the perturbation source,
we develop a perturbation theory which is very effective
to elucidate the interplay between two parts of the Hamil-
tonian: the part renormalized as an integrable Hamiltonian
and the unrenormalizable residual interaction. This interplay
controls the tunneling characteristics and provides a simple
interpretation to the noninstanton tunneling. In this sense this
approach provides a fully quantum mechanical understanding
for tunneling in nearly integrable regime.

First, we show in Figs. 1(a) and 1(b) typical examples
of tunneling probabilities of quasibound eigenstates through
a one-dimensional potential barrier in the nearly integrable
regime. They are obtained for (a) the Hénon map and (b) the
standard map by the exact numerical diagonalization and are
plotted as a function of quantum number n [34]. As discussed
in detail later, for small nonintegrability parameter, the quan-
tum map is very well approximated by the one-dimensional
barrier tunneling Hamiltonian, which is, of course, integrable,
and the eigenstates of the integrable Hamiltonian are very
good approximations to those of the quantum map. We can
expect that the tunneling components of the integrable system
are well approximated by the instanton model depicted by the
broken lines of Figs. 1(a) and 1(b). However, as the quantum
number decreases from the top, the tunneling probability sud-
denly increases from the instanton probability for a quantum
number below a characteristic number denoted by nc, and next
form a remarkable “plateau”, whose height is insensitive to the
Planck constant. We also note that the corresponding classical
Poincaré maps in Figs. 1(a) and 1(b) exhibit typical flow
patterns of the integrable system and do not show any visible
signatures of nonlinear resonances and chaos. The above facts
suggest that, as has been often stressed, the tunneling effect is
very sensitive to nonintegrability.

The outline of the present paper is as follows. In the
next section nonintegrable quantum maps used in Fig. 1 and
throughout the present paper are introduced in a symmetrized
form. The Baker-Hausdorff-Campbell (BHC) expansion for
the symmetrized quantum maps is applied to constructing
a series of integrable Hamiltonians, which approximates the
quantum map with systematically increasing precision. It is
shown that the lowest-order perturbation theory using the
residual part of the quantum map, which cannot be renor-
malized as the integrable Hamiltonian, agrees quite well with
the results obtained by the exact numerical diagonalization
demonstrated in Fig. 1, if a fully higher-order BHC integrable
Hamiltonian is taken as the basis.

In Sec. III the physical origin of the tunneling characteris-
tics such as the I-NI transition and the staircase structure are
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FIG. 1. Typical examples of tunneling probability of eigenstates
vs quantum number measured at the tunneling tail of a wave
function. (a) The Hénon map and (b) the standard map for three
values of the Planck constant h̄ = h̄0, h̄0/2, h̄0/3 and three values
of nonintegrability parameter ε. The classical Poincaré cross sections
corresponding to three values of ε are also depicted on the right-hand
side, where • and × indicate, respectively, the elliptic point O and the
saddle point S. The definition of h̄0 is given in Fig. 2.

explained with a crucial property possessed by the transition
matrix elements (TMEs) of the residual evolution operator
with respect to the eigenstates of the integrable Hamiltonian:
the transition matrix has the resonantly enhanced invariant
elements unrenormalizable as the effective integrable Hamil-
tonian, which select specific modes as the noninstanton (NI)
tunneling channels. Moreover, the amplitude of invariant el-
ements, which characterizes the NI tunneling amplitude, is
insensitive to the Planck constant and exhibits essentially
singular behavior with respect to the parameter controlling
nonintegrability. Such behavior is very similar to the Mel-
nikov integral characterizing the measure of classical chaos in
nearly integrable regime. A possible origin of such a behavior
is discussed based on the correspondence principle. With

these arguments we finally present a simple picture explaining
the tunneling characteristics in the nearly integrable regime,
and discuss how the above mechanism is reflected in the phase
space structure of eigenfunctions.

Section IV is devoted to the summary and conclusion of
the present paper.

II. QUANTUM MAP AND AN INTEGRABILITY-BASED
PERTURBATION THEORY

We consider two typical types of barrier tunneling in non-
integrable systems. In one case the system is open to infinity
and the probability of eigenstates leaks through the barrier,
which results in the finite lifetime of the eigenstate. In another
case the system is closed and the tunneling through the barrier
of the symmetric potential results in the spectrum doublet. We
take the symmetric form of the quantum maps

Û = e−iP̂2/4h̄e−iεV (Q̂)/h̄e−iP̂2/4h̄ (1)

of the kicked rotor model described by the periodically δ-
kicked Hamiltonian

Ĥ = P̂2/2 + εV (Q̂)
+∞∑

n=−∞
δ(t − n − 1/2). (2)

This map describes the unit time evolution by Eq. (2) and
consists of two free-evolution operators e−iP̂2/4h̄ for the time
interval 1/2 between which a kick operation e−iεV (Q̂)/h̄ is
inserted. The symmetrization makes it easier to construct the
higher-order integrable approximation, as will be discussed
later. On the other hand, in the case of the standard map we
use the alternative form

Û = e−iεV (Q̂)/2h̄e−iP̂2/2h̄e−iεV (Q̂)/2h̄, (3)

in which the order of the kick and the free evolution are
exchanged, because of some technical reasons. The potential
functions for the Hénon map and the standard map are,
respectively, given as

H́non map V (Q̂) = 2Q̂2 + Q̂3/3, (4)

standard map V (Q̂) = cos Q̂, (5)

respectively.
The time evolution of the classical dynamics corresponding

to Eqs. (1) and (3) is, respectively, expressed as the the
mapping rule(

Q′

P′

)
=

(
Q + P − εV ′(Q + P/2)/2

P − εV ′(Q + P/2)

)
(6)

and(
Q′

P′

)
=

(
Q + P − V ′(Q)/2

P − εV ′(Q)/2 − εV ′[Q + P − εV ′(Q)/2)]

)
, (7)

both of which are conjugate to the so-called Hénon map and
the standard map, respectively. Note that the Hénon map is an
open system having a superattractor at (Q, P) = (−∞,−∞)
to which the tunneling wave packet is transported.

For the treatment of the open system, such as the Hénon
map, we need to introduce an imaginary absorbing potential to
V (Q) at the ends of the computational space, but the location
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of the absorber is very carefully chosen because it often
damages the original nature of tunneling drastically.

Introducing the imaginary potential breaks the unitarity
of Û , and the Hermite conjugacy of wave function is lost.
However, if we take the q-representation for the evolution
operator, the unitary evolution operator, which includes the
absorption potential in the potential part, can be made sym-
metric, and the right eigenfunction is identified with the left
eigenfunction. Thus, the inner product of eigenfunctions can
simply be expressed as

〈u|v〉 =
∫ ∞

−∞
u(Q)v(Q) dQ. (8)

On the other hand, the standard map is a closed conservative
system. We define the potential function εV (Q) = ε cos Q in
the extended range −2π � Q < 2π and impose the periodic
boundary condition identifying Q = −2π with Q = 2π . The
potential εV (Q) has two equivalent valleys bottomed at Q =
−π and Q = π symmetric with respect to the barriers peaked
at Q = 0 and Q = ±2π . For the eigenfunction with the energy
less than the potential barrier of height ε, the parity symmetry
Q → −Q induces the degeneracy if the barrier isolates the
two valleys. Tunneling, however, resolves the degeneracy and
makes a doublet whose energy difference is called tunneling
splitting.

To describe the transition process from the instanton mech-
anism working in the integrable limit, it is natural to develop
a perturbation theory based on the integrable Hamiltonian. To
make clear the integrable limit of quantum maps, we introduce
the new effective Planck constant,

k̄ = h̄/
√

ε, (9)

and introduce the new momentum and coordinate operator:

p̂ = −ik̄d/dq̂, q̂ = Q̂. (10)

Then Û becomes a convenient form for our approach:

Û = e−i
√

ε

k̄
p̂2

4 e−i
√

ε

k̄ V (q̂)e−i
√

ε

k̄
p̂2

4 . (11)

Regarding k̄ as the effective Planck constant, the fundamental
period of the kick is interpreted as

√
ε, and the fundamental

energy quanta related to the period are given by

�k̄ = 2π h̄/ε, (12)

which plays an important role later. Here
√

ε

k̄ = ε
h̄ , and in

the small limit of
√

ε

k̄ 	 1 it is well known that the unitary
operator with the Hamiltonian H (1)

eff

Û (1) = e−i
√

ε

k̄ H (1)
eff , H (1)

eff = p̂2/2 + V (q̂), (13)

approximates Û and the residual part �Û (1) := Û − Û (1) is

estimated as O(
√

ε

k̄

3
). However, the magnitude of the residual

operator �Û (1) is larger than the exponentially small tun-
neling tail of the wave function unless ε is much less than
the tunneling strength. This implies the perturbation approach
taking Eq. (13) as the lowest order Hamiltonian makes no
sense.

By applying the Baker-Hausdorff-Campbell (BHC) ex-
pansion to the product of incommutable operators forming

the quantum maps, one can construct a series of integrable
Hamiltonians approximating the quantum map with system-
atically improved accuracy. Let us introduce an approximate
Hamiltonian called the BHC Hamiltonian, which is a series of
expansion in powers of the smallness parameter s = −i

√
ε

k̄ :

H (M )
eff =

∑
�=1,3,...,M

s�−1H�. (14)

The coefficient H� is decided in such a way that the expansion
of the exponentiated operator Û (M ) = esH (M )

eff in powers of s
agrees with that of Û . This expansion is no more than the
BHC expansion of the product of operators. The reason why
the expansion (14) contains only the terms with even power
of s is that because of the symmetrized form of Û the inverse
operator Û −1 can be given simply by setting s → −s, that
is, Û (s)Û (−s) = 1. With this expansion, we can recursively
show that H� begins with the � − 1-th commutation relation
and its lowest-order term starts with a term of O(k̄�−1), and H�

can be expressed by a finite power series of k̄:

H� = k̄�−1H�, H� =
k�∑

k=0

k̄kh(k)
� . (15)

In particular if the potential is a polynomial such as in the case
of the Hénon map, the kth-order coefficient Hamiltonian is a
polynomial of q̂, p̂. In the case of the standard map, the kth-
order coefficient is a finite-degree polynomial of cos q, sin q.
In the case of the Hénon map, for example,

h(k)
� =

∑
0 � i � imax
0 � j � jmax

C(�, k, i, j)q̂i p̂ j, (16)

where imax and jmax depend upon (�, k). The algebraic ma-
nipulation program of Mathematica is used for computing the
polynomials. Finally, the unitary evolution operator based on
the Mth-order BHC Hamiltonian is

Û (M ) = exp

{
−i

√
ε

k̄
H (M )

eff

}
, (17)

where H (M )
eff =

∑
�=1,3,5,...,M

(−ε)
�−1

2 H�, (18)

is the Mth-order BHC Hamiltonian. Note that the above
Hamiltonian with k = 0 in the expansion (15) gives the
classical BHC Hamiltonian. As the approximation order M
increases, Û (M ) approximates Û more closely, but the absolute
convergence for M → ∞ is not guaranteed if |s| is not very
small. The convergence is generally thought to be asymptotic
and so there exists an optimal M [35].

Taking the BHC Hamiltonian of a large M as the lowest
order Hamiltonian, we can develop a perturbation theory
regarding the extremely small residual operator

ˆδU
(M ) = Û − Û (M ) = O

[(
i

√
ε

k̄

)
(−ε)(M+1)/2

]
(19)

as the perturbation. We call ˆδU
(M )

the Mth-order residual
operator.

Let |uM
n 〉 and E (M )

n be the nth eigenstate and eigenenergy of
H (M )

eff , where the quantum number is assigned in the ascending
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order, taking n = 0 as the ground state. Then the lowest-order
perturbed eigenstate is simply given by∣∣ψ (M )

n

〉 = ∣∣u(M )
n

〉 + ∑
j

R(M )
n j

〈
u(M )

j

∣∣ ˆδU
(M )∣∣u(M )

n

〉∣∣u(M )
j

〉
, (20)

where R(M )
n j is the resonance factor defined by

R(M )
n j = 1/(e−i

√
ε

k̄ E (M )
n − e−i

√
ε

k̄ E (M )
j ). (21)

On the other hand, the perturbed eigenenergy is given by

e−i�n = e−i
√

ε

k̄ E (M )
j + 〈

u(M )
n

∣∣ ˆδU
(M )∣∣u(M )

n

〉
+

∑
j 
=n

〈
u(M )

n

∣∣ ˆδU
(M )∣∣u(M )

j

〉〈
u(M )

j

∣∣ ˆδU
(M )∣∣u(M )

n

〉
R(M )

n j .

(22)

We discuss the classical phase space of the integrable Hamil-
tonian and its semiclassical quantization together with the
semiclassical tunneling process in it. If ε is small, the lowest-
order Hamiltonian (13) classically provides a good approx-
imation to the dynamics of the classical maps (6) and (7),
and the higher-order Hamiltonian H (M )

eff further improves the
approximation, but the topology of classical flow is invariant:
irrespective of the order of approximation M, the elliptic
point(s) O and saddle point(s) S are invariant (for S and O,
see the phase space plot in Fig. 1), and there always exists
a separatrix orbit(s) going out from S and returning to S
encircling O. In the region encircled by the separatrix all the
orbits form a closed orbit going around O, as is seen in the
phase space plot in Fig. 1. The closed orbits are quantized
according to the semiclassical quantization rule of action

In ≡
∮

p(q) dq/2π = (n + 1/2)k̄, n = 0, 1, . . . , �nmax.
(23)

Here n is the quantum number and p = p(q) is the classical
orbit satisfying H (M )

eff (p(q), q) = E . Let Imax be the action of
the separatrix orbit and define the maximal quantum number
nmax by (nmax + 1/2) = Imax, where nmax is not in general an
integer. The orbit specified by Eq. (23) with 0 � n � �nmax
represents a quantized orbit classically confined inside the
closed separatrix orbit. In the case of the Hénon map, the
elliptic point is O:(0,0) and the saddle point is S:(−4, 0), and
the quantized orbit Eq. (23) leaks out toward q = −∞ by the
tunneling through the potential barrier on which the saddle S
is sited.

In the case of the standard map, the potential is symmetric
and has two identical valleys with the elliptic points O:
(−π, 0) and O:(π, 0) at the bottoms. Each of the two valleys
has the eigenstates which are semiclassical quantization of
orbits according to Eq. (23). Two orbits of the same quantum
number n localized in the two valleys degenerate in the small
limit of k̄, but for finite k̄ they are mixed by the tunneling
interaction through the potential barrier to form the tunnel
doublet with even and odd parity.

As in Ref. [33], we consider only the eigenstates of
even parity, which have nonzero amplitude at the top of
the potential barrier q = 0, and use the quantum number
n = 0, 1, 2, . . . defined by Eq. (23) to assign the even parity
states. We next consider the semiclassical tunneling process

FIG. 2. The instanton orbit (blue broken curve) connecting the
two real orbits (red solid curves) at their turning points q2 and q1.
This is the case of the Hénon map having a closed real orbit (the right
orbit) and an open real orbit extending toward q = −∞ (the left solid
curve). The insert indicates the potential energy, the system’s energy,
and the turning points q1, q2, and q3 in the case of the lowest order
Hamiltonian of Eq. (13).

of the integrable model, which is described by the imagi-
nary orbit p = ip(ins)

n (q); q ∈ R, which is determined by the
condition H (M )

eff (ip(ins)
n (q), q) = En. Such an imaginary orbit

p = ip(ins)
n (q) [more precisely p = ±ip(ins)

n (q)] is called an
instanton, and it is paired with the real orbit p = ±pn(q)
satisfying the same condition H (M )

eff (pn(q), q) = En which ap-
peared in Eq. (23). The relation between the two kinds of orbit
is illustrated in Fig. 2. The imaginary and real orbit contact
with each other at its turning point, say, q = q2, at which
pn(q2) = ip(ins)

n (q2) = 0. The instanton starts from q = q2 and
goes through the pure imaginary space and returns to the real
world at another turning point q = q1 satisfying p(ins)

n (q1) =
0, which may be called the exit of the tunneling. At a position
q taken between the two turning points q1 and q2 the tunneling
probability is given by

Ptun = ∣∣〈q∣∣u(M )
n

〉∣∣2 ∼ e−2S(ins) (q)/k̄,

where S(ins)(q) =
∣∣∣∣
∫ q2

q
p(ins)(q) dq

∣∣∣∣. (24)

As the representative point at which tunneling probability is
observed, we take the exit q = q1 for the Hénon map, and
for the case of the standard map we take q = 0 at which the
potential barrier is peaked.

The simplest example is taken from the lowest-order
BHC Hamiltonian H (1)

eff (p, q) = p2/2 + V (q), for which the
real and instanton orbits are pn(q) = √

2[E − V (q)] and
p(ins)

n (q) = √
2[V (q) − E ], respectively. The turning points

are decided by V (q) = E . In the case of the Hénon map,
for example, q1 and q2 are the left and the middle zeros
of the three roots of V (q) = E . The instanton tunneling rate
displayed in Fig. 1 is the instanton of sufficiently high-order
H (M )

eff , but it does not significantly depend upon M in the nearly
integrable regime.

In the nearly integrable regime considered in the present
paper, the quasibound states of the effective Hamiltonian H (M )

eff
specified by Eq. (23) approximate very well those of the
original evolution operator Û , and so there exists a one-to-one
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FIG. 3. Convergence of tunneling tail of eigenfunction to the
exact numerical result with several M for (a1) the Hénon map and for
(b1) the standard map. For M > 7 [for (a1)] and M > 3 [for (b1)] the
perturbation results coincide with the exact results. The amplitude of
tunneling tail of exact solution (solid line) and of perturbation theory
(solid circle) is compared in (a2) the Hénon map and in (b2) the
standard map at various values of ε. The order of approximation is
M = 15 for (a1) and M = 9 for (b1). Here h̄0 = 0.629

√
ε for the

Hénon map and h̄0 = 0.251
√

ε for the standard map [k̄ = 0.629 and
0.315 for (a2), and k̄ = 0.251 and 0.125 for (b2)].

correspondence between the eigenstates of H (M )
eff and those

of Û .
In the nearly integrable regime, the integrable approx-

imation works well in quantum mechanics as well as in
classical mechanics: if we confine ourselves to the classically
accessible region of the coordinate q, the eigenfunction of the
integrable approximation by H (M )

eff agrees quite well with that
of Û .

However, the tunneling component of wave function is
significantly different even if the nonintegrability parameter
ε is small. Indeed, Fig. 1 shows clearly that for the quantum
number n less than the characteristic number nc, the tunneling
amplitude of the eigenfunction of Û exhibits marked increase
from that of the integrable approximation, which is approxi-
mated by the instanton formula (24),

III. RESULTS OF PERTURBATION THEORY
AND INTERPRETATIONS FOR THEM

A. Results of perturbation theory

In Figs. 3(a1) and 3(b1) we show typical wave functions
of eigenfunctions in the tunneling regime calculated by the
lowest-order perturbation theory for the Hénon map and the

standard map, respectively. For small M the residual part
ˆδU

(M )
is too large to reproduce the exponentially small tunnel-

ing tail. However, the result of perturbation theory improves
with M and converges to the exact tunneling tail.

In Figs. 3(a2) and 3(b2) the typical characteristic value
of the tunneling probability Ptun computed respectively for
the Hénon map and the standard map by the lowest-order
perturbation theory are shown as a function of the quantum
number n up to nmax. The results are compared with those
obtained by the exact numerical diagonalization. Here Ptun

is defined as a square average of the modulus of the wave
function in a fixed interval T = [qa − A/2, qa + A/2] of q in
which the concerned eigenfunction |u(M )

n 〉 consists only of the
tunneling component. Then

Ptun = 〈〈|〈q|un〉|2〉〉, (25)

where 〈〈X (q)〉〉 ≡
∫

q∈T
X (q) dq

/ ∫
q∈T

dq.

In the case of the Hénon map we take qa + A/2 	 −4,
i.e., far from the exit q = q1 of tunneling, and take A much
larger than the wavelength, while in the case of the standard
map we set qa = 0 or 2π and take A = 0, focusing to the
tunneling probability at the site of the top of the barrier,
which is the center of symmetry. From Fig. 3 it is evident that
the perturbation theory well reproduces the results obtained
by the numerical diagonalization over a wide range of n
including the I-NI transition region, if ε is small enough.
The main features of the tunneling characteristics observed
in Fig. 3 and more closely in Fig. 1 are as follows:

(1) Transition to a plateau: if the quantum number n is close
to nmax, the tunneling probability Ptun decreases steeply fol-
lowing the instanton probability, but there exists the threshold
quantum number nc = nc(ε, k̄) at which a transition from the
instanton tunneling occurs [34]. Below nc, Ptun keeps almost
the same level forming a plateau.

(2) Staircase structure: with further decrease in n, the
plateau terminates at a certain n, and Ptun exhibits a steep
decrease similar to the instanton region, which terminates at
a certain n, and a plateau region emerges again beyond it. In
short, the plateau region and the steep-decay region following
it are repeated to form a staircase structure. The very similar
staircase was also observed for the 1/h̄-dependency of the
ground state (n = 0) tunneling rate for the standard map [33].

(3) The quantization condition says that the maximum
number nmax of quasibound states increases in proportion to
1/k̄. The number of states in the instanton region nmax − nc

and the height of the first plateau do not depend on k̄ sensi-
tively. But they depend on ε very sensitively; as shown later,
it exhibits an essentially singular increase with decrease in ε.

Therefore, by taking ε extremely small, the tunneling pro-
cesses of all the quasibound states can be instanton processes.
Then a question arises: however small ε may be, does the I-NI
transition happen if we take the limit k̄ → 0 ? This is a crucial
question asking whether the instanton tunneling along the tori
is always interrupted in the semiclassical limit.

Because of the success of the perturbation theory, we
can now understand the quantum mechanism of the above
tunneling characteristics by using the eigenstates of the
higher-order integrable model H (M )

eff . In the next subsection,
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we discuss very characteristic features of the TME and the ex-
pansion coefficient (EC) |〈	n|u(M )

j 〉| = Rn j〈u(M )
n | ˆδU

(M )|u(M )
j 〉|

with respect to the eigenstates of the high-order integrable
BHC Hamiltonian, which is keys to understand the tunneling
characteristics.

B. Unrenormalizable invariant elements of the transition
matrix and of the expansion coefficients

In the one-dimensional autonomous Hamiltonian system,
it is expected that the correspondence principle can be applied
to the classical evaluation of the matrix element. The matrix
element of an observable Ô(p, q) with respect to two states of
quantum number n, j, i.e., 〈u(M )

n |Ô(q, p)|u(M )
j 〉, corresponds to

a Fourier component of the Weyl symbol Ocls(q, p), which is
related to the position representation of the matrix element as

〈q1|Ô|q2〉 = 1

2π

∫
d peip(q1−q2 )/k̄Ocls[(q1 + q2)/2, p]. (26)

With this symbol the correspondence principle in the action-
time (angle) representation is expressed as [36]

〈
u(M )

n

∣∣Ô( p̂, q̂)
∣∣u(M )

j

〉
∼ ω(In j )

2π

∫ 2π/ω(In j )

0
Ocls[X (In j, t )]ei( j−n)ω(In j )t , (27)

using the action In j ≡ (In + I j )/2 and the classical frequency

ω(I ) = dH (M )
eff (I )

dI
, (28)

and the period T (I ) = 2π/ω(I ). Here we omit the superscript
(M ) for ω(I ) and T (I ). Note that if the classical orbit of action
In j is not close to the separatrix and ω(In j ) is sufficiently
nonzero, then we can roughly estimate as

Ej − En

k̄
� I j − In

k̄

dH (M )
eff (I )

dI

∣∣∣∣
I=In j

= ( j − n)ω(In j ), (29)

which is the frequency factor of the Fourier integral of
Eq. (27). If Ocls[X (In j, t )] is an analytic function of X , then
the poles of Ocls[X (In j, t )] are decided by those of the orbit
X (In j, t ). Since the integrand of Eq. (27) is a periodic function
of the period T (In j ) = 2π/ω, we can deform the integral path
along the real interval [0, T (In j )] so as to encircle the pole in
the complex domain, and Eq. (27) is evaluated as〈

u(M )
n

∣∣Ô(q̂, p̂)
∣∣u(M )

j

〉 ∝ | j − n|d−1e−ts (In j )ω(In j )| j−n|, (30)

where ts(In j ) is the imaginary part of the pole closest to the
real axis, and d is the degree of the pole.

In Fig. 4 typical examples of the transition matrix el-
ement (TME) 〈u(M )

n | ˆδU
(M )|u(M )

j 〉, which plays a key role
in our perturbation theory, are shown as (i) for the
Hénon map and the standard map. The corresponding ex-
pansion coefficient (EC) of the perturbed eigenfunction

FIG. 4. M dependency of (i) the transition matrix element and (ii) the expansion coefficient, where the amplitude is shown in log10 and the
function of eigenenergy normalized by Vmax. H14 and H15 are the eigenstates n = 3 and n = 15 of the Hénon map, and S14 and S34 indicate
the quantum number n = 14 and n = 34 of the standard map. The vertical line ending with squares indicates En (shorter vertical line) and the
resonant energies ERes

� (En) = En ± �k̄� (longer vertical lines). Note that the fixed points are located at ERes
� (En). Here ε = 0.1.
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〈u(M )
n |	 (M )

n 〉 = 〈u(M )
n | ˆδU

(M )|u(M )
j 〉R(M )

n j is also shown as (ii),
where n is chosen as representative states. The difference
between TME and EC is only the resonance factor R(M )

n j , which
is very insensitive to M and brings about only a numerical
correction of O(1) except for the exact resonance.

For small M, the TME |〈u(M )
n | ˆδU

(M )|u(M )
j 〉| exhibits a sim-

ple exponential decay with the energy difference |En − Ej |
as indicated by Eq. (30), which seems to be a quite natural
behavior. As M increases, such a behavior markedly changes
in the modes around the diagonal mode. For large M, ‖ ˆδU

(M )‖
decays in general following Eq. (19), but the modulus of TME
is invariant against M at the specific energy E = ERes

1 (En),
where

ERes
1 (En) = En + �k̄. (31)

As can be observed in Fig. 4(i), the TME forms a broad peak
around ERes

1 (En). This specific energy has a clear physical
meaning: it is the energy separated from En by the funda-
mental quantum (12) decided by the period of the quantum
map. This strongly suggests the occurrence of quantum res-
onance with the periodic kick of the quantum map. The EC
|〈	 (M )

n |u(M )
j 〉| is the product of the TME |〈u(M )

n | ˆδU
(M )|u(M )

j 〉|
and the resonant factor R(M )

n j ∼ O(1), and so it is dominated by
the broad resonance peak of the TME as is indicated by Fig. 4.
In addition, the resonance factor diverges at the exact reso-
nance E = ERes

1 (En). It reinforces the coupling with a closely
resonant mode among the modes in the broad resonance peak
of TME. Hence EC also forms a broad resonance peak, and
its peak shape is more pronounced than that of TME with an
invariant peak height as is displayed in Fig. 4(ii).

The TME is a matrix element of the evolution operator de-
fined for a finite time evolution, and so the quantum resonance
leads to an enhancement of its amplitude proportional to the
timescale, but the EC is a component of the energy eigenstate
determined over an infinite timescale, and it has divergently
large amplitude at the exact resonance. Such features are
reflected in the difference between TMC and EC very close to
the resonance. The enhancement of TME around the quantum
resonance will be discussed in connection with the classical
nonlinear resonance in Appendix D.

The presence of peaks in TME can be observed also at the
higher harmonic energies

ERes
� (En) = En + ��k̄, where � = 1, 2, . . . , (32)

which are more evidently pronounced in the ECs. The peak
heights there are also invariant against the increase of M. The
above facts imply quite an important feature of the quantum
map systems: no matter how large M may be, the BCH
transformation cannot renormalize particular components of
the off-diagonal elements of the evolution operator as the
integrable evolution operator. The unrenormalizable compo-
nents remain invariant with respect to the increase of M
and finally form broad resonance peaks around the resonant
energies E = ERes

� (En). In short, the BHC transformation
cannot renormalize the periodic perturbation inherent in the
quantum map as the effective integrable Hamiltonian H (M )

eff ,
and its unrenormalizable elements remain as the invariant
broad peak.
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FIG. 5. The black and colored curves with points represent the
ε dependency of log10(− ln P1) for the different k̄, where P1 is the
invariant resonance peak height of EC, (a) for the Hénon map and
(b) for the standard map. The colored curves (except for the black
curve) are evaluated by using tunneling amplitude of the first plateau
in Fig. 1, because the numerical evaluation of P1 becomes harder as
h̄ gets smaller. MX means that P1 is determined by the peak height
of EC at the plateau edge, and PL by the tunneling amplitude of the
plateau.

On the other hand, another notable feature of the invariant
broad peaks is that its peak height exhibits a quite singular
nature; it depends on the parameter ε in an essentially singular
way. Moreover, as is shown later, the invariant broad peak
is quasiclassical in the sense that its height is insensitive to
the Planck constant k̄. The peak height of EC with respect
to the TME peak mode also has the same nature because the
resonant factor Rn j results in only a numerical correction. In
fact, taking the eigenstate of n = nedge at the “edge” of the
plateau as the typical eigenstate of the plateau (its precise
definition is given later) the broad invariant peak height of the
EC, which we denote by P1, is shown in Fig. 5(b). It is not
sensitively dependent upon k̄. As shown in Fig. 5, however, it
exhibits an essentially singular ε-dependence as

P1 ∼ C0e−C1ε
−α

, (33)

where C0, C1 are constants and the exponent α takes 0.7–0.8
for the Hénon map and ∼0.6 for the standard map. Here we
take a very specific state of n = nedge, but the peak height of
the modes satisfying the condition (32) does not sensitively
change with n. It is numerically not so easy to obtain P1
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directly from the TME and EC, but, as will be discussed later,
it can be replaced by the tunneling amplitude of the plateau
just after the I-NI transition, shown in Fig. 5.

As shown in Eq. (33), the singular dependence upon the
nonintegrability parameter ε reminds us of the Melnikov in-
tegral characterizing the separatrix splitting, which measures
classical chaos of the nearly integrable system. The relation-
ship with the Melnikov integral will be argued in the next
section and Appendix A on the basis of the correspondence
principle Eq. (27).

In addition, we numerically confirmed that the peak height
P� at the higher harmonic energy is related to P1 simply by

P� ∼ P�
1 . (34)

Thus, the higher harmonic peaks are also “infected” with the
singular property of the first massive peak.

In summary, the magnitudes of TME and EC decrease
markedly with increase in M except for the resonance re-
gion E ∼ En ± k̄�, in which a broad peak whose height is
invariant against M remains. The broad peak of EC is more
definitely peaked than that of TME by the enhancement of
quantum resonance factor. The height of this broad resonance
peak is insensitive to k̄ and exhibits an essentially singular
dependence on ε like e−const.ε−α

(const > 0, 0 < α < 1) if the
mode has energy not far from Vmax. The TME and EC decay
almost exponentially beyond the broad resonance peak, but
they also have the M-invariant local peaks around the higher
harmonic locations |E − En| ∼ integer × �k̄.

C. Contribution spectrum, tunneling characteristics,
and singular invariant peak

In this section we first show that renormalization-invariant
elements of the TME and EC of the high-order M discussed in
the previous section are directly reflected in the I-NI transition
and the tunneling characteristics beyond the transition. We
introduce the contribution spectrum [33,34] which measures
the contribution to the tunneling tail from each eigenstate
|u(M )

j 〉:

ConM
j→n ≡ 〈〈|〈q∣∣u(M )

j

〉|2〉〉|〈u(M )
j

∣∣ψ (M )
n

〉∣∣2
, (35)

where the 〈〈·〉〉 is the local average defined in Eq. (25). We
call ConM

j→n versus j the contribution spectrum. Here we
assume that the order M is large enough such that the lowest
perturbation calculation well reproduces exact ones, and then
the contribution spectrum is expressed as

ConM
j→n

=
{〈〈∣∣〈q∣∣u(M )

n

〉∣∣2〉〉
( j = n),〈〈∣∣〈q∣∣u(M )

j

〉∣∣2〉〉∣∣〈u(M )
j

∣∣ ˆδU
(M )∣∣u(M )

n

〉∣∣2∣∣R(M )
n j

∣∣2
( j 
= n).

(36)

The diagonal term j = n represents the tunneling compo-
nent of the unperturbed eigenfunction, and so it represents
the instanton component. Unless the exact resonance con-
dition is accidentally satisfied, the resonance factor R(M )

n j =
1/(e−i

√
ε

k̄ En − e−i
√

ε

k̄ E j ) is O(1) and it may be neglected.
Decomposition into the contribution spectrum enables us

to extract predominant modes. However, it should particularly

be remarked that sufficiently high-order integrable basis |u(M )
j 〉

of H (M )
eff must be used for the contribution spectrum analysis. If

a lower order basis is employed, a number of components such
that ConM

j→n � 〈〈|〈q|ψ (M )
n 〉|2〉〉 appear and the perturbation

theory breaks down.
Even though the perturbation theory works well for suf-

ficiently large M, the most dominant component in the con-
tribution spectrum typically overestimates the exact tunnel-
ing amplitude, which implies that a cancellation among the
predominant components occurs and extracting the maximal
component does not make sense, as is seen in the Hénon map
(see Appendix B). Roughly speaking, the condition that the
contribution spectrum analysis is meaningful is

Max
{
ConM

j→n

} ∼ actual tunneling amplitude. (37)

First, we consider the instanton component of the BHC
eigenstates u(M )

n (q), which is nothing but ConM
n→n. It is conve-

nient to measure the semiclassical quantities such as energy,
action, and quantum number, by taking the classical separatrix
orbit on the top of the barrier as the origin. Let Vmax =
H (M )

eff (S) be the energy at the saddle S and take the action
and quantum number of the separatrix orbit, i.e., Imax, nmax (=
Imax/k̄ − 1/2) as the origins. Then we introduce

δIn = Imax − In, δn = nmax − n,

δEn = Vmax − En. (38)

We briefly discuss some general properties of the states near
the top of potential. Let us first consider the relationship
between δn and the energy δE . As δE → 0, the classical
orbit approaches to the separatrix orbit. Then the period
of the orbit, which is related to the orbital frequency (28)
by T (δE ) = 2π/ω(δE ), diverges logarithmically and is in
general expressed as

dδI

dδE
= 1

ω(δE )
∼ −A0 ln(δE ) + A1 + O(δE ), (39)

where A0 and A1 are positive constants. Integrating both sides,
we obtain

δn = ν

(
δEn

k̄

)
δEn

k̄
, (40)

where

ν(x) := −A0 ln x + (A1 + A0 − A0 ln k̄) + O(k̄x). (41)

Thus, δn increases with δE
k̄ weakly depending upon k̄ through

ln k̄.
Next we evaluate the action S(ins)(I ) := S(ins)(q1) of an

imaginary orbit, i.e., the instanton contacting with the closed
real orbit with the action I . We suppose the real orbit rep-
resenting the bound state is close to the potential barrier.
The lowest-order Hamiltonian (13) suffices for our purpose.
Let qmax be the q at which the potential V (q) has a local
maximum (qmax = −4 for the Hénon map and qmax = 0 or 2π

for the standard map), then the instanton orbit is approximated
by p2/2 = δE − ω2

top(q − qmax )2/2 where ω2
top = V ′′(qmax) ∼

O(1). This gives the instanton action 2S(ins)(I ) = δE/ωtop

from Eq. (24) and〈〈∣∣〈q∣∣u(M )
n

〉∣∣2〉〉 ∼ e−2 S(ins) (In )
k̄ = e

− δEn
ωtopk̄ . (42)
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Note again that the contribution spectrum has the principal
component at j = n with amplitude 〈〈|〈q|u(M )

n 〉|2〉〉, which is
equal to the instanton probability (42) of the mode n. On the
other hand, the second peak in the TME is the broad resonance
peak located at the quantum resonance Ej ∼ ERes

1 (En) =
En + k̄�. If n is close to nmax, then ERes

1 (En) > Vmax and the
channel j with the energy around ERes

1 (En) is not bound by
the potential barrier but extends beyond it, which means the
probability behaves as 〈〈|〈q|u(M )

j 〉|2〉〉 ∼ O(1). Thus, ConM
j→n

has a second peak at the modes in the first broad resonance
E ∼ ERes

1 (En) and its height is estimated by Eq. (33). The
instanton contribution at j = n and the peak modes with the
energy eigenvalues Ej ∼ ERes

1 (En) are thus compete.
Since Rn j ∼ O(1) in Eq. (36), we evaluate this as

1st resonance peak contribution

instanton
∼ C2

0 e−2C1ε
−α

e
− δEn

ωtopk̄

, (43)

by using Eqs. (42) and (33). If ε is small enough, this
numerator is extremely small, whereas the denominator is not
small unless n is far from nmax and δEn

k̄ 	 ωtop. In that case,
the instanton contribution always exceeds the broad resonance
peak modes. However, as n reduces further from nmax, the
instanton action ∝ δEn

ωtop
increases, and at the critical energy

EC = En satisfying

δEC

k̄
∼ ωtopC1ε

−α, (44)

the contribution from the broad resonance peak dominates
the instanton contribution. This is exactly the instanton-
noninstanton (I-NI) transition seen in Fig. 1. By Eq. (40),
δEC/k̄ may be read as the number of the states δnc exhibiting
the instanton tunneling, which is insensitive to k̄, as is con-
firmed numerically with Fig. 1. If n satisfies the condition
ERes

n1 (En) = En + k̄� > Vmax, the amplitudes of the modes
around ERes

n1 (En) are not bound and so 〈〈|〈q|u(M )
j 〉|2〉〉 ∼ O(1).

Thus, the largest contribution is due to the first resonance
peak mode at Ej ∼ ERes

n1 . Moreover TME peak keeps the value
given by the estimation of Eq. (33), which is given by

Ptun ∼ P2
1 = C2

0 e−2C1ε
−α

, (45)

and it forms the plateau observed in the tunneling character-
istics immediately after the I-NI transition, and the plateau
height can be identified with the peak intensity P1. This fact
was used for plotting the P1 versus ε plot shown in Fig. 5. We
stress again that the plateau height is not very sensitive to k̄,
as is suggested by Figs. 1 and 3, and is closely shown by the
summarized results in Fig. 5

As n decreases further and becomes less than the quantum
number nedge, which is defined by

ERes
1 (nedge) < Vmax � ERes

1 (nedge + 1), i.e., δEn ∼ �k̄,

(46)

the resonance peak mode becomes an eigenstate of Ej < Vmax

bound by the barrier, and the average probability 〈〈|〈q|u(M )
j 〉|2〉〉

is now replaced by the instanton probability of the quasibound
state, which is evaluated with replacing δEn by δEj = δEn +
�k̄ in Eq. (24). Since the peak intensity P1 does not sensitively
depend upon n as was remarked in the previous section, the

tunneling probability steeply decreases with n, according to
the instanton probability:

Ptun ∼ P2
1 e

+ �
ωtop e

− δEn
ωtopk̄ . (47)

This is the steep-slope region, and the quantum number nedge,
which was used in the previous subsection, has a definite
meaning by Eq. (46). Thus, at the quantum number nedge the
tunneling characteristic changes from the plateau to the steep
slope. We further note that δnc and δnedge do not strongly
depend upon k̄, as is suggested by Fig. 1. This can be explained
from the fact that the δEn/k̄ for the states n = nc and n = nedge

do not depend upon k̄ from Eq. (44) and (46), respectively, and
the relation between δn and δE given by Eq. (40)

In the steep-slope region, the resonance broad peak of EC
with the height P1 is responsible for the tunneling. Here we
consider the local peak of EC at the second resonance Ej ∼
ERes

2 (En) with the height P2 ∼ P2
1 [see Eq. (34)]. Such a mode

has energy greater than Vmax and so 〈〈|〈u(M )
j |q〉|2〉〉 ∼ O(1), and

the contribution ConM
j→n is decided by P2

2 ∼ P4
1 [see Eq. (34)].

Hence the ratio of the second resonance peak contribution to
the first resonance peak one is

2nd resonance peak contribution

1st resonance peak contribution
∼ C2

0 e−2C1ε
−α

e
− δEn−k̄�

k̄ωtop

, (48)

which repeats the same variation of the ratio shown by
Eq. (43) in the pretransitional regime. This fact implies the
possibility that the same kind of transition as the I-NI tran-
sition is repeated again between the first and second peaks
as δEn − �k̄ increases further. However, in order that the
scenario mentioned above holds, the contribution spectrum
should really have a predominant contribution around the
second peak position of EC. This issue will be clarified in
Sec. III E.

D. The singular invariant peak

Here we present a possible explanation of the singular de-
pendency of the NI tunneling probability upon ε represented
by Eq. (33) by using the correspondence principle. The edge
state |u(M )

nedge
〉 suits our purpose: it is at the border between the

plateau and the steep-slope region, and so it has the tunneling
probability P2

1 , whereas its first resonance mode |u(M )
j 〉 having

the resonance energy ERes
1 (En) = En + �k̄ can be taken as the

quasibound state with the energy just below Vmax, and then the
correspondence principle is applicable to the TME between
the two quasibound states |u(M )

j 〉 and |u(M )
n 〉.

P1 can be identified with the modulus of TME
〈u(M )

nedge
| ˆδU

(M )|u(M )
j 〉. Then we can set δEn = Vmax − En ∼ �k̄,

and the effective frequency of the exponential function in the
Fourier integral of Eq. (27), i.e., �eff := ( j − n)ω(In j ), where
j = nmax, can be rewritten by using Eq. (40),

δn := nmax − n ∼ (−A0 ln |�k̄| + A1 + A0)�, (49)

and Eq. (39) as

�eff = δnω(δIn/2) = r�, (50)

where

r = [ω(δIn)−1 + A0 + O(�k̄)]ω(δIn/2). (51)
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Here the physical quantities are regarded as the functions
of either δIn = δnk̄ or δEn. We are interested in the semi-
classical limit k̄ 	 1 and δEn = �k̄(	 1). Then the en-
ergy H (M )

eff (δIn/2) approaches Vmax and the classical orbit
X (δIn/2, t ) is well approximated by the separatrix orbit
Xspx(t ), which emanates from the saddle S and reaches itself
(the Hénon map) or an another saddle (the standard map)
over an infinite time. Thus ω(δIn/2) and ω(δIn) go to 0,
which means that the parameter r asymptotically approaches
the frequency ratio ω(δIn)/ω(δIn/2). It does not converge to
a finite value: as is shown in Appendix A, it is less than
1 and is a slowly varying function of �k̄, depending upon
ln �k̄, ln(ln �k̄), . . .. Then Eq. (27) is represented as

P1 ∼
∣∣∣∣ 1

T (δIn/2)

∫ +∞

−∞
eir�t ˆδU

(M )
cls [Xspx(t )] dt

∣∣∣∣. (52)

The integral can be evaluated by using the pole of the separa-
trix orbit.

Since the height of TME at resonance is invariant against
M, ˆδU

(M )
cls of a lower order M is available for the evaluation

of Eq. (52). For lower M, we can expect that ˆδU
(M )
cls (X ) is

simple and is free from a singularity as a function of X , and
the singularity of the integrand of Eq. (52) comes from the
pole of the separatrix orbit Xspx(t ). Then it can be evaluated as

P1 ∝ e−r�ts = e−2πrtsε−1/2
, (53)

where ts ∼ O(1) is the imaginary part of the pole of the sep-
aratrix orbit closest to the real axis. The expression Eq. (53)
explains the singular behavior of Eq. (45), especially for the
standard map. In the case of the Hénon map the observed
exponent α ∼ 0.7 is slightly larger than 1/2, but Fig. 5 shows
a strong tendency that α reduces gradually with decrease in ε.

A very important fact to be remarked is that the integral
(52) and its result (53) as well are very similar to the Mel-
nikov integral, which is the work done by the additionally
applied oscillatory perturbation along the separatrix orbit and
measures the splitting of unstable and stable manifolds [4].
It is quite implicative that the unrenormalizable invariant
perturbation has an amplitude very similar to the Melnikov
integral.

E. Tunneling characteristics: The multiquanta
excitation processes

The I-NI transition and the following plateau region can
be explained simply by the contribution spectrum analysis
for both the Hénon map and the standard maps. But the
contribution spectrum analysis is too rough in the sense that it
considers only the modulus of contribution. Indeed, for some
classes of quantum maps including open systems such as the
Hénon map, the contribution spectrum analysis is not useful as
a tool for analyzing the tunneling characteristics, particularly
in the energy region below the first plateau. On the other
hand, the analysis is very effective for closed systems such
as the standard map. However, the assertion claimed for the
standard map is also applicable to the Hénon map, which will
be confirmed qualitatively in subsection F and quantitatively
in Appendix B.
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FIG. 6. (a) The comparison with the exact tunneling probability
(solid line) and the most contributing mode (square and cross) for
ε = 1.0 and 0.44. (b) The energy eigenvalue of the most contributing
mode plotted as the function of the quantum number n (line with
points) is compared with the harmonic resonance lines ERes

� (n), � =
1, 2, 3 (solid lines), where (i) ε = 0.44 and (ii) ε = 1.0. (c) The
contribution spectrums for all the quasibound states of quantum
number 0 � n � nmax. The spectrum is expressed as the function of
normalized energy E/Vmax and the solid lines indicate the location of
the �th resonance ERes

� (n) for � = 0, 1, 2, and 3.

Figure 6(a) shows the tunneling probability calculated by
taking only the most dominant mode of the contribution
spectrum into account. One can see that the tunneling char-
acteristic features exhibited by the staircase structure are fully
recovered. Using a high-order BHC basis, a group of mainly
contributory modes are selected. The first reason explaining
why it works well is the formation of the invariant broad
peak of TME around the resonance energy, implying the
presence of the elements unrenormalizable as the integrable
Hamiltonian. Moreover, in the case of the standard map, the
resonance factor is sharp enough to select more contributory
modes out of many modes forming the broad resonance peak.

To simplify the problem, we pay attention to the most
dominantly contributing mode as the representative mode,
but the broadness of the peak of the TME and EC is very
important because not only one but a number of modes in
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the broad peak substantially contribute and interfere with each
other to form the tunneling tail. Contribution of many modes
in the broad peak is more crucial in the case of the Hénon map
(see the next section and Appendix B).

In Figs. 6(b) and 6(c) the variation of the contribution
spectrum and of the energy of the most contributing mode is
shown, respectively, with the change of the quantum number
n. The location of its energy En and the associated resonant
harmonic energies ERes

� (En) for 0 � � � 4 are also plotted. As
is evident in Figs. 6(b) and 6(c), with the decrease in n (and
En), the maximal contribution mode changes from itself to the
mode close to its first resonance energy ERes

1 (En), which is
larger than Vmax, and so the responsible mode extends beyond
the potential barrier. This is the I-NI transition discussed in
Appendix B. As long as the condition ERes

1 (En) > Vmax is
satisfied, the most contributing mode is the wave function
unbound by the potential barrier, and it contributes to the
formation of the plateau ERes

1 (En) < Vmax, the most contribut-
ing mode is localized inside of the potential valley, and its
tunneling probability, i.e., the instanton probability, for the
energy E = ERes

1 (En) dominates again. Thus, the tunneling
probability at n is P1 × [instanton probability], which decays
steeply with decrease in n and forms the steep slope region.

As n (and En) decreases further, the contribution from
the mode in the vicinity of the second harmonic resonance
ERes

2 (En), which is again a wave function unbound by the
potential barrier, begins to grow up and exceeds the first one’s
contribution, and the second transition from the first-harmonic
resonance to the second one eventually happens, as is clearly
seen in Fig. 6(c). Thus, the process leading the tunneling
mechanism changes from the single-quanta absorption pro-
cess (�k̄) to the two-quanta absorption process (2�k̄). The
second plateau is formed immediately after the transition,
which is taken the place of by the second steep slope as En

decreases in such a way that ERes
2 (En) < Vmax. As is seen in

Figs. 6(b) and 6(c), the successive transitions are observed up
to the third order. Thus, the I-NI transition and the staircase
structure following it are clearly explained by the competi-
tion among the processes of excitation by the multiquanta
absorption. We stress that the selection is caused by the broad
peak of the TME and EC, which remains invariant against
higher-order renormalizations, and a group of modes in the
broad peak contributes to the above mechanism.

Here we briefly discuss the so-called RAT approach in
comparison with our approach. The RAT approach provides
a classical interpretation for the enhancement of the NI tun-
neling rate. The RAT interpretation is based upon an effective
Hamiltonian constructed using classical information. This
is in sharp contrast with our approach. We stress that the
multiple-quanta excitation process deduced from the char-
acteristic feature of exact quantum TME. Our explanation
based on the multiple-quanta excitation process simply and
comprehensively explains the existence of the entire staircase
structure. Each step of the staircase starts with the formation
of a plateau region, which is caused by the switch from
resonance with the modes inside of the separatrix to resonance
with the modes outside of the separatrix [33,34]. Note that the
RAT approach does not take into account the modes outside
of the separatrix because of its theoretical foundation. There is
one more important finding in our observations in relation to

-30

-25

-20

-15

-10

-5

0

0 5  10  15  20

pr
ob

 (l
og

10
)

n

all modes ε=0.050
few mode ε=0.050
one mode ε=0.050
all modes ε=0.150

few modes ε=0.150
one mode ε=0.150

FIG. 7. The tunneling probability computed by taking only the
maximally contributing mode is compared with the results obtained
by taking all modes. The former is excessively larger than the
latter for all n in noninstanton regime. The tunneling probability
constructed by the optimal few modes prediction ψ (M ),kmax,few

n (q)
(kmax = 7) is also compared, but it almost coincides with the results
of all the modes being taken into account.

the RAT theory. As shown in Fig. 4, many modes of compara-
ble magnitude appear in the TME, while the RAT prescription
considers only limited numbers of modes associated with
visible classical nonlinear resonances. This subject will be
discussed in more detail in Appendix D.

F. The phase space image: The case of the Hénon map

Then how is the case of the Hénon map? In Fig. 7 we
compare the tunneling probability of the one-mode approx-
imation taking only the most contributing mode in Eq. (20)
with the one for which the all modes are taken into account.
It corresponds to Fig. 6(a) of the standard map. The one-
mode construction can reproduce the I-NI transition and the
entrance of the plateau region, but beyond it the former
prediction is a few orders of magnitude larger than that of the
precise result. In particular the former cannot reproduce the
staircase structure anymore. Indeed, the maximal component
in the contribution spectrum takes an excessively larger value
than the true tunneling probability,

However, we here suppose that it is possible to extract
a few number of modes from the predominant modes to
reproduce the quantitative feature of the tunneling component.
If this hypothesis makes sense, it turns out that only a limited
number of modes substantially contribute in the tunneling
region.

Now we consider the subspace spanned only by the kmax

modes {|u(M )
j1

〉, |u(M )
j2

〉, . . . , |u(M )
jkmax

〉} and take the projection of
the exact eigenfunction onto it:

ψ (M ),kmax,few
n (q) =

kmax∑
k=1

〈
u(M )

jk

∣∣ψ (M )
n

〉
u(M )

jk
(q). (54)
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We choose the optimal set ( j∗1 , j∗2 , . . . , j∗kmax), where j∗1 <

j∗2 · · · < j∗kmax
, such that the mean error of ψ (M ),kmax,few

n (q) from
the exact eigenfunction

Err( j1, j2, . . . , jkmax ) = 〈〈∣∣ψ (M )
n (q) − ψ (M ),kmax,few

n (q)
∣∣〉〉,

(55)

in the tunneling region T is minimal, where the optimal
set is chosen among the modes exhibiting the contribution
rate greater than a properly given threshold. Such is always
possible if we take kmax sufficiently large. But we choose kmax

as small as possible so as to cut down the wasteful components
which may be dominating in the contribution spectrum but
cancel after taking summation.

In fact, we show in Fig. 7 the optimal wave function
ψ (M ),kmax,few

n (q), and taking kmax = 7, for example, well repro-
duces the staircase structure of the tunneling probability as
well as the plateau and steep-slope regions. In this way we can
extract the most effective components forming the tunneling
component.

In Appendix B, we show quantitatively that the origin of
the staircase structure of the Hénon map is the multiple-quanta
excitation processes and the competition among them in the
same way as is described in the previous section for the
standard map. In this section we observe the phase space
structure of ψ (M ),kmax,few

n (q) by the Husimi plot and qualita-
tively demonstrate that the same scenario as the standard map
holds in the case of the Hénon map.

In Fig. 8 a typical example of the tunneling staircase struc-
ture composed of two plateaus and one steep-slope region,
which is obtained for the Hénon map ε = 0.15, is shown. The
Husimi plots of the truncated wave functions ψ (M ),kmax,few

n (q)
with kmax = 7 are also shown for some states representing
the characteristic regions, namely, the end of the instanton
region just before the I-NI transition (n = 16), the center of
plateau after the I-NI transition (n = 12), the edge of the first
plateau (n = 9), the center of the steep-slope region (n = 7),
the end of the steep-slope region (n = 6), and the edge of
the second plateau region (n = 1). Following the previous
subsection, the mode responsible for the tunneling of the
eigenfunction in the �th plateau or in the �th steep-slope

FIG. 8. The case of the Hénon map for ε = 0.15 and h̄ = h0/2 (k̄ = 0.32). Along the tunneling amplitude curve, the Husimi plots of
ψ (M ),kmax,few

n (q) are shown for the three states representing the instanton region (n = 16), the steep-slope regions (n = 07, 06) (the lower
three insets), and the three states in the plateaus (n = 12, 09, 01) (the upper three insets). In the Husimi plot, the horizontal and vertical axes
represent p and q, respectively, and the red circle indicates the saddle point (−4, 0). The bold red curve passing the saddle is the stable-unstable
manifolds. See the text and compare this figure with Fig. 9.
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region is the mode close to the �th-order resonance energy
ERes

� (En) = En + �h̄�. If the state is in the steep-slope region,
and ERes

� (En) < Vmax holds, the tunneling tail is contributed
by the bound state localized inside of the separatrix. On the
other hand, if the state is in the plateau, the mode responsible
for the tunneling tail is the one extending outside of the
separatrix. Indeed, the Husimi plots of the wave functions
ψ (M ),kmax,few

n (q) for n = 7 and 6 depicted in Fig. 8 show the
typical patterns of the bound eigenfunctions, which have their
major distribution along the quantized classical closed or-
bit of the one-dimensional integrable Hamiltonian satisfying
H (M )

eff (p, q) = ERes
� (En). Further, it should be also remarked

that the state n = 16 happens to be close to the first resonance
of the state n = 6, that is, ERes

�=1(E6) ∼ E16 and so the Husimi
plot of ψ

(M ),kmax,few
n=16 should coincide with that of ψ

(M ),kmax,few
n=6 ,

which is obviously confirmed by the Husimi plots of Fig. 8.
On the other hand, the tunneling components of the three

states belonging to the plateaus region, i.e., the center of
the first plateau (n = 12) and the edges of the first and
second plateaus (n = 9 and n = 1, respectively), should be
contributed by the unbound orbit of the energy larger than
Vmax and the boundary orbit of energy equal to Vmax, re-
spectively. The latter orbit is the so-called separatrix orbit
or the stable-unstable manifolds W s-W u, which is shown by
the red bold curve coming from the infinity to pass through
S and finally returning to the infinity after passing through
S again. Indeed, one can recognize that the Husimi plot
of the eigenfunction with n = 12 has the major distribution
flowing outside of W s-W u, whereas the Husimi plots for the
eigenfunctions n = 9 and n = 1 indicate that the major part
flows along the W s-W u complex. All the above observations
by the Husimi plot for the Hénon map are consistent with
the successive transition scenario due to the multiquanta ex-
citation processes confirmed for the standard map. A more
quantitative verification for the claim, similar to Fig. 6(c), will
be demonstrated in Appendix B.

IV. CONCLUDING REMARKS

Applying the BHC expansion, nonintegrable quantum
maps are transformed into one-dimensional integrable Hamil-
tonians (BHC Hamiltonian) with great accuracy in the nearly
integrable regime. Based upon the integrable Hamiltonian, the
lowest-order quantum perturbation theory using the residual
interaction as the perturbation can reproduce details of the
transition from the instanton (I) tunneling to a noninstan-
ton (NI) tunneling, and the characteristics of the tunneling
probability beyond the transition region. In particular, the
lowest order perturbation calculation clarifies the underlying
structure of the tunneling characteristics. The structure forms
a staircase, each step of which is composed of two regions
called the plateau and the steep-slope regions.

The dominant part of the time-evolution operator of quan-
tum map is renormalized as the one-dimensional integrable
BHC Hamiltonian, and the residual interaction of the evolu-
tion operator, which is represented as the transition matrix
element (TME), decreases in general with the order of the
approximation. However, certain particular components of
the TME become invariant against the renormalization. The
energies of the modes forming the invariant components are

energetically separated by integer multiples of the funda-
mental quanta �k̄ of the quantum map, and broad peaks are
formed around the invariant components, which implies that
the resonant interaction with the fundamental period of the
quantum map remains invariant, never being renormalized as
the integrable part.

Further, an important fact is that the amplitudes of the
invariant components are quasiclassical in the sense that they
are insensitive to the Planck constant and exhibit an essentially
singular dependence upon the nonintegrability parameter,
which is similar to the Melnikov integral measuring the di-
mension of real classical chaos formed close to the separatrix.

The resonance peak components of the transition matrix
selectively connect the mode |u(M )

n 〉 with the modes in the
broad peak, forming a new tunneling channel. The tunneling
amplitude of the channel is almost equal to the the height
of the TME resonance peak and is quasiclassical and further
has a Melnikov-integral-like singular dependency upon the
perturbation parameter. The new tunneling channel wins the
competition with the instanton channel as the quantum num-
ber decreases from the top; it is the instanton-noninstanton
(I-NI) transition.

Selective excitation of the modes occurs also at a higher-
harmonic resonance, and a new tunneling channel is formed
there, and the successive switching among the harmonic chan-
nels with decrease in the quantum number is the origin of the
staircase structure characteristic in the tunneling probability.
Such a mechanism can be called the resonant multiquanta
excitation mechanism. If the selected mode has energy larger
than Vmax, the tunneling probability is almost independent of
the quantum number n, forming the plateau region, while if
the selected channel has energy less than Vmax, the tunneling
probability decreases with n steeply like the instanton. A pair
of a plateau region and a steep-slope region together form each
step of the staircase structure as mentioned above.

In a closed system like the standard map, the role of the
resonant multiquanta excitation mechanism is very clearly
seen in Fig. 6. However, in open systems such as the Hénon
map, the existence of the multiquanta excitation mechanism
is not recognizable explicitly, but a careful analysis reveals
that the same mechanism works also in the Hénon map, as is
shown in Appendix B.

The invariant component of the TME exhibits a Melnikov
integral-like singular dependency upon the nonintegrability
parameter. This fact implies that the unrenormalized interac-
tion describes the intrinsically nonintegrable dynamics of the
nearly integrable quantum map. On the other hand, these com-
ponents work so as to induce the new tunneling mechanism
via the resonant multiquanta excitation, which replaces the
instanton tunneling mechanism. These observations support
our conjecture that the classical nonintegrability first mani-
fests itself as the tunneling phenomenon.

In the nearly integrable regime, the eigenfunction of the
BHC Hamiltonian approximates the exact eigenfunctions of
quantum map very well in the classically accessible region. In
contrast to this, the tunneling component of the eigenfunc-
tion is very sensitive to the change of parameters, and the
integrable model of the tunneling, i.e., the instanton, does no
longer work well. This fact implies that although the classical
invariant manifold supporting the quantized wave function has
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a sound analyticity in the real domain, as is expected by the
KAM theory, its extension into the complex domain is ill-
structured and loses analyticity completely. This structure in
classical dynamics and its manifestation in quantum dynamics
is a fundamental problem that should be clarified. This is the
very reason why we study tunneling.
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APPENDIX A: EVALUATION OF r

We have to note here that in the limit of δE → 0 the period
T (δE ) = 2π/ω(δE ) diverges logarithmically as shown by
Eq. (39). From Eq. (40), the relation between δE and δI is
given by

δI/A0 = δE f (δE ), (A1)

by introducing the function f (δE ) defined by

f (δE ) = − ln δE + A1/A0 + 1 + O(δE ).

Then differentiating both sides of Eq. (A1) by δE , we obtain
the orbital frequency

ω(δE ) = 1

A0[ f (δE ) − 1 + O(δE )]
. (A2)

With the above equation and the edge state condition δEn =
k̄�, the energy δE ′ corresponding to δIn/2 is decided by

δE ′ f (δE ′) = δIn

2A0
= �k̄

2
f (�k̄). (A3)

The effective frequency of the Fourier integral Eq. (27) is
given by �eff = δnω(δIn/2) = ω(δE ′)δIn/k̄, and its ratio to
the frequency � is expressed by

r := �eff

�
= f (�k̄)

f (δE ′) − 1 + O(δE )
. (A4)

Here the expression (A2) for δE ′ and Eq.(A1), for which δE
and δI are replaced by �k̄ and δIn, respectively, are used.
In the semiclassical limit k̄ 	 1, | f (δE ′)| � 1 due to the
logarithmic divergence, and Eq. (A4) is approximated by
using Eq. (A1):

r ∼ f (�k̄)

f (δE ′)
= 2δE ′

�k̄
. (A5)

Now we have only to evaluate δE ′ in terms of �k̄, which can
be achieved by solving Eq. (A3). Its root can be obtained by
the iteration procedure x → x′:

x′ =
�k̄
2 f (�k̄)

f (x)
, (A6)

with a proper initial input. If we start with x = �k̄, the
approximate root is

δE ′ ∼
�k̄
2 f (�k̄)

f �k̄
2

[ f (�k̄)
f (�k̄/2)

] . (A7)

Substitution of this into Eq. (A5) yields

r ∼ 1

1 + 1
f (�k̄) ln 2 f (�k̄/2)

f (�k̄)

(< 1). (A8)

In the limit of k̄� 	 1, f (x) ∼ − ln(x) and

r ∼ 1

1 + 1
| ln(�k̄)| ln |2 ln(�k̄/2)/ ln �k̄| . (A9)

APPENDIX B: A FEW MODES ANALYSIS:
THE HÉNON MAP

In the following analysis we take the best approximate
wave function ψ (M ),kmax,few

n (q) defined by Eqs. (54) and (55)
composed of a few number modes, based upon the few mode
hypothesis of Sec. III F. In Fig. 7 we compared the tunneling
amplitude of the approximate wave function ψ (M ),kmax,few

n (q)
with that of the eigenfunction obtained by the perturbation
theory for which all modes are taken into account. The agree-
ment is good, and the few mode hypothesis is acceptable.

Recall the error Err( j∗1 , j∗2 , . . . , j∗kmax
) ( j∗1 < j∗2 · · · <

j∗kmax
) defined by Eqs. (54) and (55) as the distance of

ψ (M ),kmax,few
n (q) from the exact eigenfunction in the tun-

neling region T . Here we remove a certain mode j∗k
from the optimal set and construct the approximate wave
function by them and measure the defective distance
Err( j∗1 , . . . , j∗k−1, j∗k+1, . . . , j∗kmax

). Then we define the relative
difference as

z j∗k = |Err( j∗1 , . . . , j∗k−1, j∗k+1, . . . , j∗kmax
)/

Err( j∗1 , j∗2 , . . . , j∗kmax
) − 1|, (B1)

which is normalized by the minimal error. It measures
the relative weight of the contribution from jk to the
optimal construction of ψ (M ),kmax,few

n (q). We call the set
{z j∗1 , z j∗2 , . . . , z j∗kmax−1

, z j∗kmax
} the defect spectrum.

We show in Fig. 9 the defect spectrum, making corre-
spondence with the contribution spectrum of the standard
map shown in Fig. 6. The variation of the spectrum with the
quantum number n shows a surprisingly similar behavior to
that of the contribution spectrum of the standard map in Fig. 6.
If n is not far from nmax, the peak is at the mode n itself,
which means the instanton tunneling tail of u(M )

n (q) dominates
the tunneling. However, as n is reduced, the dominant part
of the spectrum shifts to the location of the first resonance
ERes

1 (En) = En + �k̄ which is larger than Vmax. This is the I-NI
transition. With further decrease of n the dominant part of the
defect spectrum moves along the first resonance line.

If ERes
1 (En) > Vmax, the principal modes are unbound and

the tunneling amplitude is in the plateau regime, whereas
if ERes

1 (En) < Vmax the principal modes are bound and the
tunneling amplitude is in the steep-slope region.

As n decreases further, the dominant part of the defect
spectrum shifts from the first resonance line to the second
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ε
ε
ε
ε

FIG. 9. (a) The tunneling probability computed only by the most
influential mode of the defect spectrum almost reproduces the precise
results for ε = 1.5 and 0.050. (b) The energy eigenvalue of the most
influential mode as a function of quantum number n (line with points)
are compared with the harmonic resonance lines ERes

� (n) (solid lines)
for � = 0, 1, 2, and 3. (c) The defect spectrums for all the quasibound
states of quantum number 0 � n � nmax. The spectrum is expressed
as a function of normalized energy, and the solid lines indicate the
location of the �th resonance, i.e., ERes

� (n) for � = 0, 1, 2, and 3.

resonance one, i.e., ERes
2 (En) = En + 2�k̄, and then with de-

crease of n, a transition similar to the one observed at the
I-NI transition occurs, and a plateau structure followed by a
steep-slope region emerges again in the tunneling character-
istic. Figure 9(b) depicts the energy of the most influential
mode in the defect spectrum as the function of n, which
summarizes the successive switching of the energy of the
most dominant mode among the resonance lines discussed
above.

In Fig. 9(a) we compare the tunneling probability com-
puted only by the most dominant mode of the defect spectrum
with the exact result. As is the case of the standard map, the
single-mode approximation almost reproduces the feature of
tunneling characteristics. However, one can see that in the
plateau region the single-mode approximation significantly
exceeds the exact results, which means that the single-mode
approximation is insufficient, and cancellation among several
dominant modes is essential in the case of the Hénon map.

This is a notably different feature from the standard
map. As has been repeatedly stressed, the dominant mode is

selected first by the broad peak of TME. It is reinforced by the
quantum resonance factor Rn j , which is broader in the case of
the Hénon map because the modes ERes

1 (En) > Vmax escape
toward q = −∞. This is the reason why the most dominant
mode approximation is bad particularly in the plateau region
of the Hénon map. The standard map has no escaping region.

Consequently, even in the case of the Hénon map, in which
the contribution spectrum analysis cannot extract the principal
modes, the defect spectrum analysis successfully reveals that
the tunneling characteristics is explained by the multiquanta
excitation and competitions among them.

APPENDIX C: FULLY CLASSICAL CONSTRUCTION
OF THE TRANSITION MATRIX ELEMENT

Let Ĥ (X̂ , t ) be the original time-dependent Hamiltonian
of period τ = 2π/� = √

ε generating the time-evolution op-
erator Û = T exp{− ∫ τ

0 iĤ (t ′) dt ′/k̄}, where X̂ represents the
quantal version of classical canonical variables such as (q, p)
or the action-angle variables (I, θ ). We introduce an integrable
Hamiltonian Ĥ0(p, q) which approximates well the dynamics
of the explicitly time-dependent Hamiltonian Ĥ (X̂ , t ) and
defines the residual part of the Hamiltonian:

�Ĥ (X̂ , t ) = Ĥ (X̂ , t ) − Ĥ0(X̂ ). (C1)

Then the perturbation expansion in the interaction picture
yields

Û = e−iH0/k̄

[
1 − i/k̄

∫ τ

0
dt�Ĥi (t )

+ (i/k̄)2
∫ τ

0
dt1

∫ t1

0
dt2�Ĥi (t1)�Ĥi(t2) + · · ·

]
,

(C2)

where �Ĥi = eiĤ0t/k̄�H (t )(X̂ , t )e−iĤ0t/k̄ is the interaction rep-
resentation.

We consider only the lowest order terms, because the
BHC expansion is very nice for M � 1, and derive the fully
classical formula for the TME. Let us consider

〈u j |�Ĥi(t )|un〉 = eiEjt/k̄〈u j |�H (t )(X̂ , t )|un〉e−iEnt/k̄.

Applying the correspondence principle Eq. (27), it is repre-
sented by

〈u j |�Ĥi(t )|un〉 = 1

T
ei(Ej−En )t/k̄

×
∫ T

0
�H[X (I, t ′), t]ei(n− j)ωt ′

dt ′,

where I, ω, and T are shorthand notation for action In j =
(In + I j )/2, frequency ω ≡ ωn j = dH0(I )/dI|I=In j , and the
period T ≡ Tn j = 2π/ωn j of the classical orbit X (I, ωt ′) =
X (In j, ωn jt ) described by the classical integrable Hamiltonian
Ĥ0, and �H (X, t ) is the classical counterpart of �Ĥ (X̂ , t ).
The above expression is approximated by using Eq. (29), i.e.,
(Ej − En) � ( j − n)ω jn as

〈u j |�Ĥi(t )|un〉 = 1

T

∫ T

0
�H[X (I, t ′ + t ), t]ei(n− j)ωt ′

dt ′.
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Thus the TME can in principle be computed by using the
classical orbit

〈u j |Û |un〉 = −e−iE jt/k̄
i

Tk̄

∫ τ

0

∫ T

0
�H

× [X (I, t ′ + t ), t]ei(n− j)ωt ′
dt ′ dt . (C3)

Such a classical representation can be extended to higher-
order terms.

APPENDIX D: RELATIONSHIP AND DIFFERENCE
BETWEEN RAT APPROACH AND OURS

Here we discuss the relation between our approach and
the RAT approach [25–32], and the difference in the physical
interpretations. In the nearly integrable regime, the separatrix
still remains, so there is an exponentially narrow chaotic
region. As was emphasized in Secs. III C and III E and in
previous publications [33,34] the tunneling in the plateau
region is dominated by the transition between inside and
outside of the separatrix, and so the RAT theory, which is
based on the action-angle representation inside the separatrix,
cannot in principle be applied.

The region in which the RAT approach and ours can be
compared is the first steep-slope region. Confining ourselves
to this region, we relate our approach to the RAT approach.
In particular we here try to interpret the observed TME in the
BHC representation from the viewpoint of a hypothesis that
underlies the RAT theory. The classical nonlinear resonance
terms are contained in the Fourier expansion of the classical
counterpart �H := H (X, t ) − H0(X ) defined by Eq. (C1).
Recalling that H (X, t + τ ) = H (X, t ), the Fourier expansion
is written as

�H (X [I, θ/ω(I )], t )

=
∑

�,m∈integer2

{V�,m(I )ei(�θ+m�)t + c.c.}, (D1)

where � = 2π/τ . The Fourier coefficient V�,m can in principle
be computed by the time-dependent data �H[X (I, t ), t ′] for
every orbit X (I, t ) specified by the action I and the frequency
ω(I ). Substituting Eq. (D1) into the formula (C3), we imme-
diately obtain the classical expression of the TME in terms of
the Fourier coefficient V�,m:

〈u j |Û |un〉 = −e−iE jt/k̄
∑

m

1

k̄
Vj−n,m(In j )

ei(ωn j ( j−n)+m�)τ − 1

ωn j ( j − n) + m�
.

(D2)

The factor in the r.h.s. may be replaced by

ei(ωn j ( j−n)+m�)τ − 1

ωn j ( j − n) + m�
� ei((Ej−En )/k̄+m�)τ − 1

(Ej − En)/k̄ + m�
. (D3)

The resonance enhancement occurs at ( j − n)ω = −m�.
In the RAT treatment, the nonlinear resonances which are

“visible” in the sense that the sizes are much larger than the
Planck cell in a classical phase space are chosen, and the local
Hamiltonian is constructed around each resonance satisfying
ωr = �s by applying the secular perturbation technique [25].
The corresponding amplitude Vj−n=r,m=−s is determined nu-
merically so as to reproduce the classical resonance pattern in
phase space.

For simplicity, we suppose s = 1 and take only a sin-
gle resonance with a given r, then the classical resonance
condition rω(In,n+r ) ∼ � is satisfied [25]. From Eq. (D3)
this situation also corresponds to our resonance condition
E1(En) = Ej . In such a case the RAT approach considers only
a single resonance term with Vr,−1, meaning that we ignore
all the contributions except for the mode j = n + r in the
perturbation formula Eq. (20).

Such a reduction is, however, unreasonable in our situation
because of the following reasons. In the semiclassical limit,
the relevant eigenstate’s energy En at which the I-NI transi-
tion occurs is close to Vmax, and the corresponding classical
frequency ω(In) approaches 0, and r ∼ �/ω(In) may be much
larger than 1 in general. Indeed, Fig. 4 suggests that r > 10,
which means that the mode with j − n = r ± 1, r ± 2, . . .

can also be nearly resonant with �. In other words, once a
resonance term with a large r exists, we have to take into
account the nearby resonances such as r ± 1 : 1 r ± 2 : 1, . . .

with the amplitude Vr,−1 which is slowly varying with r. They
contribute to TME with the weights comparable to that of
r, which are proportional to the factor (D3) and form the
broad resonance peak. In the above mentioned case there is
no predominant resonance, and it is a typical situation in the
nearly integrable regime treated in the present paper. But if
the perturbation strength is not weak enough, a particular
classical resonance is more prominent than others and is
classically “visible”, which is the ideal case for the RAT
approach. Even in such a case, we found that the TME exhibits
a broad peak and does not have a corresponding prominent
peak [37].

The existence of the broad peak of TME, which was the
essential result of the BHC renormalization, means that all the
| j − n| : 1 classical resonances corresponding to the quantum
number j in the broad peak contribute as the noninstanton
tunneling channels. The above argument holds also for the
higher-order steps of the tunneling staircase: in the second
step region, the | j − n| : 2 resonances contributes, and the
| j − n| : 3 resonances in the third step and so on, contributing
as a multiquanta excitation process. Such direct processes are
ignored in the RAT approach [28]. If we consider the higher-
order corrections of Eq. (C2) neglected here, the combination
of | j − n| : 1 resonances, which is taken into account in
the RAT approach [25], also contributes to higher-harmonic
resonances. But in this case, contributions come from not a
particular combination of modes but many possible combina-
tions of the modes in the broad peak.

As stressed in the arguments of Sec. III E and Appendix B,
particularly around Figs. 6 and 9, the maximally contributing
mode seems to lead the multiquanta excitation mechanism
in a qualitative sense. Quantitatively, however, a number of
modes in the broad peak participate in the tunneling to form
a characteristic wave function in the tunneling region. In the
above respects our result takes in all the mainly contributing
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modes in the broad peak, almost of which are neglected in
the RAT theory because of a classical mechanical reason.

The relation of our approach to the RAT approach will be
discussed in more detail in a forthcoming paper.
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