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Nonequilibrium driven by an external torque in the presence of a magnetic field
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We investigate a two-dimensional motion of a colloid in a harmonic trap driven out of equilibrium by
an external nonconservative force producing a torque in the presence of a uniform magnetic field applied
perpendicular to the plane of motion. We find a circulating steady-state current diagnostic to nonequilibrium.
Unlikely in the overdamped limit, inertial motion requires a sufficient central force to reach steady state. The
magnetic field can enhance or depress central force depending on its direction. We find that steady state exists
only for a proper range of parameters such as mass, viscosity coefficient, stiffness of the harmonic potential, and
the magnetic field. We rigorously derive the existence condition for the steady state. We examine the combined
influence of nonconservative force and magnetic field on nonequilibrium characteristics. We find non-Boltzmann
steady-state probability density function and circulating probability current. We show that nonnegative entropy
production is composed of usual heat dissipation and unconventional contribution from velocity-dependence
of the Lorentz force. We derive the full list of correlation functions, including position-velocity correlation
function originated from nonequilibrium circulation. We finally give rigorous expression for the violation of
fluctuation-dissipation relation. We verify our analytical results by using the Monte Carlo simulation.
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I. INTRODUCTION

Stochastic thermodynamics for the nonequilibrium motion
of small systems has been an interesting issue since the
discovery of the fluctuation theorem (FT). There have been
many studies on nonequilibrium fluctuation driven by exter-
nal nonequilibrium sources such as nonconservative forces
and time-dependent protocols which produce work and heat
persistently [1–13]. There have been extensive experimental
studies, measuring work and confirming the FT [14–23].
Under a particular circumstance, there exists a nonequilibrium
steady state (NESS) characterized by non-Boltzmann distribu-
tion, nonzero current, nonzero rate of perpetual heat or work
production, etc.

The influence of magnetic field on nonequilibrium systems
has been an interesting issue. Diffusion under no confining
potential is an intrinsic nonequilibrium process and becomes
more complicated under a magnetic field, observed in many
plasmas. The diffusion under a magnetic field has been studied
extensively [24–29]. Nonequilibrium system in a time-varying
potential has also been studied in the presence of a constant
magnetic field [30–32].

Nonequilibrium driven by a nonconservative force in the
presence of a magnetic field has not been considered in
many places. The magnetic field does not produce any work
so that the system does not undergo any energetic change
solely due to the magnetic field. Contrary to deterministic
dynamics, a usual circular motion cannot be observed due
to thermal fluctuation in stochastic dynamics. The system
under a conservative force in the presence of the magnetic
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field can reach a steady state with the Boltzmann distribution
in the absence of any nonequilibrium source. Though the
role of the magnetic field is not clear in this seemingly
equilibrium situation, the dependence of the time-correlation
functions on the magnetic field was found [27] and will be
examined more thoroughly in our study. Recently, it was
reported that an unconventional entropy is produced by the
magnetic field as generally done by a velocity-dependent
force [33]. It was also found that the proper overdamped
limit cannot be found by neglecting an inertia term but
by investigating a colored noise induced by a magnetic
field [34].

In our study, we investigate the motion of a charged
colloid in a harmonic trap potential in the presence of a
magnetic field, which is driven out of equilibrium by a torque-
generating nonconservative force. We have investigated the
overdamped limit in the absence of the magnetic field [35,36].
To study the effect of the magnetic field rigorously, we
investigate the motion in the phase space (position-velocity
space). For simplicity, we do not consider magnetic moment
of the colloid which generates a rotational motion around the
center of mass of the colloid, which has been investigated
extensively in recent studies [37–39]. In Sec. II, we present
a mathematical setup for our model. In Sec. III, we derive
the existence condition for a steady state. In Sec. IV, we find
the probability distribution function (PDF) in NESS. As the
characteristics of NESS, we find nonequilibrium probability
currents in Sec. V, entropy production in Sec. VI. In Sec. VII,
we derive two-time correlation functions among the pairs of
positions and momenta. In Sec. VIII, we examine the viola-
tion of fluctuation-dissipation relation (FDR) caused by the
nonconservative force and the magnetic field. We summarize
our results in Sec. IX
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II. MODEL

We consider a colloid of mass m and charge qcol

which is immersed in a two-dimensional liquid between
parallel plates, as in an experimental setup. We consider
a Brownian motion under a harmonic potential mimicking
an optical trap, which is driven out of equilibrium by a
torque-generating nonconservative force. Let �r = (x, y) and
�v = (vx, vy) be the position and velocity vectors of the
colloid and V (�r) = (k1x2 + k2y2)/2 be the trap potential
with k1, k2 > 0. We suppose that a uniform magnetic
field �B = Bẑ is applied perpendicular to the plane of the
plates. We consider an external force �fex = −( 0 a1

a2 0 ) · �r for

a1 �= a2. It is a nonconservative force (�∇ × �fex �= �0) yielding
a torque in z direction and driving the colloidal motion out of
equilibrium.

Let γ be a viscosity coefficient and β be a fixed inverse
temperature of the liquid. Under this condition, the motion of
the colloid can be described by the Langevin equation writ-
ten as m�̇v = −�∇V + �fex + qcolB�v × ẑ − γ�v + �η(t ), where
�η(t ) = (ηx(t ), ηy(t )) is a Gaussian noise vector with zero
mean and variance given by 〈ηi(t )ηi(t ′)〉 = 2γ β−1δi jδ(t − t ′)
for i, j = 1, 2 denoting x, y. It can be rewritten as

m�̇v = −F · �r − Γ · �v + �η(t ), (1)

where F = (k1 a1
a2 k2

) and Γ = ( γ b
−b γ ) for b = −qcolB.

Let �q = (x, y, vx, vy) be a state vector in the position-
velocity space. Then, combining Eq. (1) and �̇r = �v, we have
the Langevin equation in extended dimensions as

�̇q(t ) = −M · �q(t ) + �ξ (t ), (2)

where

M =
(

0 −I

F/m Γ/m

)
, (3)

where �ξ (t ) = (0, 0, ηx(t )/m, ηy(t )/m). 0 and I are 2 × 2 null
and identity matrix, respectively. It belongs to the Ornstein-
Ulenbeck process in four dimensions, which can be exactly
solvable [35,40]. The Fokker-Planck equation for the PDF
ρ(�q, t ) in the position-velocity space, called the Kramers
equation, is written as

∂tρ(�q, t ) = −∂�q · (−M · �q − D · ∂�q)ρ(�q, t ), (4)

where ∂t (∂�q) denotes partial differentiation with respect to t

(�q). D is a 4 × 4 diffusion matrix defined as γ β−1/m2(0 0
0 I ).

When an initial PDF at t = 0 is Gaussian, given as
ρ(�q, 0) ∝ e−�q·U(0)·�q/2, the PDF at time t can be written as

ρ(�q(t ), t ) =
[

det U(t )

(2π )4

]1/2

exp

[
−1

2
�q · U(t ) · �q

]
, (5)

where

U(t )−1 = U−1
ss + e−Mt

[
U(0)−1 − U−1

ss

]
e−MTt . (6)

Here, the superscript T denotes the transpose of a matrix.
Uss is the kernel of the steady state reached for t → ∞. The
formal expression for the steady state kernel is given by

Uss = (D + Q)−1M. (7)

Q is an antisymmetric matrix satisfying

QM + MTQ = DM − MTD. (8)

Solving this equation for Q, one can find the PDF at
time t [35,40].

III. EXISTENCE OF STEADY STATE

The formula for the PDF in Eqs. (5) and (6) is meaningful
only if M is positive-definite; otherwise, the steady-state PDF
does not exist. The characteristic equation for the eigenvalue
λ of M is given as

0 = λ4 − 2γ

m
λ3 + b2 + γ 2 + m(k1 + k2)

m2
λ2

−b(a1 − a2) + γ (k1 + k2)

m2
λ + k1k2 − a1a2

m2
. (9)

Then, existence condition for the steady state is given by the
positivity of Re(λ), which guarantees the convergence of U(t )
to Uss as t increases, as seen in Eq. (6).

A. General criterion

1. In the absence of a magnetic field

We first consider for zero magnetic field (b = 0). In this
simple case, Eq. (9) can be solved as

λ = γ

2m
{1 ±

√
1 − 2m

γ 2
[k1 + k2 ±

√
4a1a2 + (k1 − k2)2]},

(10)

and the other two eigenvalues are complex conjugates of
theses. For brevity we write the eigenvalue in Eq. (10) as
λ = γ (1 ± √

ψ )/(2m). We find that the existence condition
depends on the sign of 4a1a2 + (k1 − k2)2.

If 4a1a2 + (k1 − k2)2 > 0, then ψ is real. Then, the con-
dition for Re(λ) > 0 is ψ < 1, which leads to the existence
condition

k1k2 − a1a2 = det F > 0, (11)

where F is defined in Eq. (1). The existence condition does
not depend on mass m. Therefore, it can be applied to the
overdamped limit for large γ or small m, where Eq. (1)
reduces to γ �̇r = −F · r + �η(t ) in the position space. In this
limit, det F > 0 is nothing but the condition that �r = �0 be a
stable fixed point.

In the other case for 4a1a2 + (k1 − k2)2 < 0, ψ is imag-
inary. We can write ψ = L1 ± iL2 where L1 = 1 − (2m/γ 2)
(k1 + k2), L2 = (2m/γ 2)

√
−4a1a2 − (k1 − k2)2. Then, the

condition that the smallest value of Re(λ) be positive can
be found as 1 −

√
(
√

L2
1 + L2

2 + L1)/2 > 0. Then, we get the
existence condition

k1 + k2 + m

2γ 2
[(k1 − k2)2 + 4a1a2] > 0. (12)

For a sufficiently small m/γ 2, the existence of the steady
state is always guaranteed, hence this condition is beyond the
overdamped limit.

The two-dimensional motion for 4a1a2 + (k1 − k2)2 >

0 can be shown to map to the previously studied cases
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such as a two-dimensional motion subject to different noise
sources (heat reservoirs) acting in the two perpendicular direc-
tions [41] and a one-dimensional model for two particles in-
teracting via a harmonic force each of which is thermostatted
to a different heat reservoir [42]. The latter is also equivalent
to an electric circuit with two subcircuits coupled via a ca-
pacitor [43]. The stability criterion in Eq. (11) was examined
for the heat engine designed from the former model [42].
Throughout the paper in the following, we consider the other
case for 4a1a2 + (k1 − k2)2 < 0, which cannot be mapped
from the previous studies. Such a force can be generated
experimentally by feedback process where an electric field
is computed from an instant measurement of the colloid’s
position. It can also be generated from an electric field induced
form a magnetic field varying linearly in time. For the latter,
observation is only restricted in a short period of time for
which magntic field does not change significantly.

2. In the presence of magnetic field

The solution of the characteristic equation in Eq. (9) for
nonzero b can also be solved exactly with the help from
Mathematica, but cannot be expressed in a simple form as
Eq. (9). However, for small b, we can find the expression for
the eigenvalues by using the perturbation expansion. Up to the
first order in b, the correction to the zeroth-order value λ(0) is
found as

λ(1) = (a1 − a2)b

(2mλ(0) − γ )(2mλ(0)2 − 2γ λ(0) + k1 + k2)
λ(0).

(13)

After some algebra, we find the positivity condition for the
smallest value of Re(λ(0) + λ(1) ) as

1 −

√√√√√L2
1 + L2

2 + L1

2
+ 2m(a1 − a2)b

L2

√
L2

1 + L2
2

√√√√√L2
1 + L2

2 − L1

2

> 0, (14)

where L1,2 are given in the last subsection. As a result, we
have the existence condition for the steady state for a small
b as

k1 + k2 + m

2γ 2
[4a1a2 + (k1 − k2)2] + b(a1 − a2)

γ
> 0,

(15)

where b is kept up to the first order.

B. Isotropic case in the presence of a magnetic field

We consider an isotropic case for a1 = −a2 = a, k1 =
k2 = k, for which we can find the exact existence condition for
steady state nonperturbatively for arbitrary b, while the con-
dition for nonisotropic case can be found numerically. For the
isotropic case, the eigenvalue equation in Eq. (9) reduces to

0 = λ4 − 2γ

m
λ3 + b2 + γ 2 + 2mk

m2
λ2 − 2ab + 2γ k

m2
λ

+ k2 + a2

m2
. (16)

It is convenient to define dimensionless coefficients as
follows:

A = ma

γ 2
, B = b

γ
, K = mk

γ 2
. (17)

Then, the two typical eigenvalues of M can be written as

λ1,2 = γ

2m
[1 − iB ±

√
Reiφ/2], (18)

where

R =
√

(1 − B2 − 4K )2 + (2B − 4A)2,

φ = tan−1 2B − 4A

1 − B2 − 4K
. (19)

The other two eigenvalues are complex conjugates of
λ1 and λ2. Then, the condition Re(λ1,2) > 0 leads to
|√R cos(φ/2)| < 1, leading to

1 >
R(1 + cos φ)

2
= R + 1 − B2 − 4K

2
. (20)

Simplifying it more, we find the stability condition as
K − AB + A2 > 0 or

 = k + ab/γ − ma2/γ 2 > 0, (21)

where we define  which frequently appears for other quan-
tities obtained later. Note that it is consistent with Eq. (15)
in the isotropic limit. It implies that all the higher-order
corrections in b to Eq. (15) vanishes in the isotropic limit,
which is nontrivial to show rigorously in the perturbation
scheme.

We provide a more physical derivation based on the stabil-
ity of a fixed point. A deterministic trajectory of the motion
generated by Eq. (2) is given by �̇qd = −M · �qd. In polar
coordinates (r, θ ), there is a fixed point at r = 0, which is
either stable or unstable in the parameter space (m, γ , a, b, k).
At the critical boundary in the parameter space, there ex-
ists a fixed circular orbit the radius of which depending
depends on an initial condition and hence infinitely many
circular orbits including r = 0. A circular orbit satisfies the
two force-balance equations in radial and angular direc-
tions, given as mrθ̇2 = kr + brθ̇ and mrθ̈ = −γ rθ̇ + ar =
0. Eliminating θ̇ , we find mr(a/γ )2 = (k + ab/γ )r where
the right-hand-side is the centripetal force for the circular
orbit, hence  = 0 from Eq. (21). For  > 0, a determin-
istic trajectory converges to r = 0 as time evolves, which
comes up with a stable PDF through fluctuation by noise.
For  < 0, however, any trajectory diverges to r = ∞ so
that noise cannot produce any stable PDF. Figure 1 shows a
circular orbit where harmonic and magnetic forces in radial
direction. For ab > 0, the two forces are in the same radial
direction so as to strengthen centripetal force, and vice versa
for ab < 0.

The external torque gives an acceleration in angular di-
rection to drive a spiral motion outward from the origin, so
it tends to depress the stability, as seen from the last term,
−ma2/γ 2 in Eq. (21). For ab > 0, the magnetic field is in
the same direction as the torque ∇ × �fex so that it yields
a magnetic force in the same centripetal direction as the
harmonic force, and vice versa for ab < 0. Therefore, the
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FIG. 1. A circular orbit and involved forces. The dissipative force
is −γ�v. The figure is drawn for a, b > 0. The harmonic force
and magnetic force for ab > 0 (ab < 0) are in the same (opposite)
direction so that they strengthen (weaken) centripetal force.

magnetic field tends to enhance (depress) the stability for
ab > 0 (ab < 0), as seen in the second term, ab/γ , in Eq. (21).
Figure 2 shows the diagram for the existence of steady state
in k-a space for various values of b, where the competing and
supplementary tendencies in the influence of a and b on the
stability condition is well observed.

IV. NONEQUILIBRIUM STEADY STATE

In the existence region satisfying the condition  > 0
in Eq. (21), we can find the steady-state PDF and show it
explicitly for the isotropic case. First, we solve Eq. (8) for the
antisymmetric matrix Q, which can be converted into a set of
linear equations for six unknown elements of the matrix. We

FIG. 2. The existence region for steady state in a parameter space
for k and a > 0. The stable region is above the boundary line.
Boundaries are drawn for b = −3γ , 0, 3γ . The larger b and the
smaller a, the more widened the stable region.

find

Q = 1



⎛⎜⎜⎜⎜⎜⎝
0 a

γ
− ab+γ k

mγ
0

− a
γ

0 0 − ab+γ k
mγ

ab+γ k
mγ

0 0 ab2+γ bk+akm
m2γ

0 ab+γ k
mγ

− ab2+γ bk+akm
m2γ

0

⎞⎟⎟⎟⎟⎟⎠.

(22)

From Eq. (7), we have

Uss = β

⎛⎜⎜⎜⎜⎝
ab+γ k

γ
0 0 − am

γ

0 ab+γ k
γ

am
γ

0

0 am
γ

m 0

− am
γ

0 0 m

⎞⎟⎟⎟⎟⎠. (23)

For a = 0, Uss is equal to that for the equilibrium Boltz-
mann PDF, independent of a magnetic field. It is well ex-
plained from the fact that the magnetic field does not work.
However, for the transient period for t < ∞, a relaxation
behavior of the PDF in time toward the Boltzmann PDF is
determined by e−Mt and e−MTt , as seen in Eq. (6), and hence
various forms of exponential decaying with sinusoidal oscil-
lation as e−(λi+λ j )t for all possible i, j. As seen in Eq. (18),
even for a = 0, eigenvalues λi’s depend on b, so the transient
PDF depends on b.

For a �= 0 in nonequilibrium, the steady-state PDF (ρss)
depends on b as well as the transient one. We can observe
that positions and velocities are coupled in the PDF, as seen
from the off-diagonal elements of Uss, which gives rise to
a non-Maxwellian distribution as an important characteris-
tics of nonequilibrium steady state (NESS). One can ob-
serve β−1 ln ρss = −(m/2)[(vx + ay/γ )2 + (vy − ax/γ )2] +
· · · . Then, we have a nonzero average velocity at a fixed
position, given as

〈�v〉�v = − a

γ
A · �r, (24)

where 〈 · · · 〉�v = ∫ d�vρss(�r,�v)(· · · ) denotes the average of the

given quantity over �v for a fixed position. A = ( 0 1
−1 0) is

an antisymmetric matrix. It manifests a nonzero probability
current, also known as an important property of NESS. This
property is more examined in the next section.

We can find second moments in the steady state as

〈�q�q〉 = U−1
ss = 1

β

⎛⎜⎜⎜⎜⎝
1 0 0 a

γ

0 1 − a
γ

0

0 − a
γ

ab+kγ

mγ
0

a
γ

0 0 ab+kγ

mγ

⎞⎟⎟⎟⎟⎠, (25)

where (�q�q)i j = qiq j is a 4 × 4 dyad (outer product) of a state
vector in the position-velocity space.

Figure 3 shows the contour lines for the steady state PDF
and the velocity field lines. We mainly present analytical
results for the isotropic case. In the figure, we also present the
plot for a nonisotropic case where contour lines are elliptic.
For both cases, velocity field lines circulate along contour
lines, which was shown to be a special feature for linear drift,
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FIG. 3. Contour plots of the probability density function and
velocity fields for (a) isotropic and (b) nonisotropic cases. The
vertical and horizontal axes represent x and y in unit of γ /

√
mkBT .

Velocity field lines are shown to circulate around the contour lines
for both cases.

−M · �q, in the Langevin equation in Eq. (2) [40]. We further
investigate the velocity field in the next section.

V. NONEQUILIBRIUM PROBABILITY CURRENTS

NESS is characterized by a nonzero irreversible current in
the variable space. We follow a well-established formalism in
the textbook by Risken [44]. The Fokker-Planck Eq. (4) can
be rewritten as

∂tρ(�q, t ) = −∂qi ( fi(�q) − Di j∂q j )ρ(�q, t ). (26)

Parity εi in time reversal: t → τ − t for a final time τ is either
+1 for position coordinates (i = 1, 2) or −1 for velocity co-
ordinates (i = 3, 4). Then, the drift terms fi’s are decomposed
into reversible and irreversible parts as

f rev
i = fi(q j ) − εi fi(ε jq j )

2
, f irr

i = fi(q j ) + εi fi(ε jq j )

2
.

(27)

The Fokker-Planck equation can be written as ∂tρ = −∂�q · �j�q
in terms of the probability current �j�q, which can also be
decomposed into the reversible and irreversible parts as

jrev
i = f rev

i ρ, jirr
i = ( f irr

i − Di j∂q j

)
ρ. (28)

Note that jirr
i exists only in the velocity space, i.e., j = 3, 4.

We use �j�r = ( j1, j2) and �j�v = ( j3, j4). In a usual convention,
the magnetic field is to flip (�B → −�B) in time reversal. In this
study, however, we use a different rule without flipping �B in
time reversal to investigate irreversibility in dynamics under a
given magnetic field. Then, we have

�jrev
�r = �vρ, �jrev

�v = − 1

m
F · �rρ,

�jirr
�v =

[
− 1

m
� · �v − Dred · ∂�v

]
ρ, (29)

where Dred = (γ β−1/m2)I for 2 × 2 identity matrix I.
The current in the velocity space, �j�v = �jrev

�v + �jirr
�v , is the

sum of forces per mass times PDF. We call −mDred · ∂�v ln ρ

stochastic force, which originates from noise in the Langevin

dynamics. As seen in Eq. (29), any position-dependent force
belongs to �jrev

�v . However, the dissipative force (−γ�v), the
stochastic force, and the magnetic force belong to �jirr

�v . The
dissipative and stochastic forces in �jirr

�v contribute to the pro-
duction of heat, which is consistent with the definition of heat
production rate in the system: [−γ�v + �η(t )] ◦ �v for ◦ denoting
the Stratonovich convention. The role of the magnetic force in
the irreversible current is intriguing because it costs no energy,
which will be discussed in this and the following section.

In the steady state, we find the irreversible current by using
Eq. (23) as

�jirr
�v =

[
a

m
A · �r − b

m
A · �v
]
ρss, (30)

The first term in this equation is exactly equal to minus the
nonconservative force per mass in �jrev

�v . This means that the
heat produced by this force exactly cancels the work produced
by the nonconservative force, so the system can stay in the
steady state. The total remaining force is given as

mρ−1
ss

(�jrev
�v + �jirr

�v
) = −k�r − bA�v. (31)

However, the reversible current �jrev
�r = �vρss in the position

space is random in �v. We find the average current in position
space as 〈�jrev

�r
〉
�v =
∫

d�v�vρss(�q) = − a

γ
A · �rρ̃ss(�r), (32)

where ρ̃ss(�r) = [β/(2π )]e−βr2/2 is the reduced steady-
state PDF for �r. This average current circulates in the po-
sition space and the remaining current in the velocity space
in Eq. (31) provides a centripetal force necessary for such
circulation. For a more rigorous proof, we write the PDF in
polar coordinates as

ρss(vr, vθ , r, θ ) = β2mr

(2π )2
exp

[
−βm

2

[
v2

r +
(

vθ − a

γ
r

)2
]

−β

2
r2

]
, (33)

where r in the normalization factor is the Jacobian for
the variable-change: (x, y, vx, vy) → (r, θ, vr, vθ ). The exis-
tence of the average circular current requires the condition:
〈k�r + bA · �v〉 = 〈mv2

θ r̂/r〉. The left- and right-hand side of
this condition are found as 〈(k + ab/γ )r〉r̂ and 〈1/(βr) +
(ma2/γ 2)r〉r̂, respectively. The two sides are found to be the
same by using 〈1/r〉 = √

βπ/2 and 〈r〉 = √
π/(2β) given

from Eq. (33).
The magnetic field is shown to be a source for the circu-

lating current in the position space in addition to the torque-
generating nonconservative force. It is interesting that the
circular current could be possible even for k = 0 if ab > 0,
rigorously for ab > ma2/γ ( > 0).

The detailed balance (DB) characterizes dynamical re-
versibility, for which the condition is given as

〈�q′|e−HFP�t |�q〉ρss(�q) = 〈ε �q|e−HFP�t |ε�q′〉ρss(ε�q′), (34)

where (ε �q)i = εiqi, HFP = ∂qi ( fi(�q) − Di j∂q j ) is a non-
Hermitiain Fokker-Planck operator, and �t is the time

052142-5



SANGYUN LEE AND CHULAN KWON PHYSICAL REVIEW E 99, 052142 (2019)

taken for the transition between the two states. It is
shown [33,44,45] that the DB holds only if

ρss(�q) = ρss(ε �q), �jirr
�v = �0. (35)

In our case, the DB is found to be broken. First, we clearly
see ρss(�r,�v) �= ρss(�r,−�v) from position-velocity coupling in
Eq. (23). Second, we find a nonzero irreversible current in
Eq. (30). The magnetic field as a part of the irreversible
current is partly responsible for the dynamical irreversibility
manifested by the circulation in the position space besides its
own contribution to the irreversibility in the velocity space.

VI. ENTROPY PRODUCTION

The total entropy �S produced for 0 < t � t f in the system
and bath can be regarded as a quantity to measure dynamic
irreversibility. It is known to be found from the ratio of two
path probabilities, given as

�S = ln
ρ(�q0, 0)�[�q(t )|�q0; λ(t )]

ρ(�q f , t f )�[ε �q(t f − t )|ε �q f ; λ(t f − t )]
, (36)

where �[�q(t )|�q0; λ(t )] (�[ε �q(t f − t )|ε �q f ; λ(t f − t )]) is the
conditional probability of the system evolving along a path
�q(t ) (time-reverse path ε �q(t f − t )) for given �q0 (ε �q f ) at
t = 0 for 0 < t � t f . λ(t ) is a time-dependent protocol not
considered in our study. �S satisfies the fluctuation theo-
rem: 〈e−�S〉 = 1 [11–13] and has a nonnegative average as a
corollary: 〈�S〉 � 0. In the absence of any velocity-dependent
force, �S turns out to be equal to the sum of the Shannon
entropy change, −� ln ρ, and the dissipated heat production
Q divided by temperature. Then, the dynamical irreversiblity
accompanies energetic irreversibility in heat production. In
particular, the two kinds of irreversibility are equivalent in the
steady state with no Shannon entropy change.

In the presence of a velocity-dependent force, however,
�S is found to have an unconventional contribution, �Suc,
resulting in a modified expression �S = −� ln ρ + Q/T +
�Suc [33]. Various types of velocity-dependent forces have
been considered in active matters [46–54] and a magnetic
force is the only natural one. The rate of the entropy produc-
tion is given as

Ṡ = − d

dt
ln ρ + Q̇

T
+ Ṡuc, (37)

where

Q̇ = Ẇ − dE

dt
= −a�v · A · �r − d

dt

(
m�v2

2
+ k�r2

2

)
, (38)

Ṡuc = m

γ
( �f irr + γ�v) · ( �f irr − γ�v) − 1

m
∂�v · ( �f rev − �f irr −γ�v),

(39)

where Ẇ is the rate of work done by the nonconservative
force. In obtaining Ṡuc from Eq. (36), we change the sign
of velocity in a time-reverse path, but not the protocol (co-
efficient) for the velocity-dependent force for the purpose to
investigate the irreversibility under a fixed protocol. In fact,
we do fix the direction of �B in a time-reverse path. We are
interested in a local irreversibility of the system under a fixed
protocol provided from an external agent.

From the previous study [12,13,33], we have

〈Ṡ〉 =
∫

d �q
�jirr
�v · D−1

red · �jirr
�v

ρ
� 0, (40)

which is certainly nonnegative. It explicitly shows the sec-
ond law of thermodynamics in the presence of a velocity-
dependent (magnetic) force. Interestingly, only the irre-
versible current contributes to the irreversibility appearing in
a nonequilibrium process.

For our case, �f irr = −� · �v/m and �f rev = −F · �r/m. We
find Ṡuc = (βb2/γ )v2, which is nonzero even when there is no
nonconservative force. In the steady state, we find the average
values of the components of Ṡ by using Eq. (25) as

β〈Q̇〉 = −βa〈vxy − vyx〉 = 2a2

γ
, (41)

〈Ṡuc〉 = βb2

γ

〈
v2

x + v2
y

〉 = 2b2

mγ

(
k + ab

γ

)
. (42)

The total irreversibility quantified by 〈Ṡ〉 has contributions
from the two components, the nonconservative and the mag-
netic force, as seen in the irreversible current in Eq. (30). The
heat dissipation rate in Eq. (41) has the contribution from the
first component and the unconventional entropy production
rate in Eq. (42) has the combined contribution from the both
components, as seen from the dependence on b2 and ab,
respectively. Note that the magnetic force can have influence
on the circulation current in the position space only by being
accompanied by the nonconservative force. For a = 0, there is
no such circulation and heat production, but the irreversibility
due to helicity, which is a tendency of circulation, is still
present, which is measured by 〈Ṡuc〉.

VII. TWO-TIME CORRELATION FUNCTIONS

Correlation functions between position and velocity coor-
dinates at different times are found by using the formula [35],
given as

C(t, t ′)=〈�q(t )�q(t ′)〉 =
{

e−(t−t ′ )MU−1(t ′), t > t ′,

U−1(t ′)e−(t ′−t )MT
, t < t ′,

(43)

where U(t ) is the kernel for the PDF at time t , given in Eq. (6).
We consider the correlation functions in the steady state, so
U(t ) = Uss. As a result, the two-time correlation functions
only depend on the difference of two times. The equal-time
correlation functions are found from U−1

ss in Eq. (25).
For the isotropic case, rotational symmetry yields

〈x(t )x(t ′)〉 = 〈y(t )y(t ′)〉, 〈x(t )y(t ′)〉 = −〈y(t )x(t ′)〉. (44)

Finding 〈x(t )x(t ′)〉 and 〈x(t )y(t ′)〉, all other correlation func-
tions can be generated by differentiating with respect to
one of two times or by exchanging x and y components
with minus sign. For example, ∂t 〈x(t )y(t ′)〉 = 〈vx(t )y(t ′)〉 =
−〈vy(t )x(t ′)〉.

For τ = t − t ′, we write

e−Mτ =
4∑

i=1

e−λiτ |i〉〈i|, (45)
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FIG. 4. The plot of Cxvy (τ ) for various a, b > 0 with fixed k =
3γ 2/m. There is a nonvanishing correlation for b �= 0 and a = 0,
which is distinguishable from normal equilibrium. The amplitude of
the correlation decreases as b increases. Four lines represent analytic
results. We verify the analytic results with Monte Carlo simulation.
Dots, squares, triangular, and cross represent the simulation result.

where |i〉 (〈i|) is an orthonormal right (left) eigenvector for an
eigenvalue λi for M, i.e., 〈i| j〉 = δi j . Using the definition of R
and φ in Eq. (19), the two kinds of time-dependent terms in
e−Mt are found as

ci(τ ) = e−Re(λi )τ cos[Im(λi )τ + φ/2], (46)

si(τ ) = e−Re(λi )τ sin[Im(λi)τ + φ/2], (47)

where λi’s for i = 1, 2 are the two typical eigenvalues in
Eq. (18). Writing C(t, t ′) = C(τ ), we have

Cxx(τ ) = 1

β

∑
i=1,2

[αici(τ ) + βisi(τ )],

Cxy(τ ) = 1

β

∑
i=1,2

[αisi(τ ) − βici(τ )], (48)

with

α1,2 = 1

2

[
cos(φ/2) ± 1√

R

]
,

β1,2 = 1

2

[
sin(φ/2) ± 2A − B√

R

]
, (49)

where the upper (lower) sign is for the subscript 1 (2). The
parameters used are defined in Eqs. (17) and (19). The other
correlation functions derivable from Eq. (48) are given in
Appendix A.

There is circulating probability current in the position
space. It is manifested in a strong correlation between position
and velocity in perpendicular directions to each other. We plot
a correlation function Cxvy (τ ) = 〈x(τ )vy(0)〉 in Fig. 4. It is
interesting that it is nonzero even for a = 0 and b �= 0, which
signals a tendency of helicity around the direction of the
magnetic field. Interestingly, all the correlation functions have
the same factor  in the denominator. Therefore, the nearer
is the parameter set from the existence boundary (the larger
), the smaller is the amplitude of the correlation function.
In Figure 4 drawn for a, b > 0, the correlation function for

b = 0 has a larger amplitude than that for b > 0 with a larger
value of .

VIII. VIOLATION OF FLUCTUATION-DISSIPATION
RELATION

The FDR is known to hold for equilibrium. Recently,
the violation of FDR was found to be related with the heat
produced during a nonequilibrium process [55,56]. The FDR
was found to hold in the presence of a magnetic field where
there is no nonequilibrium source to produce heat [57]. We
examine the FDR in our case where both a nonconservative
and a magnetic force are present.

Under an arbitrarily small perturbative force �h(t ), the La-
genvin equation in Eq. (1) is written as m�̇v = −F · �r − Γ · �v +
�h(t ) + �η(t ). The response function for 〈�q(t )〉 with respect to
variation δ�h(t ′) is defined as

R(t, t ′) = δ

δ�h(t ′)
〈�q(t )〉

∣∣∣∣�h→�0
. (50)

The stochastic average over paths is needed to compute
the response function. In a discrete-time representation for
ti = i�t in �t → 0 limit, the weight functional of a path
is given as proportional to exp[−(4β−1γ�t )−1∑

i[� �Wi]2],
where � �Wi is the Wiener process defined as

∫ ti+1

ti
ds�η(s).

From the Langevin equation, � �Wi = m(�vi+1 − �vi ) + (F · �ri +
Γ · �vi − �hi )�t , where subscript i denotes a value at ti. It
is basically the Onsager-Machlup formalism [58]. One can
replace δ/δ�h(t ′)|�h→�0 at t ′ = ti with the multiplication of
(2β−1γ )−1� �Wi/�t to �q(t ). Taking the continuous-time limit
again,

β−1R(t, t ′) = 1

2γ�t
〈�q(t )� �W (t ′)〉

= 1

2
〈�q(t )�v(t ′)〉 + 1

2γ�t
〈�q(t )[� �W (t ′)

− γ�v(t ′)�t]〉. (51)

R(t, t ′) = 0 for t < t ′ because the Wiener process cannot have
any influence on �q at an earlier time, which is known as
causality.

The FDR can be examined from V(t, t ′) = 〈�q(t )�v(t ′)〉 −
β−1R(t, t ′) for t > t ′ [57]. In the following, we use a notation
for 4 × 2 matrices: [C]�q�r = (Ci, j ) and [C]�q�v = (Ci, j+2) for
1 � i � 4 and j = 1, 2. For example, C�q�r (t, t ′) = 〈�q(t )�r(t ′)〉
and C�q�v (t, t ′) = 〈�q(t )�v(t ′)〉. We also let V�r�v and V�v�v be the
upper and the lower block of V, respectively. We can get

V(t, t ′) = 1

2
C�q�v (t, t ′)

− 1

2γ

〈
�q(t )

[
m

��v(t ′)
�t

+ F · �r(t ′) + bA · v(t ′)
]〉

,

(52)

where ��v(t ′) = �v(t ′ + �t ) − �v(t ′). Note that the term in the
square bracket in the above equation is � �W (t ′)/�t − γ�v(t ′),
which is the force exerted by the heat bath. V�r�v corresponds
to the FDR for the position basis [57] and V�v�v for the velocity
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FIG. 5. The Violation of the FDR in position basis: Vyvx (τ ) for
k = γ 2/m and a = 2γ 2/m. The fluctuation from the guide line is
more amplified for smaller b (smaller ). Dots and squares represent
the points obtained from the simulation with 104 ensembles.

basis [55,56]. In the equal-time limit with t = t ′ + �t , we find

V�v�v (t, t ) = − 1

γ

〈
�v(t ) + �v(t ′)

2

[
� �W (t ′)

�t
− γ�v(t )

]〉
, (53)

for which 〈�q(t )� �W (t ′)〉 = 0 is used. It is the Stratonovich
representation for the product �v(t ) ◦ (�η(t ) − γ�v(t )). Then,
γ TrV�v�v (t, t ) is minus the rate of work done by the reservoir
force, which is indeed the rate of heat dissipation. One can
also see ∂t V�r�v (t, t ′) = V�v�v (t, t ′).

In the steady state, V(t, t ′) depends only on τ = t − t ′ as
correlation functions, so written as V(τ ). Using Eqs. (43)
and (52), V(τ ) can be further simplified as

V(τ ) = 1

2
C�q�v (τ ) − 1

2γ
[m[MC(τ )]�q�v + C�q�r (τ )FT

− bC�q�v (τ )A]. (54)

In particular, we find

V(0) = a

βγ

⎛⎜⎜⎜⎝
0 1

−1 0

a/γ 0

0 a/γ

⎞⎟⎟⎟⎠. (55)

V(0) = 0 if a = 0, independent of b, which was found
in the previous study [57]. The heat production rate
〈Q̇〉 = γ TrV�v�v (0) = 2a2β−1/(γ), which is consistent with
Eq. (41).

V(τ ) in the steady state is given in detail in Appendix B. As
for the equal-time case in Eq. (55), V(τ ) has a multiplicative
factor a/. This means the FDR holds only if a = 0, inde-
pendent of b. It is a quite nontrivial result because V(τ ) in
Eq. (54) strongly depends on the correlation functions which
differ from those for b = 0. The DB is violated in this case
because �jirr �= 0; see Eqs. (29) and (35). This result was
derived and demonstrated as an example for the exclusiveness
of the FDR and the DB, which was derived for a general
velocity-dependent force [57]. For nonzero a, both the FDR
and the DB are violated. Figure. 5 shows Vxvy (τ ) for given a
and increasing b.

IX. SUMMARY

Magnetic field does not work so that the steady-state distri-
bution remains Boltzmann in the absence of a nonconservative
force. However, accompanied by nonconservative force, the
magnetic field is found to have a nontrivial influence on the
motion out of equilibrium.

Torque of magnitude a overall tends to accelerate the
colloid outwards from the center of harmonic potential and
depress the possibility of steady state. However, the mag-
netic field of magnitude b can enhance it for ab > 0 (same
circulation as the torque) or depress it for ab < 0 (opposite
circulation to the torque). Two competing tendencies are
signified in the existence condition for steady state as k +
ab/γ − ma2/γ 2 > 0. We find the irreversible current in the
velocity space, that is a measure of nonequilibrium, to be
composed of magnetic and (minus) nonconservative forces,
which is found to come up with the stable circulation of
current in the position space and the irreversible production
of heat/work. We find the total entropy change �S to have an
unconventional contribution �Suc originated from velocity-
dependence of the magnetic force. Although the magnetic
force does produce any energy dissipation, its entropic con-
tribution �Suc measures the component due to magnetic field
in dynamical irreversibility manifested by circulating current.
Nonequilibrium characteristics is also found from two-time
correlation functions. In particular, correlation between po-
sition and velocity in perpendicular directions to each other
is diagnostic to circulating current in nonequilibrium steady
state. We show the combined influence of the nonconservative
force and the magnetic field on the violation of the FDR. We
carry out the Monte Carlo simulation to confirm complicated
expressions for analytical results.
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APPENDIX A: TWO-TIME CORRELATION FUNCTIONS IN THE STEADY STATE

From the rotational symmetry for the isotropic case, we can use Eq. (44), Cxx(τ ) = Cyy(τ ), Cxy(τ ) = −Cyx(τ ), and also
∂τCxy(τ ) = Cvxy(τ ) = −Cvyx(τ ). For a short notation, we introduce

χ = 1

β
√

R
, w + iu =

√
Reiφ/2, (A1)
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where R and φ are defined in Eqs. (18) and (19). Then, from the two basic correlation functions in Eq. (48), we can find remaining
correlation functions as follows:

χ−1Cxvx (τ ) = −(2K + AB − Au)c1(τ ) − A(w − 1)s1(τ ) + (2K + AB + Au)c2(τ ) + A(w + 1)s2(τ ), (A2)

χ−1Cyvx (τ ) = −A(w − 1)c1(τ ) + (2K + AB − Au)s1(τ ) − A(w + 1)c2(τ ) − (2K + AB + Au)s2(τ ), (A3)

χ−1Cvxvx (τ ) = −2[K (w + 1) + Aw(B − u)]c1(τ ) − [A(w2 − 1) − (B − u)(2K + AB − Au)]s1(τ )

−2[K (w − 1) + Aw(B + u)]c2(t ) − [−A(w2 − 1) + (B + u)(2K + AB + Au)]s2(t ), (A4)

χ−1Cvxvy (τ ) = [(B − u)(2K + AB − Au) − A(w2 − 1)]c1(τ ) + 2[K (w + 1) + Aw(B − u)]s1(τ )

−[(B + u)(2K + AB + Au) − A(w2 − 1)]c2(τ ) + 2[K (w − 1) + A(B + u)]s2(τ ). (A5)

APPENDIX B: THE VIOLATION OF FDR IN THE STEADY STATE

We introduce a common factor for the FDR matrix as

κ = a

2
. (B1)

Then, the elements of V(τ ) are found as

κ−1Vxvx (τ ) = −(2A − B − u)c1(τ ) − (w − 1)s1(τ ) + (2A − B + u)c2(τ ) − (w + 1)s2(τ ), (B2)

κ−1Vyvx (τ ) = (2A − B − u)s1(τ ) − (w − 1)c1(τ ) − (2A − B + u)s2(τ ) − (w + 1)c2(τ ), (B3)

κ−1Vvxvx (τ ) = −(2K + AB − Au)s1(τ ) + A(w − 1)c1(τ ) + (2K + AB + Au)s2(τ ) + A(w + 1)c2(τ ), (B4)

κ−1Vvyvx (τ ) = −(2K + AB − Au)c1(τ ) − A(w − 1)s1(τ ) + (2K + AB + Au)c2(τ ) − A(w + 1)s2(τ ). (B5)

The FDR is always violated for a = 0, irrespective of b due to the common multiplicative factor κ .
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