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We study quench dynamics in the many-body Hilbert space using two isolated systems with a finite number
of interacting particles: a paradigmatic model of randomly interacting bosons and a dynamical (clean) model
of interacting spins-1/2. For both systems in the region of strong quantum chaos, the number of components
of the evolving wave function, defined through the number of principal components Npc (or participation ratio),
was recently found to increase exponentially fast in time [Phys. Rev. E 99, 010101(R) (2019)]. Here, we ask
whether the out-of-time ordered correlator (OTOC), which is nowadays widely used to quantify instability in
quantum systems, can manifest analogous time dependence. We show that Npc can be formally expressed as the
inverse of the sum of all OTOCs for projection operators. While none of the individual projection OTOCs show
an exponential behavior, their sum decreases exponentially fast in time. The comparison between the behavior
of the OTOC with that of the Npc helps us better understand wave packet dynamics in the many-body Hilbert
space, in close connection with the problems of thermalization and information scrambling.
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I. INTRODUCTION

There is currently great interest in the study of nonequi-
librium quantum dynamics of isolated systems with many
interacting particles. This is partially justified by significant
experimental progress that makes possible the study of the
coherent evolution of many-body quantum systems for long
times [1–3]. Yet, despite important analytical and experimen-
tal advances, several questions remain open. A timely discus-
sion refers to the conditions [4,5] and timescales [6–8] for
the onset of equilibration and thermalization that can emerge
without the influence of an environment. When studying these
topics, one should distinguish systems at the thermodynamic
limit, addressed by mean-field theories [9], from systems with
a finite number of particles. The latter situation emerges in
experiments with cold atoms and ion traps, where the number
of particles can be small and controlled.

Analytical breakthroughs in the study of many-body quan-
tum dynamics have been recently achieved in high energy
physics [10], where quantum systems without gravity are
equated to classical gravitational systems in a higher spatial
dimension. A quantity that became central in many of these
studies is the out-of-time order correlator (OTOC), first in-
troduced in the semiclassical analysis of superconductivity
in Ref. [11]. Existing analytical results for the evolution
of the OTOC have been obtained by taking the average in
the canonical ensemble [12–15], thus assuming implicitly
the thermodynamic limit. The present work focuses on the
dynamics of finite isolated systems with interacting Bose or
Fermi particles and employs the OTOC to describe the gradual

spreading of the initial wave packet in the many-body Hilbert
space.

The OTOC can be measured experimentally with nuclear
magnetic resonance platforms and ion traps [16–18]. Among
various applications, it has been used to quantify the spread of
quantum information [19] and the exponential instability of
quantum systems that have a chaotic classical counterpart, as
supported by semiclassical analysis [20–23]. This has given
birth to another method to detect chaos in quantum dynamics,
a goal pursued by several earlier works [24–28].

The quantum-classical correspondence between the expo-
nential growth rate of the OTOC and the classical Lyapunov
exponent has been numerically corroborated for finite systems
with few degrees of freedom, such as one-body chaotic sys-
tems [29,30] and the Dicke model with two degrees of free-
dom [31]. However, little is known about this correspondence
for finite quantum systems with many interacting particles.
Studies of the OTOC have contributed to a significant renewed
interest in the problem of the quantum-classical correspon-
dence for chaotic systems, which is a study initiated about
40 years ago with the investigation of one-body chaos.

In the paradigmatic Kicked Rotator (KR) model, it was
found numerically [32] and explained analytically [33,34]
that there are two timescales on which one can speak of the
quantum-classical correspondence for the dynamics of wave
packets. One is the timescale due to the Ehrenfest theorem
according to which the center of the wave packet in phase
space follows, for some time, the corresponding classical
trajectories. In the case of strong chaos, the timescale tE for
this correspondence was analytically studied in Refs. [35,36]
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and shown to be proportional to ln(1/h̄), where h̄ stands for an
effective dimensionless Planck constant. The other timescale
tD is due to the dynamical localization occurring in the
momentum space of the KR [32,33,37,38]. The second mo-
ment of the wave packet in momentum space nicely mimics
classical diffusion on the timescale tD ∝ 1/h̄2, which is much
longer than tE . It was later argued that this localization may be
compared with the Anderson localization in one-dimensional
(1D) disordered models with long-range hopping [39] and the
localization in quasi-1D random models described by band
random matrices [40–44].

The importance of these old results obtained for the KR
is twofold. First, they show that the classical diffusion coef-
ficient is related to the localization length of the quasienergy
eigenfunctions in momentum space [33,45], which is a pure
quantum concept. Second, they demonstrate that the timescale
for the quantum-classical correspondence can be very dif-
ferent for different observables. As mentioned above, global
observables, such as the second moment of the probability
distribution in momentum space, can coincide with their clas-
sical counterparts on a timescale much larger than that defined
by the Ehrenfest theorem. This point is of special relevance
for studies of the evolution of observables in many-body
systems. A question of particular interest is how the number
N of quantum particles enters the characteristic timescales
involved in the scrambling of information, equilibration, and
thermalization [6–8].

It was shown in [6] that when the eigenstates of a many-
body quantum system are strongly chaotic, the number of
principal components Npc (or participation ratio) involved in
the dynamics of the wave function in the many-body Hilbert
space increases exponentially fast in time. The growth rate
was found to be 2�, where � is the energy width of the
strength function. This function, introduced in nuclear physics
and known in solid state physics as local density of states
(LDOS), is defined by projecting an unperturbed many-body
state onto the basis defined by the total Hamiltonian that
includes the interparticle interaction. Knowledge of the LDOS
is very important in the analysis of quench dynamics, since its
Fourier transform is the survival probability, which describes
the decay of the initial state.

The exponential growth of Npc lasts for some time tS before
the saturation of the dynamics, which happens due to the finite
size of the many-body Hilbert space. It was found in [6] that,
for a large number of particles, N � 1, the saturation time is
approximately given by tS ∝ Nh̄/�. Since tS is proportional
to the number of particles N , it can be much larger than the
characteristic time for the depletion of the initial state given by
h̄/�. The timescale tS represents the time for thermalization
[6], according to which an initial wave packet ergodically fills
the energy shell [46–48]. The spread of the initial state reflects
the delocalization of the energy eigenstates, which is due to
the strong interparticle interactions [49,50]. These states do
not fill the whole Hilbert space, just the part defined by the
interparticle interaction.

In the present work, we explore the relationship between
Npc and a particular kind of OTOC. Contrary to previous
studies about the connection between the second-order Rényi
entropy for reduced density matrices and the OTOC [51,52],
our analysis does not involve any trace over degrees of

freedom. The Npc quantifies the number of unperturbed many-
body states that contribute to the evolution of the wave packet,
while the OTOC measures the degree of noncommutativity
in time between two different Hermitian operators. In the
literature, these operators are usually taken as local in real
space [53]. Here, we use instead projection operators in the
many-body Hilbert space, which are local in this space. We
show that the inverse of the sum of all OTOC’s coincides
with Npc.

In our analysis, we distinguish between two categories of
OTOC’s: the autocorrelator, where both projections are made
on the initial state, and the case involving a projection onto
a many-body state other than the initial state, referred to as
projection OTOC. While the autocorrelator decays exponen-
tially as e−2�t , we find that a single projection OTOC does
not exhibit exponential behavior. However, when we look at
the sum of all projection OTOCs, we find a nonmonotonic
behavior in time, where an initial growth is followed by
an exponential decay. This decay happens within the time
interval of the exponential increase of Npc.

We consider two models, the well-known two-body ran-
dom ensemble (TBRE) with a finite number of bosons in-
teracting randomly and a dynamical (deterministic) 1D spin-
1/2 model with nearest and next-nearest neighbor couplings
only. The TBRE [also known as two-body interaction (TBRI)
random model] falls into the broader category of the so-
called embedded ensembles, which have been thoroughly
studied since the 1970s in the context of nuclear physics
and quantum chaos [54–56]. The Sachdev-Ye-Kitaev (SYK)
models [57,58], which have received increasing attention in
high energy physics, are also examples of embedded random
ensembles. For both models that we study, we choose param-
eters for which the eigenstates involved in the dynamics are
composed by a very large number of unperturbed many-body
states.

The paper is organized as follows. In Sec. II, we describe
the two models considered. Section III presents the relation-
ship between OTOC and Npc. In Sec. IV, we show analytical
as well as numerical results for both the TBRE and the spin
model. In Sec. V, we summarize our results and discuss some
possible future directions.

II. MODELS AND QUENCH DYNAMICS

We consider a bosonic TBRE and a 1D spin-1/2 system,
both of them described by the Hamiltonian,

H = H0 + V, (1)

where

H0 =
∑

k

E0
k |k〉〈k|

stands for the unperturbed (integrable) part of the total Hamil-
tonian H , with

H =
∑

α

Eα|α〉〈α|,

and V represents the two-body interactions. In what follows
we set h̄ = 1. We focus on the case where the perturbation V is
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sufficiently strong, so that a large part of the energy spectrum
of H contains chaotic eigenstates.

Since our study concentrates on the dynamics occurring
in the unperturbed many-body space of chaotic systems, a
definition of what we mean by quantum chaos is in order.
For one-body systems, it is common lore to associate quantum
chaos with level statistics described by full random matrices.
However, in realistic finite many-body models, not all eigen-
states are random vectors, as in full random matrices, and not
all of them are involved in the dynamics. Therefore, spectrum
statistics obtained by taking into account all eigenvalues is
not the best way to characterize the dynamics, which is only
due to those eigenstates that are present in an initially excited
wave packet. Our approach to quantum chaos is linked with
the structure of the eigenstates. They are called chaotic when
they are fully delocalized in the energy shell and are com-
posed of many uncorrelated components (see, for example,
Refs. [49,50]).

A. Two-body random ensemble

The TBRE describes N identical bosons occupying M
single-particle levels; the latter are specified (and reordered)
by random energies εs. The mean spacing 〈εs − εs−1〉 ≡ δ = 1
sets the energy scale defining the width of the unperturbed
energy spectrum NMδ. The choice to have random single-
particle energies is not a necessary condition for the results
obtained below. It is used to remove the degeneracy in the
unperturbed many-body spectrum.

The Hamiltonian of the TBRE is written as

H =
M∑

s=1

εs a†
s as +

M∑
s1,s2,s3,s4=1

Vs1s2s3s4 a†
s1

a†
s2

as3 as4 , (2)

where as (a†
s ) is the annihilation (creation) operator on the

single-particle energy level εs, so the number operator ns =
a†

s as gives the probability for the occupation of the sth single-
particle energy level ns/N . The two-body matrix elements
Vs1s2s3s4 are Gaussian random entries with zero mean and
variance V2. The Hamiltonian conserves the total number
of bosons, so the analysis is done for a single subspace of
dimension,

D = (N + M − 1)!

N!(M − 1)!
.

Throughout the paper, we fix the number of single-particle
levels, M = 11, and we vary the number of particles N from 4
to 8. That corresponds to a size D of the many-body space
ranging from 1001 up to 43 758. The strength V of the
interparticle interaction is chosen so that V = 0.4 to have a
large energy region with strongly chaotic eigenstates [59]. The
eigenstates |k〉 of H0 constitute the unperturbed many-body
basis (also called mean-field basis) in which we study the
dynamics of the wave packets and in second quantized form
they can be written as |n1, . . . , ns, . . . , nM〉 where ns is the
number of bosons in the sth single-particle energy level.

The TBRE Hamiltonian matrix is very sparse, because
only a fraction of the unperturbed many-body states of H0

are directly connected by the two-body interaction V . The
number of nonzero off-diagonal matrix elements N depends

on the particularly chosen matrix line, but it is generally much
smaller than the total matrix dimension D. It is not possible
to give a general analytical expression for N , but upper and
lower bounds as a function of N, M have been estimated as
follows [59],

(M − 1)(M + 2)

2
� N � N (M − 1)

[
1+ (N−1)(M−2)

4

]
.

(3)

In particular, the minimal number of directly coupled states,
which is independent of N , is obtained when all N particles
occupy only one single-particle energy level. Another feature
of the TBRE matrices is their bandlike structure, which causes
the eigenstates close to the ground state to be much less
delocalized than the states closer to the center of the spectrum.

The TBRE was originally developed to explain the sta-
tistical properties of complex systems with interacting Fermi
particles, such as highly excited nuclei and molecules [54,60].
It was later applied to systems of interacting bosons, to which,
in the dilute limit, many aspects of energy spectra and eigen-
states are similar to those of systems of random interacting
fermions. To date, it has been extensively investigated for
fermions [61,62] and for bosons [55,56,63,64]. This model
is a particular case of the embedded ensembles with q-body
interactions. When q = 2 we have the TBRE and when q =
N , we recover the full random matrices.

In contrast to the standard ensembles of full random ma-
trices, TBREs are much closer to realistic physical systems,
since they take into account the two-body nature of the inter-
actions, the type of interacting particles (fermions or bosons),
the strength of the interparticles interaction, and the properties
of single-particle spectra.

B. Dynamical spin-1/2 model

The 1D spin-1/2 model that we study here is dynamical,
that is, it has no random elements. The Hamiltonian is given
by

H = J

4

L−1∑
s=1

(
σ x

s σ x
s+1 + σ y

s σ
y
s+1 + �σ z

s σ z
s+1

)
(4)

+ λ
J

4

L−2∑
s=1

(
σ x

s σ x
s+2 + σ y

s σ
y
s+2 + �σ z

s σ z
s+2

)
. (5)

The first part of this Hamiltonian contains only nearest-
neighbor couplings and it is associated with the mean field H0.
The second part describes next-nearest-neighbor couplings
and represents the perturbation V . Differently from the pre-
vious model, V is a local interaction in space. The Pauli
matrices σ

x,y,z
s act on site s; L is the number of sites which

is chosen even; the coupling constant J = 1 sets the energy
scale; � stands for the anisotropy of the interaction, and λ is
the ratio between next-nearest-neighbor and nearest-neighbor
couplings [65,66].

The Hamiltonian conserves the total spin in the z direction,
Sz = ∑L

s=1 σ z
s /2. In what follows we consider the subspace

Sz = −1, which has N = L/2 − 1 excitations (up-spins) and
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dimension,

D = L!

N!(L − N )!
.

The unperturbed Hamiltonian H0 is integrable, but as λ in-
creases, H crosses over to the chaotic regime [49,50]. For the
parameters considered here, system size L = 16, number of
up-spins N = 7, (so D = 11 440), anisotropy � = 0.48, and
λ = 1, the model is strongly chaotic in a large region of the
spectrum.

C. Quench dynamics

To study the dynamics, we prepare the system in an unper-
turbed state |k0〉,

|ψ (0)〉 = |k0〉 =
∑

α

Cα
k0
|α〉, (6)

where Cα
k0

= 〈α|k0〉 and |α〉 are the exact energy eigenstates.
The initial state |ψ (0)〉 evolves under the full Hamiltonian H
when the interaction V is turned on. We consider initial states
that have energy Ek0 = 〈k0|H |k0〉 away from the edges of the
spectrum of H .

We notice that the initial state for the spin model is not a
site-basis vector (computational basis vector) for which the
spin on each site either points up or down in the z direction,
but it is instead an eigenstate of H0. In analogy with the
TBRE, we refer to these states as the unperturbed many-body
basis.

The probability of finding the evolved state in a basis state
|k〉 at the time t is given by

Pk (t ) = |〈k|e−iHt |k0〉|2 = |〈k|ψ (t )〉|2 (7)

=
∑
α,β

Cα∗
k0

Cα
k Cβ

k0
Cβ∗

k e−i(Eβ−Eα )t . (8)

The particular case where k = k0 corresponds to the survival
probability (also known as return probability), which can be
written as

Pk0 (t ) = |〈k0|ψ (t )〉|2 =
∣∣∣∣∣
∑

α

∣∣Cα
k0

∣∣2
e−iEαt

∣∣∣∣∣
2

=
∣∣∣∣
∫

dE e−iEtρk0 (E )

∣∣∣∣
2

, (9)

where

ρk0 (E ) ≡
∑

α

∣∣Cα
k0

∣∣2
δ(E − Eα ) (10)

is the LDOS, that is, the energy distribution weighted by
the components |Cα

k0
|2 of the initial state. The subscript k0 in

Eq. (10) stresses the important point that the LDOS depends
on the initial state |k0〉. As evident from Eq. (9), the survival
probability is the Fourier transform of the LDOS. The inverse
of the width � of the LDOS gives the characteristic decay time
of Pk0 (t ).

The maximal size of the LDOS, obtained when H0 is
negligible and H ∼ V , defines the energy shell, which is only
a part of the total energy spectrum. The shape of the energy
shell depends on the density of states, which in systems with

few-body interactions typically has a Gaussian form [54]. The
eigenstates of H written in the unperturbed basis are chaotic
when they fill the energy shell completely and the components
Cα

k are random numbers following the Gaussian envelope of
the energy shell [49,50].

To quantify how the initial state spreads in time, in
the many-body Hilbert space, we compute the number of
principal components,

Npc(t ) = 1∑
k Pk (t )2

= 1∑
k |〈k|ψ (t )〉|4 . (11)

For the TBRE, we use the notation 〈〈Npc(t )〉〉 to indicate
average over the random configurations of the two-body in-
teraction.

III. OTOC FOR PROJECTION OPERATORS
AND NUMBER OF PRINCIPAL COMPONENTS

The OTOC for two Hermitian operators ŵ and v̂ is defined
as

Fv,w(t ) = {ŵ†(t )v̂(0)†ŵ(t )v̂(0)}, (12)

where ŵ(t ) = eiHt ŵ(0)e−iHt is the operator in the Heisen-
berg representation. In the literature, 〈.〉 originally referred to
the average over the canonical ensemble, but later, averages
over all states of an unperturbed Hamiltonian or over one
particular initial state |k0〉, as we do here, have also been
considered.

Written in terms of the initial state, the OTOC has a clear
physical meaning, which can be explained as follows. Let us
define the two states,

|x(t )〉 = ŵ(t )v̂(0)|k0〉,
and

|y(t )〉 = v̂(0)ŵ(t )|k0〉,
which represents the action of the two operators taken in the
reversed order. The state |x(t )〉 is obtained by first applying
v̂, then evolving forward with the full Hamiltonian for time
t , applying ŵ, and finally evolving backward for the same
time t . For |y(t )〉, the order is exchanged: First the evolution is
forward, then ŵ is applied, followed by the backward evolu-
tion, and finally the application of v̂. Thus, Fv,w(t ) quantifies
the decay of the overlap between these two states, 〈y(t )|x(t )〉,
caused by the exchanged action of the two operators v̂(0) and
ŵ(t ). It probes the way v̂ and ŵ inhibit the cancellation be-
tween forward and backward evolution. Equivalently, Fv,w(t )
measures the degree of noncommutativity between the two
operators.

The OTOC is related to the Npc when in Eq. (12) we
use projection operators in the unperturbed many-body states,
ŵ(0) = |k〉〈k|, v̂(0) = |k′〉〈k′|, and compute the expectation
value in the initial state |k0〉. This gives

Fk,k0 (t ) = 〈k0|eiHt |k〉〈k|e−iHt |k′〉
×〈k′|eiHt |k〉〈k|e−iHt |k′〉〈k′|k0〉

= 〈k0|eiHt |k〉〈k|e−iHt |k0〉
×〈k0|eiHt |k〉〈k|e−iHt |k0〉

= |〈k|e−iHt |k0〉|4. (13)
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Since v̂(0)|k0〉 = δk′,k0 |k′〉, it is clear that to have a nonzero
correlation function one needs to choose v̂(0) = |k0〉〈k0|.
Comparing the equation above with Eq. (11), one sees that

[Npc(t )]−1 =
∑
k 
=k0

Fk,k0 (t ) + Fk0,k0 (t )

= Otoc(t ) + Pk0 (t )2. (14)

In the above, we separate k = k0 from k 
= k0. We refer to
Fk,k0 (t ) for k 
= k0 as projection OTOCs, while the autocorre-
lation function Fk0,k0 (t ) = 〈k0|e−iHt |k0〉|4 = Pk0 (t )2 is simply
the squared survival probability. We denote by Otoc(t ) the
extensive sum over all projection OTOCs,

Otoc(t ) =
∑
k 
=k0

Fk,k0 (t ). (15)

The inverse of the Npc is therefore Otoc(t ) plus the squared
survival probability.

IV. ANALYTICAL ESTIMATES
AND NUMERICAL RESULTS

We now have the tools to compare the results for the Npc

and the OTOC for the TBRE and the dynamical spin-1/2
model in the strongly chaotic regime. As mentioned above, the
initial states have energy Ek0 = 〈k0|H |k0〉 far from the edges
of the spectrum.

A. TBRE: Number of principal components and OTOC

For the TBRE, we focus on initial states, where all par-
ticles are on a single level, which we choose to be the
fifth level, such as in |0, 0, 0, 0, N, 0, 0, 0, 0, 0〉. States of
this kind have Ek0 close to the center of the band. This
choice of initial state is made, because the number of directly
coupled matrix elements is minimal and independent of N .
The number of states directly coupled with the initial state
together with the strength of the perturbation determine the
width of the LDOS and thus the decay rate of the survival
probability.

In Fig. 1, we confirm that for the chosen perturbation and
initial states, the survival probability decays exponentially and
the decay rate is approximately independent of the number of
particles. Needless to say, for very short time, t � �−1, the
survival probability decays quadratically in time, as given by
perturbation theory. This behavior is subsequently followed
by a region of exponential decay with rate �, as seen in Fig. 1.
This rate defines the timescale t� = 1/� for the depletion of
the initial state [6]. At this point, the probability of being in
the initial state is reduced by a factor 1/e.

1. Number of principal components

The parameter � is at the basis of a phenomenological
cascade model [6], that describes in a coarse-grained way the
spreading of the initial many-body state in the many-body
Hilbert space. The basic idea is to analyze the dynamics at
different time steps, each being associated with the probability
of finding the system in a specific subset of unperturbed many-
body states, referred to as a “class.” The class that contains
only the initial state is the M0(k0) class and the probability

0 5 10 15
Γt

10-4

10-3

10-2

10-1

100

<<
P k

0>
>

N=4
N=5
N=6
N=7
N=8

e-Γt

FIG. 1. Survival probability for the TBRE for initial states |k0〉 =
|0, 0, 0, 0, N, 0, 0, 0, 0, 0, 0〉 with different number of particles N , as
indicated in the legend. The other parameters are M = 11, V = 0.4.
The dashed (red) line is the exponential fit for N = 8 and t < 2. The
exponential decay rate obtained from the fit is � = 2.4. The numbers
of random configurations chosen are nr = 1000, 500, 100, 50, 5 for
N = 4, 5, 6, 7, 8, respectively.

of being in this class is just the survival probability Pk0 (t ).
M1(k0) is the set of all unperturbed states directly coupled to
the initial state,

M1(k0) = {k 
= k0, 1 � k � D, | 〈k|H |k0〉 
= 0}.
The probability of being in this class is defined as

W1(t ) =
∑

k∈M1(k0 )

|〈k|ψ (t )〉|2. (16)

The subset with states coupled to |k0〉 in second order of
perturbation theory is M2(k0), and so on. This description of
the dynamics in terms of the spread of the wave packet in the
many-body Hilbert space was also explored in [62,67]. With
this picture, we obtained in [6] approximate rate equations for
the probability of finding the system in each class. The sum
of the square of these probabilities gives the inverse of the
number of principal components Npc. Our analysis predicted
an exponential growth for Npc with exponent 2�, which was
verified numerically. This is shown in Fig. 2(a) for different
initial states with an increasing number of particles.

It is important to remark that the exponential increase of
the number of principal components continues beyond t� . At
long times, since the many-body Hilbert space is finite, Npc(t )
finally saturates to an equilibrium value, which is obtained by
taking the infinite time average,

[
N∞

pc

]−1 = lim
T →∞

1

T

∫ T

0
dt

∑
k

|〈k|e−iHt |k0〉|4

= 2
∑

k

(∑
α

∣∣Cα
k0

∣∣2∣∣Cα
k

∣∣2

)2

−
∑

α

∣∣Cα
k0

∣∣4 ∑
k

∣∣Cα
k

∣∣4
.

(17)

An estimate of the saturation time tS can be obtained by equat-
ing e2�tS � N∞

pc . We showed in Ref. [6] that for M, N �1,
this estimate is given by tS ∼ Nt� . This result is seen clearly
in Fig. 2(b), together with a linear fit. The values for tS
are obtained from the intersections in Fig. 2(a) between the
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FIG. 2. (a) Growth in time of the number of principal compo-
nents for the TBRE. Different symbols stand for initial states with
different numbers of particles N , as indicated in the legend. The
horizontal lines represent the saturation values N∞

pc . The dashed (red)
line is the function e2�t , where � = 2.4 was obtained in Fig. 1.
The horizontal dashed-dotted (black) lines indicate the asymptotic
value N∞

pc given by Eq. (17). (b) Saturation times obtained by
the intersection between the dashed (red) curve and the horizontal
dashed-dotted (black) lines in (a), as a function of the number
of particles N . The dashed line is the best linear fit, tS ∝ N . The
other parameters of the model are M = 11, V = 0.4. The numbers
of random configurations chosen are nr = 1000, 500, 100, 50, 5 for
N = 4, 5, 6, 7, 8, respectively.

exponential curve and the horizontal lines, which indicate the
saturation values from Eq. (17). We note that the saturation
time tS was shown to coincide with the time necessary for
the onset of the Bose-Einstein distribution for single-particle
occupation numbers (for details see [68]). One can therefore
identify tS with the thermalization time.

2. Out-of-time ordered correlator

We now proceed with the analysis of the OTOC and
comparison with Npc. The OTOC behavior at short time can
be obtained with the expansion,

Fk,k0 (t ) = |〈k|e−iHt |k0〉|4

� ∣∣δk,k0 − itHk,k0 − 1
2 t2(H2)k,k0 + · · · ∣∣4

, (18)

where Hk,k0 = 〈k|H |k0〉. For k 
= k0, there are different behav-
iors, as listed below.

(i) The first one corresponds to k ∈ M1(k0), for which one
gets

Fk,k0 (t ) � t4H4
k,k0

+ o(t6) for k ∈ M1(k0). (19)

Taking the average over disorder realizations in the TBRE, we
come to the following estimate,

〈〈Fk,k0 (t )〉〉 � t4
〈〈

H4
k,k0

〉〉 � 3t4V4 for k ∈ M1(k0). (20)

To obtain the last line above, we took into account that Hk,k′

are Gaussian variables with zero mean and variance V2.
(ii) For the case k ∈ M2(k0), one has a t8 behavior,

Fk,k0 (t ) � 1

16
t8

⎡
⎣ ∑

k′∈M1

Hk,k′Hk′,k0

⎤
⎦

4

for k ∈ M2(k0).

(21)
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FIG. 3. OTOCs for projection operators with k 
= k0 averaged
over 100 disorder realizations for the TBRE. From top to bottom, k
in 〈k|H |k0〉 
= 0 (red); 〈k|H |k0〉 = 0 and 〈k|H2|k0〉 
= 0 (green); and
〈k|H |k0〉 = 〈k|H2|k0〉 = 0 (magenta). Dashed, solid, and dot-dashed
lines represent, respectively, the t4, t8, and t12 behaviors. Vertical
lines indicate the depletion time t� and the thermalization time tS .
The initial state is chosen in the middle of the energy band and it
has six particles in the fifth single-particle energy level. The other
parameters of the model are M = 11 and V = 0.4.

(iii) For the projection OTOCs of higher-order classes,
where 〈k|H |k0〉 = 〈k|H2|k0〉 = 0, the initial numerical power-
law growth gives a t12 behavior.

The behaviors t4, t8, and t12 for the various projection
OTOCs are shown in Fig. 3, respectively, as dashed, full, and
dot-dashed lines. Perturbation theory is approximately valid
for t < t� . In the region marked by the exponential growth of
the Npc, that is, t� < t < tS , the OTOCs have a nongeneric and
nonmonotonous behavior. For t > tS , the OTOCs just show
fluctuations around some equilibrium value.

In Fig. 4, we examine the behavior of the sum of all
projection OTOCs [Eq. (15)]. Our figure shows the time de-
pendence of the 〈〈Otoc(t )〉〉 for different numbers of particles.

0 5 10
Γt

10-5

10-4

10-3

10-2

<<
O
to
c>
>

N=4
N=5
N=6
N=7
N=8

e−αΓttΓ

FIG. 4. Growth in time of the extensive sum of all projec-
tion OTOCs. Different symbols stand for initial states |k0〉 =
|0, 0, 0, 0, N, 0, 0, 0, 0, 0, 0〉 with different number of particles N ,
as indicated in the legend. The dashed (red) line is the fit with
an exponential function eα�t for the points with N = 8 for 1.2 <

�t < 4.5. We fix � = 2.4 (obtained from Fig. 1) and get from the
fitting α = 1.2. The other parameters of the model are M = 11,
V = 0.4. The number of random configurations chosen are nr =
1000, 500, 100, 50, 5 for N = 4, 5, 6, 7, 8, respectively.
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FIG. 5. Comparison between the sum of projection OTOCs, the
squared survival probability, and the inverse of the number of prin-
cipal components, as indicated in the legend. Vertical solid orange
lines represent the depletion time t� and the saturation time tS .
The dashed and dashed-dotted lines stand for the e−�t and e−2�t ,
respectively. The initial state, chosen in the middle of the energy
band, has eight particles in the fifth single-particle energy level. The
other parameters of the model are M = 11, V = 0.4. The number of
random configurations chosen is nr = 5.

We can see that it reaches a maximum approximately at t�
(vertical orange line), when the probability to be in the initial
state is reduced by a factor 1/e. After this point, 〈〈Otoc(t )〉〉
decays exponentially, with an exponent between � and 2�

(actually 1.2� for this set of initial states). This exponent
comes out from the sum of many different contributions from
states belonging to different classes, and it cannot be obtained
by taking into account the first-class states only. We note
that extensive sums of local operators were also used in the
analysis of the OTOC in Ref. [69], where it is argued that
only the sum, and not a single local observable, can exhibit
indefinite exponential growth in the thermodynamic limit.

We do not have yet a theory to extract the exponential
decay rate for Otoc(t ). It should be possible to associate
the characteristic decay time for the sum

∑
k∈M Fk,k0 (t ) of

projection OTOCs that belong to a specific class M to the
scrambling time of the correlations during the flow from one
class to the other. The timescale tS would emerge as a result
of the summation of all different timescales associated with
all classes. We leave this study to a future work. We note
that the exponential decay of the out-of-time order correlators
was recently obtained analytically for chaotic quantum maps
[22,23]. In Ref. [22], the approach to the stationary value was
found to occur with a rate determined by the Ruelle-Pollicot
resonances.

The exponential decay of 〈〈Otoc(t )〉〉 for t� < t < tS in-
dicates that the extensive sum of OTOCs plays an impor-
tant role in the exponential growth of the number of prin-
cipal components beyond t� . In Fig. 5, we compare the
two terms appearing in the denominator of Npc, that is,
〈〈Otoc(t )〉〉 and 〈〈Pk0 (t )2〉〉, for the case with N = 8 particles.
Initially 〈〈Npc(t )−1〉〉 is entirely dominated by the squared
survival probability. Later, due to the different decay rates for
〈〈Otoc(t )〉〉 and 〈〈Pk0 (t )2〉〉, these two contributions become of
the same order of magnitude and they eventually cross.

100 101 102 103 104

Γt
10-3

10-2

10-1

<<
P k

0>
>

N=4
N=5
N=6

FIG. 6. Decay of the survival probability in time for TBRE. The
curves represent three initial states with N = 4, 5, 6 particles in the
fifth single-particle energy level. The horizontal dashed lines repre-
sent the infinite time-average values

∑
α |Cα

k0
|4. The other parameters

of the model are M = 11 and V = 0.4. The number of random
configurations chosen is nr = 1000, 500, 100, respectively.

As seen in Fig. 5, for the system size and set of initial states
considered, the crossing between 〈〈Otoc(t )〉〉 and 〈〈Pk0 (t )2〉〉
occurs after the saturation time tS . As a result, the relaxation
of 〈〈Npc(t )〉〉−1 to its infinite time-average value is entirely due
to the saturation of 〈〈Otoc(t )〉〉. The two saturate roughly at
the same time. In contrast, the squared survival probability
reaches its stationary value at a timescale much larger than tS .

Figure 6 illustrates the timescale for the relaxation of the
survival probability. By comparing this time with the satura-
tion time tS for Npc shown in Fig. 2, we can see that the former
is more that two orders of magnitude larger. This is due to the
presence of the so-called correlation hole (see [70–72] and
references therein), which is a dip below the saturation value.
This hole is clearly visible for the survival probability, but it
is not so evident for 〈〈Npc(t )〉〉 (for a comparison see Ref. [7]).
The minimum of the correlation hole defines the Thouless
time, which depends on system size and disorder strength [7].
From the Thouless time on, the dynamics becomes universal.
The correlation hole ends at the Heisenberg time, beyond
which there are only fluctuations around the infinite-time
average, given by

∑
α |Cα

k0
|4.

B. Spin-1/2 model: Number of principal
components and OTOC

For the spin model, we do not perform any average, since
the Hamiltonian has no random elements and a single initial
state with energy Ek0 ≈ −0.5 is considered. The results are
very similar to those presented in Figs. 2–4.

Figure 7(a) shows the number of principal components,
which grows as e2�t in the time interval t� < t < tS . In
Fig. 7(b), we depict the behavior of some projection OTOCs.
They show power-law growths proportional to t4 and t8 for
t < t� , as seen also in Fig. 3. The behaviors become nonmono-
tonic for t� < t < tS . From the figure, it is clear that states
belonging to the first class (those having a t4 initial growth)
reach their maximal value before the states in the second class
(those with a t8 behavior). Since they reach the maximum at
different times, they start to decay at different times, so we
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FIG. 7. Clean spin-1/2 model, Ek0 ≈ −0.5. (a) Exponential
growth in time of the number of principal components; (b) projection
OTOCs for some k’s; (c) the extensive sum of projection OTOCs.
Vertical (orange) lines indicate t� and tS . In all panels, the numerical
results are shown with solid curves. In (a), the dashed line indicates
the exponential growth e2�t and the horizontal dotted line is for the
infinite time average N∞

pc . In (b) the dashed and dot-dashed curves
represent the initial t4 and t8 behavior for the probability to be in
the first and second class, respectively. In (c) the dashed line is the
exponential fitting e−2α�t with α = 0.66.

might expect a complicated behavior in the time region t� <

t < tS . However, as clear from Fig. 7(c), in this time interval,
the extensive sum of all projection OTOCs actually decays
exponentially before saturation, with α = 0.66 in e−α�t . The
result is similar to the one observed in Fig. 3 for the TBRE.

The results for the spin model corroborate that for t� <

t < tS , the sum given by Otoc(t ) contributes to the exponen-
tial behavior of Npc, despite the fact that individually, the
projection OTOCs do not show any sign of exponential behav-
ior in this time interval. We find a different decay exponent
α from the TBRE case. It is not clear at this point what
this exponent might depend on, such as number of particles,
energy of the initial state, and connectivity of the model. We
leave this point for future investigations.

We notice that even though H0 for the spin model can be
solved with the Bethe ansatz, this is not at all trivial. Thus,
we obtain numerically the eigenstates |k〉, used as the basis
to write H . As a result, all matrix elements of H become
nonzero. To identify which elements correspond to effective
couplings between the unperturbed states, we use a threshold

ξ = 0.1, that is, we assume that |k〉 is directly coupled with
|k′〉 only if Hk,k′ > ξ |Hk,k − Hk′,k′ |.

V. DISCUSSION

We studied the relationship between the out-of-time or-
dered correlator (OTOC) and the number of principal com-
ponents Npc (or participation ratio), and their relevance to
the relaxation process of many-body quantum systems. Two
chaotic models were considered: One model belongs to the
two-body random ensemble (TBRE), where randomness is
introduced ad hoc as random couplings between many-body
unperturbed states, and the other is a clean system of spin-
1/2 particles on a linear chain with nonrandom two-body
interactions.

In a recent work [6], we had shown that, starting with a
single many-body state of the unperturbed Hamiltonian H0,
the effective number of unperturbed many-body states partici-
pating in the dynamics, dictated by the perturbed Hamiltonian
H = H0 + V , increases exponentially in time. This happens
when the interparticle interactions are sufficiently strong and
the many-body eigenstates are superpositions of many effec-
tively pseudorandom components, which is a main feature of
strong quantum chaos. The quantity employed to characterize
the spread of the initial wave packet in the Hilbert space was
the number of principal components Npc.

For strong perturbation, namely H0 ∼ V , we found that
Npc(t ) increases as e2�t , where � is the width of the LDOS.
Our numerical data, as well as the analytical estimates,
showed that this exponential behavior holds up to the satu-
ration time tS ∼ Nt� , where N is the number of particles for
the TBRE and number of excitations for the spin model. This
timescale is larger than the time t� ∼ 1/� for the effective
decrease of the survival probability.

In the present paper, we showed that Npc is the square
of the survival probability plus the sum of all projection
OTOCs. For the latter, the operators ŵ and v̂ in Eq. (12) are
projection operators in the many-body Hilbert space, ŵ being
the projection on a state other than the initial state.

Our semianalytical description of Npc(t ) was based on
the spread of the initial wave packet into different classes
of unperturbed many-body states. At the shortest timescale,
only the many-body states of H0 directly coupled to the
initial state by the two-body interactions get excited. Later in
time, the wave packet propagates to those states which are
coupled to the initial state in the second order of perturbation
theory, and even later, higher orders are reached successively.
This dynamics may be compared with the spread (mixing)
of packets of classical trajectories in phase space: Initially
the whole phase space is scarcely occupied, but as time
grows it gets more densely occupied. Within this picture,
the projection OTOCs describe the flow of the wave packet
probability between specific classes. At short time, each one
increases as t4, t8, t12, depending on the class the OTOC
is associated with, and in accordance with our analytical
estimates. After reaching a maximal value, the projection
OTOCs decay to a stationary value given by the infinite-time
average value. In the course of this process, none of the
individual projection OTOCs show an exponential behavior. It
is only the sum of the projection OTOCs over all classes that
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decays exponentially for t > t� . This nonmonotonic behavior
contrasts with that for the autocorrelation function (squared
survival probability), which decays as e−2�t already at short
times.

It should be possible to associate with the sum of the
projection OTOCs belonging to a specific class M, a char-
acteristic decay time that represents the scrambling time for
that class. The saturation of the entire dynamics at tS happens
after the saturation of the projection OTOCs for all classes.
After the time tS ∼ Nt� , the system is fully equilibrated (ther-
malized) in a finite but very large domain of the unperturbed
basis.

We finish this conclusion with a discussion about the
quantum-classical correspondence for chaotic many-body
systems. For this, we recall that the LDOS, which has width �,
has a well-defined classical limit with width �cl [48,73–76].
Our results show that for Npc(t ), which is a global observable,
the timescale tS over which one can speak of exponential
instability diverges in the thermodynamic limit, provided the
semiclassical limit � → �cl is done before N → ∞. This
suggests that there may be global observables for which the
quantum-classical correspondence remains indefinitely in the
thermodynamic limit.

The divergence of tS does not contradict the conventional
picture of the Ehrenfest theorem, according to which the
timescale of the quantum-classical correspondence for one-
body chaotic systems is very small, tE ∼ ln(1/h̄). As shown
for the KR model, this is the timescale for a local observable,
but there is another timescale, tD ∼ 1/h̄, corresponding to
the dynamical localization in the momentum space, which is
related to a global observable. Therefore, the timescales for
the quantum-classical correspondence depend on the choice
of the observable and can vary significantly from one observ-
able to another. Our study for many-body models focused on
the global observable Npc, rather than on local observables.

There is not yet any direct comparison between Npc and a clas-
sical analog. We suggested in Ref. [6] that such comparison
will have to be done with the use of the Kolmogorov-Sinai
entropy, which is the main characteristic of the dynamics for
classical many-body systems, whose dynamics occurs in a 2N
dimensional phase space.

One should mention that the quantum diffusion in the KR
is not a “true” diffusion as that occurring in classical sys-
tems. As shown in [34], the quantum diffusion is completely
reversible, despite the presence of small, but finite errors
associated with any numerical calculation. This is at variance
with classical diffusion, which is nonreversible due to the
exponential sensitivity with respect to unavoidable compu-
tation errors. This is a distinctive property of the observed
quantum-classical correspondence for the wave packet width
in the momentum space. One can conjecture that a similar
picture should arise for many-body chaos. Even though the
quantum-classical correspondence may look very good for
global observables (for the number of principal components
in our case), quantum properties such as local quantum cor-
relations and entanglement may still be present during the
relaxation process and even at thermalization. In fact, it was
recently shown numerically and semianalytically in Ref. [68]
that the Bose-Einstein distribution for occupation numbers
emerges on the same timescale as the thermalization time tS .
This implies the coexistence of classical and quantum features
in the dynamics on a very large timescale t > tS ∼ N/�. The
quantum-classical correspondence for many-body systems is
a challenging problem that requires further studies.
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