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Disordered hyperuniform packings (or dispersions) are unusual amorphous two-phase materials that are
endowed with exotic physical properties. Such hyperuniform systems are characterized by an anomalous
suppression of volume-fraction fluctuations at infinitely long-wavelengths, compared to ordinary disordered
materials. While there has been growing interest in such singular states of amorphous matter, a major obstacle
has been an inability to produce large samples that are perfectly hyperuniform due to practical limitations
of conventional numerical and experimental methods. To overcome these limitations, we introduce a general
theoretical methodology to construct perfectly hyperuniform packings in d-dimensional Euclidean space Rd .
Specifically, beginning with an initial general tessellation of space by disjoint cells that meets a “bounded-cell”
condition, hard particles of general shape are placed inside each cell such that the local-cell particle packing
fractions are identical to the global packing fraction. We prove that the constructed packings with a polydispersity
in size are perfectly hyperuniform in the infinite-sample-size limit, regardless of particle shapes, positions, and
numbers per cell. We use this theoretical formulation to devise an efficient and tunable algorithm to generate
extremely large realizations of such packings. We employ two distinct initial tessellations: Voronoi as well as
sphere tessellations. Beginning with Voronoi tessellations, we show that our algorithm can remarkably convert
extremely large nonhyperuniform packings into hyperuniform ones in R2 and R3. Implementing our theoretical
methodology on sphere tessellations, we establish the hyperuniformity of the classical Hashin-Shtrikman
multiscale coated-spheres structures, which are known to be two-phase media microstructures that possess
optimal effective transport and elastic properties. A consequence of our work is a rigorous demonstration that
packings that have identical tessellations can either be nonhyperuniform or hyperuniform by simply tuning local
characteristics. It is noteworthy that our computationally designed hyperuniform two-phase systems can easily be
fabricated via state-of-the-art methods, such as 2D photolithographic and 3D printing technologies. In addition,
the tunability of our methodology offers a route for the discovery of novel disordered hyperuniform two-phase
materials.
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I. INTRODUCTION

A hyperuniform state of matter is characterized by an
anomalous suppression of density or volume-fraction fluc-
tuations at infinitely long wavelengths relative to those in
typical disordered systems, such as liquids and structural
glasses [1–3]. Such hyperuniform states encompass all perfect
crystals, many quasicrystals, as well as some exotic disordered
systems. Disordered hyperuniform states of matter have been
the subject of intense interest across a variety of fields, in-
cluding physics [4–13], material science [14–20], chemistry
[21–23], biology [24–27], and mathematics [28–30]. The
notion of hyperuniformity was first defined in the context
of point-particle systems [2] and then extended to two-phase
heterogeneous systems [1] and random scalar/vector fields
[31]. General two-phase systems abound in natural and ar-
tificial materials, including colloidal suspensions, particulate
composites, and concrete [32–39]. Packings (or dispersions),
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which are of central concern in this paper, comprise a class
of two-phase systems in which nonoverlapping particles are
spatially distributed throughout a connected “void” (matrix)
phase.

A hyperuniform two-phase system in d-dimensional Eu-
clidean space Rd is one in which the local volume-fraction
variance σ 2

V (R) inside a spherical observation window of
radius R decays faster than R−d in the large-R limit [1,3]:

lim
R→∞

v1(R) σ 2
V (R) = 0. (1)

Equivalently, its associated spectral density χ̃V (k) vanishes
as the wave number |k| tends to zero [1,3]. For disordered
hyperuniform two-phase systems, χ̃V (k) typically exhibits the
power-law scaling:

χ̃V (k) ∼ |k|α (α > 0). (2)

This exponent α is directly related to three distinct classes
of hyperuniformity that are categorized based on the large-R
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scalings of σ 2
V (R) [3]:

σ 2
V (R) ∼

⎧⎨
⎩

R−(d+1), α > 1 (class I)
R−(d+1) ln R, α = 1 (class II)
R−d−α, α < 1 (class III)

, (3)

where classes I and III represent the strongest and weakest
forms of hyperuniformity, respectively. Class I systems in-
clude all crystals, some quasicrystals, and stealthy hyperuni-
form systems in which χ̃V (k) = 0 for 0 < k < K [40–43].

Disordered hyperuniform two-phase systems [1,20] are
attracting considerable attention due to their unusual physical
properties, such as complete isotropic photonic and phononic
bandgaps [17,44–46], nearly optimal transport properties
[18–20], superior metamaterial designs [47], dense but trans-
parent materials [16], and low-density materials of blackbody-
like absorption [48]. Similar to ordinary two-phase systems,
their effective properties are also tunable by engineering the
phase properties and volume fractions as well as the spa-
tial arrangements [17,19,20,44,47,49,50]. An important class
of two-phase systems are the Hashin-Shtrikman structures
[34,38,51–53] that are optimal for effective elastic moduli
[34,38,51], thermal (electrical) conductivity [34,38,52], and
trapping constant [53], and fluid permeability [53] for given
phase volumes and phase properties. Remarkably, certain dis-
ordered hyperuniform systems possess nearly optimal trans-
port and elastic properties [19,20,50,54].

Theoretical [4,7,11,55,56], numerical [19,20,57–64], and
experimental methods [12,65–67] have been developed to
generate disordered hyperuniform packings (dispersions). In
practice, however, these methods are system-size limited due
to computational cost or imperfections. For instance, the
collective-coordinate optimization technique [19,20,62,63]
and equilibrium plasma [7,8,56] can achieve perfect hyperuni-
formity, but their long-range interactions lead the computation
cost to grow rapidly with system size. Random organization
models [11,55] yield disordered hyperuniform packings at
critical absorbing states but are limited in producing per-
fect hyperuniformity because of critical slowing-down phe-
nomena [3,61]. Determinantal point processes are perfectly
hyperuniform in the thermodynamic limit, but the current
numerical algorithm hardly can generate a realization of more
than 100 particles due to accumulated numerical error [4].
Stealthy designs via the superposition procedure [63] provides
an efficient means to construct exactly stealthy hyperuni-
form digitized two-phase systems. However, this construction
scheme requires one to prepare many different small systems
as building blocks, which is computationally demanding as
the system size increases.

Since hyperuniformity is a global property of an infinitely
large system, limited sample sizes often make it difficult to
ascertain whether such systems are truly hyperuniform or
effectively hyperuniform. Furthermore, disordered hyperuni-
form systems often can include imperfections, such as point
vacancies, stochastic displacements [68], thermally excited
phonon modes [69], and rattlers [61] in maximally random
jammed (MRJ) packings. Such imperfections can either de-
stroy or degrade the hyperuniformity (even if by a small
amount) of otherwise perfectly hyperuniform systems [3,69].
Hence, there is a great need to devise exact and efficient pro-

FIG. 1. (a), (b) Portions of initial disordered tessellations:
(a) Voronoi tessellation (black lines) of a nonhyperuniform packing
(Sec. V) and (b) a multiscale-disk tessellation (Sec. VI). A pro-
genitor disk packing in (a) is illustrated by white dashed circles.
The tessellation-based procedure can be applied into higher dimen-
sions, but we illustrate two-dimensional cases here for simplicity.
(c), (d) Portions of disordered hyperuniform packings (dispersions)
constructed from the initial tessellations (a), (b) via the tessellation-
based procedure, i.e., local-cell packing fraction φ of a particle
(blue disks) within each cell is identical to the global packing
fraction. Importantly, (d) multiscale coated-disks model corresponds
to optimal Hashin-Shtrikman structures.

cedures to construct extremely large realizations of disordered
hyperuniform two-phase systems. Such capability could then
be combined with state-of-the-art photolithographic and 3D
printing techniques to fabricate large disordered hyperuniform
systems.

In this paper, we introduce a tessellation-based procedure
that enables one to generate disordered packings in Rd that
are perfectly hyperuniform in the infinite-sample-size limit.
Based on this theoretical methodology, we formulate an ef-
ficient algorithm to generate extremely large realizations of
hyperuniform packings. Specifically, one first tessellates the
space into certain disjoint cells that meet a bounded-cell
condition, i.e., the maximal length of each cell should be much
shorter than side length of the entire tessellation. This mild
restriction allows one to employ a wide class of tessellations,
as discussed below and in Sec. V. Then, one places hard
particles in each cell such that the local packing fractions as-
sociated with the cells become identical to the global packing
fraction φ; see Fig. 1. Note that for “periodic” tessellations of
equal cell volumes (e.g., Voronoi tessellations of Bravais lat-
tices and Weaire-Phelan foam [70,71]), our procedure yields
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periodic packings of identical particles that are also stealthy
hyperuniform [72]. However, our major concerns in this paper
are disordered tessellations whose cells have a variability
in sizes and shapes. Thus, the application of our procedure
to such tessellations generates “disordered” hyperuniform
packings in which the particles have a polydispersity in
size. We present a detailed theoretical analysis of the small-
wave-number scalings of the spectral density χ̃V (k) for the
constructed packings in the case of arbitrary particle shapes.
We thereby prove that whenever the initial tessellations meet
the bounded-cell condition, these systems are strongly hy-
peruniform (class I) for any particle shape in the infinite-
sample-size limit. In this limit, the system size tends to be
infinitely large with other intensive parameters (e.g., number
density and packing fractions) held fixed. This procedure
is a packing protocol to generate packings of polydisperse
particles that is uniquely different from previously known
methods [73].

As a proof-of-concept, we verify our theoretical results
by numerically constructing packings from certain initial
tessellations, and by ascertaining their hyperuniformity from
the spectral densities. Our procedure allows for the use of
any initial tessellation, including Voronoi tessellations [34]
and their generalizations [74,75], sphere tessellations, disor-
dered isoradial graphs [76], dissected tessellations [77], De-
launay triangulations, and “Delaunay-centroidal” tessellations
[44,54], as long as it meets the bounded-cell condition. For
concreteness and simplicity, two types of initial tessellations
are considered in this work: Voronoi tessellations (Sec. V)
and sphere tessellations, which are necessarily multiscale
divisions of space (Sec. VI). Employing Voronoi tessellations
of general disordered point patterns in R2 and R3, we demon-
strate that our methodology enables a remarkable mapping
that converts extremely large nonhyperuniform packings (as
large as 108 particles) into hyperuniform ones. To carry out
our simulations, we employ various statistically homogeneous
progenitor systems. Based on the same idea, we establish
the hyperuniformity of the aforementioned optimal Hashin-
Shtrikman multiscale coated-spheres structures [34,51–53]
[see Fig. 1(d)]. Here, we provide a detailed derivation of
χ̃ (m)

V
(k) in the mth stage and numerical simulations for two

distinct types of cell-volume distributions. It is noteworthy
that our methodology only involves calculating cell volumes,
which is exactly performed and easy to parallelize. Further-
more, we demonstrate that large samples of many of our de-
signs can be readily fabricated via modern photolithographic
and 3D printing techniques [78–81] (Sec. VII). While some
of the major results were announced in a brief communication
[82], there we focused on applications to sphere packings
without detailed derivations. In this work, we treat a broader
class of sphere packings as well as packings of nonspherical
particles and provide detailed mathematical derivations. We
also report associated simulation results that are not contained
in Ref. [82].

We present basic mathematical definitions and concepts
in Sec. II. Then, we precisely describe the tessellation-based
procedure in Sec. III. In Sec. IV we derive the small-k scalings
of the spectral densities for the constructed packings. Subse-
quently, we verify our theoretical results by numerical simu-
lations using Voronoi tessellations and sphere tessellations in

Secs. V and VI, respectively. Then, we discuss the feasibility
of fabricating our designs in modern technologies in Sec. VII.
Finally, we provide concluding remarks in Sec. VIII.

II. BACKGROUND AND DEFINITIONS

The microstructure of a two-phase system can be described
by the phase indicator function associated with phase i = 1, 2
[34]:

I (i)(r) =
{

1, r ∈ phase i
0, otherwise. (4)

If the system is statistically homogeneous, then its one-point
correlation function is independent of position r and identical
to the phase-volume fraction φi, i.e., 〈I (i)(r)〉 = φi, where 〈·〉
represents an ensemble average. The autocovariance function
can be defined in terms of the mean-zero fluctuating indicator
function, J (i)(r) ≡ I (i)(r) − φi, as follows:

χV (r) ≡ 〈J (i)(r′)J (i)(r′ + r)〉, (5)

which is identical for each phase and tends to zero as
r increases if the system does not have long-range order.
Its Fourier transform χ̃V (k) ≡ ∫

Rd dy e−ik·y χV (y), called the
spectral density, is a nonnegative real-valued function of a
wave vector k. In experiments, the spectral densities are di-
rectly obtainable from elastic scattering intensities [83] when
the wavelength of radiation is larger than atomic distance, but
shorter than the length scale of domains. In numerical simula-
tions, the spectral densities are calculated from realizations of
the media under the periodic boundary conditions as follows:

χ̃V (k) = 1

|VF | 〈| J̃
(i)(k) |2〉, (6)

where |VF | is the volume of the simulation box, a wave vector
k is a reciprocal lattice vector of the simulation box, and 〈·〉
represents an ensemble average, where J̃ (i)(k) is the Fourier
transform of J (i)(r) [84].

In the context of two-phase media, a packing can be
regarded as domains of a “particle” phase (N generally shaped
particles P1, P2, . . . , PN ) that are dispersed throughout a
continuous “matrix” (void) phase. For such a packing in
a periodic fundamental cell VF , the random variable J̃ (k)
associated with the particle phase (dropping the superscript)
can be expressed as follows:

J̃ (k) =
N∑

j=1

m̃(k; P j ) e−ik·r j − φ

∫
VF

dy e−ik·y (7)

=
N∑

j=1

m̃(k; P j ) e−ik·r j − φ|VF |δk,0, (8)

where r j is the centroid of P j , m̃(k; P j ) is its form factor
(i.e., the Fourier transform of the “particle indicator function”
m(r; P j ) with respect to r j), and δk,0 represents a Kronecker δ

symbol. Since the forward scattering term φ|VF |δk,0 in Eq. (8)
always vanishes at nonzero reciprocal lattice vectors k’s, this
term is often ignored in numerical calculations.

For some special particle shapes, closed-form expressions
of m̃(k; P j ) are known. For a spherical particle of radius a, the
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associated form factor is

m̃(k; a) = (2πa/k)d/2 Jd/2(ka) , (9)

where k ≡ |k| and Jn(x) is the Bessel function of order n. For
a cubic particle of side length L, the corresponding function is

m̃(k; L) = Ld
d∏

l=1

sinc(klL/2) , (10)

where kl represents lth component of a wave vector k and

sinc(x) ≡
{

sin x
x , x 
= 0

1, x = 0.
(11)

We note that Eqs. (9) and (10) have their global maxima at the
origin, whose values are identical to their particle volumes.

From Eqs. (6) and (7), one can straightforwardly derive an
expression of the spectral density for sphere packings of the
identical particle radius a [31,34]:

χ̃V (k) = ρ| m̃(k; a) |2 S(k) , (12)

where ρ is number density and S(k) is the structure factor
defined as

S(k) ≡ 1

N

〈∣∣∣∣ N∑
j=1

e−ik·r j − Nδk,0

∣∣∣∣2〉
. (13)

Equation (12) gives

χ̃V (0) = φ2 S(0) /ρ, (14)

and thus, one obtains a hyperuniform packing by decorating a
hyperuniform point pattern with spheres of an equal size [31].
In this paper, however, we will not discuss such hyperuniform
constructions.

In the case of a one-component many-particle system in
thermal equilibrium in which the particles do not overlap, the
fluctuation-compressibility relation S(0) = ρκT kBT [34,85]
and Eq. (14) yield

χ̃V (0) = φ2κT kBT, (15)

where κT = ρ−1(∂ρ/∂ p)T is the isothermal compressibility,
p is the pressure, kB is the Boltzmann constant, and T is tem-
perature. Equation (15) implies that any compressible (κT >

0) one-component system in thermal equilibrium cannot be
hyperuniform at a positive temperature [3,43].

The local volume-fraction variance σ 2
V (R) associated with

spherical windows of radius R is defined as [1,3]

σ 2
V (R) ≡ 〈τ 2(x; R)〉 − φ2, (16)

where τ (x; R) denotes the local volume fraction of the particle
phase inside the spherical window of radius R centered at
position x.

From numerical simulations alone, it is difficult to as-
certain whether a system is perfectly hyperuniform because
the infinite-sample-size limit is never achievable and χ̃V (k)
usually has large relative statistical uncertainties at small
wave numbers. For these reasons, it is desirable to employ
alternative criteria to determine whether a system is effectively
hyperuniform. A useful empirical criterion to deem a system

to be hyperuniform is that the hyperuniformity metric H is
less than 10−2 or 10−3 [3,56,61], where H is defined by

H ≡ χ̃V (k → 0)

χ̃V (kpeak )
, (17)

where χ̃V (kpeak ) is the spectral density at the first dominant
(non-Bragg) peak. Note that this criterion is different from its
counterpart for point patterns because of the presence of the
form factor in the spectral density [56]; see Eq. (12).

III. TESSELLATION-BASED PROCEDURE

Here, we precisely describe the tessellation-based proce-
dure in d-dimensional Euclidean space Rd . For a periodic cu-
bic fundamental cell VF of side length L in Rd , the procedure
is performed as follows:

(1) Divide the simulation box with N disjoint cells
C1, . . . , CN [Figs. 1(a) and 1(b)] in which the maximal char-
acteristic linear cell size �max ≡ maxN

j=1{maxr,r′∈C j {|r − r′|}}
is much smaller than L, i.e.,

�max � L. (18)

We call this the “bounded-cell” condition.
(2) For a specified local-cell packing fraction 0 < φ < 1,

place hard particles of arbitrary shapes of total volume φ|C j |
within the jth cell C j , and then repeat the same process over
all cells [see Figs. 1(c) and 1(d) for illustrative examples with
disks].

Application of this procedure results in a packing in which
the local-cell packing fraction φ is identical to global packing
fraction. Given an initial tessellation, this construction is
realizable only when the local-cell packing fraction φ in step 2
is smaller than or equal to the maximal packing fraction φmax,
i.e.,

φ � φmax ≡ N
min
j=1

{ |P j |max

|C j |
}

, (19)

where |C j | and |P j |max represent volumes of the jth cell and
the largest particle of a certain shape which is inscribed in this
cell, respectively.

Roughly speaking, the maximal packing fraction φmax be-
comes larger when each cell tends to fully enclose a larger
particle. Clearly, the largest particle that a cell can fully
circumscribe should be congruent to the cell, and thus the
maximal packing fraction will take its largest value (φmax = 1)
only if the shape of each particle is similar to its circumscrib-
ing cell. For this reason, when only considering spherical par-
ticles, packing fraction of the multiscale coated-disks model
[Fig. 1(d)] can span up to unity, i.e., φmax = 1.

The rationale behind our methodology can be intuitively
understood by considering how the volume of the particle
phase within a spherical window of radius R fluctuates around
its global mean value φ v1(R). As shown in Fig. 2, our
methodology ensures that the cells only in the gray-shaded re-
gion can contribute to the fluctuations, which are proportional
to volume of this boundary region. Since the bounded-cell
condition ensures that thickness of this boundary region is
smaller than �max, the resulting variance in local phase-volume
grows on the order of Rd−1 for sufficiently large windows
(R � �max). This implies that σ 2

V (R) ∼ R−d−1, meaning that
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FIG. 2. An illustration of local volume-fraction fluctuations for a
disordered packing constructed via the tessellation-based procedure.
For an observation window of radius R and center x0, volume-
fraction fluctuations arise only from partially covered cells, which are
highlighted in gray shade. Due to the limited region of fluctuations,
this packing becomes hyperuniform in the large sample-size limit;
see main text for details.

this packing is strongly hyperuniform (class I). This rationale
also explains the hyperuniformity of the constructed packings,
regardless of shapes and number of particles inside each cell.
However, for simplicity, we henceforth focus on the cases in
which each cell contains exactly one particle.

IV. GENERAL THEORETICAL ANALYSES

Here, we derive an asymptotic expression for the spec-
tral density for the constructed packings in the small-wave-
number limit. Consider an initial tessellation {C j}N

j=1 of a
cubic periodic fundamental cell VF of side length L in Rd .
Since a fundamental cell is the union of all cells C1, . . . , CN

of the tessellation, the Fourier transform of VF can be decom-
posed as follows:

|VF |δk,0 =
∫
VF

dy e−ik·y =
∫
VF

dy e−ik·y
N∑

j=1

m(y − x j ; C j )

=
N∑

j=1

e−ik·x j m̃(k; C j ) , (20)

where δk,0 represents the Kronecker delta symbol, k is a
reciprocal lattice vector of VF , and for the jth cell C j , x j ,
m(r; C j ), and m̃(k; C j ) represent its centroid, the indicator
function with respect to x j , and the form factor, respectively.

The application of our procedure to this tessellation yields
a particle packing that consists of N particles P1, . . . , PN

whose centroids are r1, . . . , rN , respectively, with the identical
local-cell packing fraction φ. Using the decomposition of
Eq. (20) and the spectral density given in Eqs. (6) and (7),

we obtain the following general expression:

χ̃V (k) = 1

|VF | | J̃ (k) |2

= 1

|VF |
∣∣∣∣ N∑

j=1

e−ik·x j [m̃(k; P j ) e−ik·X j − φ m̃(k; C j )]

∣∣∣∣2

,

(21)

where X j ≡ r j − x j , and m̃(k; P j ) is the form factor of a
particle P j .

Due to the bounded-cell condition, |r| < �max � L for
every r in each cell C j , or equivalently, one can consider
small wave vectors satisfying that |k · r| ∼ |r|/L � 1. Thus,
the form factor of V = (C j or P j) can be well approximated
by its Taylor series about k = 0:

m̃(k;V ) = |V|
[

1 − kαkβ

2
Mαβ (V )

+ ikαkβkγ

6
Mαβγ (V )

]
+ O(k4) , (22)

where the Einstein summation convention is employed,

Mα1α2···αn (V ) ≡ 1

|V|
∫
V

dr rα1 rα2 · · · rαn , (23)

is the mth moment of the mass distribution of V (= C j or P j )
that is normalized by its volume |V|, and rα j represents the
α j th Cartesian component of a vector r. We note that since
Eq. (23) refers to the moments with respect to the centroid of
V , its first moment is identically zero.

Using Eq. (22), the term J̃ (k) given in Eq. (21) can be
written as follows (see Appendix B for details):

J̃ (k) = J̃(1)(k) + J̃(2)(k) + J̃(3)(k) + O(k4) , (24)

where

J̃(1)(k) =φ

N∑
j=1

(e−ik·X j − 1)|C j |e−ik·x j , (25)

and J̃(2)(k) and J̃(3)(k) are defined in Eq. (B2). Since the lead-
ing order terms of m̃(k; P j ) and m̃(k; C j ) exactly cancel each
other due to the local constraint |P j | = φ|C j | for all j, these
three terms J̃(1)(k), J̃(2)(k), and J̃(3)(k) exhibit the power-law
scalings in the small-wave-number limit. Assuming typical
tessellations that exhibit | J̃(2)(k) | ∼ |k|2 and | J̃(3)(k) | ∼
|k|3, the first term can have two scalings [either | J̃(1)(k) | ∼
|k| or J̃(1)(k) ∼ O(|k|2)], depending on the particle displace-
ments X j with respect to their cell centroids. Therefore, the
scaling of J̃(1)(k) determines that of the spectral density (21).

Specifically, whenever | J̃(1)(k) | ∼ |k|, which can be
achieved when particle displacements X j are uncorrelated
with one another [86], the spectral density of the constructed
packings tends to zero quadratically in |k|; specifically,

χ̃V (k) ∼ φ2|k|2, (26)

which corresponds to class I hyperuniformity. When
| J̃(1)(k) | ∼ O(|k|2), the packings are more strongly
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hyperuniform with a new scaling given by

χ̃V (k) ∼ φ2|k|4. (27)

For example, this scaling can be achieved when X j = 0 for
all j [i.e., J̃(1)(k) = 0] or when | J̃(1)(k) | ∼ |k|2 due to certain
spatial correlations in X j (see Sec. V). Therefore, the ma-
nipulation of particle displacements X j enables us to engi-
neer either quadratic or quartic scalings of the spectral density.

It is noteworthy that the appearance of φ2 factor in
Eqs. (26) and (27) is common for small-|k| scalings of
the spectral densities of all statistically homogeneous sphere
packings; see Eq. (12). Here, we note that the theoretical
results (26) and (27) can be straightforwardly generalized to
the cases of multiple particles are added in each cell. This
is achieved by dividing cells such that each subdivided cell
should circumscribe a single particle with an identical local-
cell packing fraction.

Now, we consider a special case where all particles are
similar to the associated cells in the sense that the parti-
cles have identical shapes and orientations with their cells,
but have different sizes (P j = φ1/d C j for j = 1, . . . , N).
Then, the nth moments of particles and cells can be related
as Mα1···αn (P j ) = φn/d Mα1···αn (C j ). Substituting this expres-
sion into Eq. (24), we obtain

J̃ (k) = J̃(1)(k)

+ φ(1 − φ2/d )
kαkβ

2

N∑
j=1

Mαβ (C j ) |C j |e−ik·x j

︸ ︷︷ ︸
J̃(2) (k)

+ O(k3) . (28)

Again, whenever | J̃(1)(k) | ∼ |k|, the spectral density of the
constructed packings shows a scaling χ̃V (k) ∼ φ2|k|2. How-
ever, in the special case of X j = 0 for all j (i.e., J̃(1) = 0),
the resulting scaling is

χ̃V (k) ∼ φ2(1 − φ2/d )2|k|4. (29)

Both hyperuniform cases belong to the class I.
Here, we should note that all theoretically predicted scal-

ings of χ̃V (k), given in Eqs. (26), (27), and (29), are analytic
at the origin, i.e., the power exponents are even positive
integers. This implies that autocovariance functions χV (|r|) of
the constructed packings must decay to zero exponentially fast
(or faster) as |r| → ∞ [3].

V. HYPERUNIFORM PACKINGS FROM
VORONOI TESSELLATIONS

In this section, we formulate an efficient numerical algo-
rithm that is based on our tessellation-based methodology
to generate very large disordered hyperuniform packings in
R2 and R3. This can be accomplished from various types of
tessellations [44,54,74–77], but we focus on Voronoi tessel-
lations of disordered nonhyperuniform point patterns in this
section. For a given point pattern, the Voronoi cell of a point
is defined as the region of space closer to this point than any
other points, and the Voronoi tessellation is the collection of
all Voronoi cells [34]. The computational time for the Voronoi

tessellation of a point pattern of N particles in Rd is at most of
the order of O(N log N + N(d−1)/2�) [87]. Due to such small
computation cost, the implementation of our methodology in
the case of Voronoi tessellations enables a remarkably effi-
cient mapping that converts very large nonhyperuniform point
patterns or packings into very large disordered hyperuniform
packings.

We choose the progenitor point patterns for the Voronoi
tessellations not only to meet the bounded-cell condition but
so that the resulting packing is easy to fabricate. From a prac-
tical viewpoint, it is useful to employ similar particle shapes
and sizes to construct the packings. All of these conditions can
be readily fulfilled by considering progenitor point patterns
derived from dense hard-sphere packings. In what follows, we
elaborate the bounded-cell condition.

A. The bounded-cell condition

The bounded-cell condition in the initial tessellation is
a central requirement to ensure hyperuniformity via the
tessellation-based procedure. For Voronoi tessellations, the
largest cell size �max is on the order of the largest nearest
neighbor distance, which in turn is of the order of the largest
radius rmax of holes (i.e., spherical regions that are empty
of particle centers); �max ∼ rmax. Therefore, the bounded-cell
condition (18) can be satisfied if the relative size rmax/L of the
largest hole to the sample size [or equivalently, their volume
ratio δ ≡ v1(rmax) /Ld ] is much smaller than a certain small
value.

The information about largest hole size is contained in the
void-exclusion or hole probability function EV (r), which gives
the probability for finding a hole of radius r when it is ran-
domly placed in a point-particle system in the thermodynamic
limit [34]. Clearly, if the hole probability has compact support,
i.e., EV (r) = 0 at any r > D for a certain length D, then
Voronoi tessellations of the associated point patterns always
meet the bounded-cell condition for relatively small sample
sizes (say 10d+1 in space dimension d). Examples of such
systems include all crystals, disordered stealthy hyperuniform
point patterns [88,89], and the saturated random sequential
addition (RSA) packings [34,90]. Specifically, RSA is a time-
dependent process that irreversibly, randomly, and sequen-
tially adds nonoverlapping spheres into space. In the infinite-
time limit the resulting packing does not have any available
space to add further particles, called saturated.

However, many other disordered point patterns, including
Poisson point patterns, equilibrium hard-sphere liquids, and
unsaturated RSA packings, can possess arbitrarily large holes
in the thermodynamic limit. Finite-size samples of these
systems tend to have larger holes as the sample size grows
[see Fig. 3(a) for 1D Poisson point patterns], but the hole size
relative to the sample size decreases as the sample size grows
[see Fig. 3(b)], implying that samples, in fact, tend to meet the
bounded-cell condition (18).

We now rigorously show that for sufficiently large sta-
tistically homogeneous point patterns, Voronoi tessellations
of almost every realization should obey the bounded-cell
condition, as long as their hole probabilities are smaller than
or equal to that of the Poissonian counterparts for large hole
radii. For this purpose, we will show that Voronoi tessellations
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(a) (b) (c)

FIG. 3. Numerical simulations of probability distributions of the largest hole volume (2rmax) in each sample of 1D Poisson point patterns:
(a) on a semilog scale and (b) on a log-log scale. The x-axis in (b) represents the relative size δ = v1(rmax) /V of the largest holes to the box
volume V (= L). For each particle number N , the distribution is obtained from 104 independent samples. (c) Semi-log plot of hole probability
EV (r) of finite-size Poisson point patterns as a function of system size N . Values are computed from Eq. (30).

of almost every Poisson point pattern obey the bounded-
cell condition for sufficiently large sample sizes. We begin
by considering, for finite-size samples, the hole probability
EV (r), which can be interpreted as the probability that a finite
sample possesses at least a single hole of radius greater than
r (i.e., �max ∼ rmax � r). Thus, EV (L[δ/ v1(1)]1/d ) is, in turn,
the probability that the Voronoi tessellation of a single sample
does not meet the bounded-cell condition (18). For Poisson
point patterns of N particles and volume V = Ld in Rd , its
hole probability can be straightforwardly obtained as follows
[91]:

EV (r) = [V − v1(r)]N/V N = (1 − δ)N , (30)

where δ ≡ v1(r) /V . This quantity converges to a well-known
expression in the thermodynamic limit [34] exp(−ρ v1(r)),
where ρ is the number density. Equation (30) decays exponen-
tially fast for a given δ < 1 as particle number N increases; see
Fig. 3(c). This implies that for sufficiently large sample sizes,
almost every realization of a Poisson point pattern should obey
the bounded-cell condition. Thus, the constructed packings
from Voronoi tessellations of Poisson point patterns should
be hyperuniform, which is consistent with a recent study of
random fields [92].

We will employ correlated and statistically homogeneous
point patterns as the progenitor configurations, which are even
more likely to obey the bounded-cell condition than Poisson-
point counterparts at the same number density. In the ensuing
discussion, we show that such nonhyperuniform point patterns
can be converted into disordered hyperuniform packings.

B. Spherical particles

Here, we numerically implement our procedure by solely
rescaling particle volumes without changing particle centers
and shapes. It results in disordered sphere packings whose
Voronoi tessellations are identical to those of their progenitor
packings and we show that they are exactly hyperuniform of
class I.

Due to the fixed particle centers, we define two alternative
maximal packing fractions φ(1)

max and φ(2)
max; see Fig. 4. For

φ(1)
max, the volume |P j |max of the largest particle of a Voronoi

cell in definition (19) is that of the smallest spherical particle
inscribed in the cell. For φ(2)

max, the largest particle is the
particle in the progenitor packing. By definition, we have the

following inequalities: φmax � φ(1)
max � φ(2)

max, where φ(1)
max =

φ(2)
max occurs only when every particle in the progenitor has

a neighbor in contact, and φmax = φ(1)
max occurs only when

every particle in the progenitor is inscribed in its Voronoi
cell. Obviously, if a constructed packing has the packing
fraction φ � φ(2)

max, none of its particles can be larger than
those in the progenitor packing. For 2D and 3D saturated RSA
packings, values of φ(1)

max are around 0.35 or 0.25, respectively.
These values tend to decrease as the packing fraction of the
progenitor packings is smaller, and they become arbitrarily
small for Poisson point patterns (i.e., RSA with the zero
packing fraction). Additional values of φ(1)

max and φ(2)
max are

summarized in Sec. I B in the Supplemental Material [93].
We employ three different types of nonhyperuniform pro-

genitor point patterns in both R2 and R3: RSA packing
[34,90], equilibrium hard-sphere liquids, and lattice-packings
with point vacancies. First, we employ RSA packings for
various values of initial packing fractions φinit . These RSA
packings are efficiently generated by the voxel-list algorithm

φ < φmax

φ < φ
(2)
max

φ < φ
(1)
max

FIG. 4. Schematic for three types of the maximal packing frac-
tions φ (2)

max � φ (1)
max � φmax. For a Voronoi cell of an initial particle

(white circle), the black circle and the green one represent the largest
inscribed circles when the circle center is fixed or is free to move,
respectively. These three circles (white, black, and green ones) illus-
trate the largest particles |P| j of this cell for three distinct maximal
packing fractions φ (2)

max, φ (1)
max, and φmax, respectively. We note that the

initial particle size is exaggerated for a clear visualization.
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(a) (b)

FIG. 5. (a) A portion of a hyperuniform disk packing that was
converted from a 2D RSA packing with the packing fraction φinit =
0.41025. (b) A portion of a hyperuniform sphere packing that was
converted from a 3D saturated RSA packing.

[90]. Second, as progenitor packings, we use equilibrium
hard-sphere liquid configurations with a range of values of the
initial packing fraction φinit; see the Supplemental Material
[93] for employed parameters. In 2D, its χ̃V (0) can be well
approximated from Eq. (15) and a formula for the pressure
[94] as follows:

χ̃V (0) ≈ φ2(1 − φinit )3

ρ
(
1 + φinit + 0.38406φinit

2 − 0.12802φinit
3
) , (31)

where φ is the packing fraction of the decorated spheres.
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FIG. 6. Log-log plot of the scaled local volume-fraction variance
v1(R) σ 2

V (R) of the progenitor and constructed packings. The scaling
of the latter clearly shows that it is hyperuniform of class I. The
progenitor packings are 2D saturated RSA packings and the Monte
Carlo technique is employed. Three vertical grids represent a quarter
of side length of the simulation boxes (i.e., R = L/4) for N = 104,
105, and 106, respectively.

The last type of progenitor packings are vacancy-riddled
square and simple cubic lattices in two and three dimensions,
respectively. These progenitor systems are characterized by
the number Ns of initial lattice sites and the fraction c of point
vacancies to Ns. While these imperfect lattices still have Bragg
peaks, they are not hyperuniform [69,95] and it is easy to
generate extremely large samples (N ∼ 108). Furthermore, for
high values of c, their cell-volume distributions are similar to
those for Poisson point patterns. Therefore, this investigation
will immediately demonstrate our discussion in Sec. V A.

FIG. 7. Simulation results for sphere packings from Voronoi tessellations of RSA packings in (a)–(c) R2 and (d–f) R3. (a), (d) Probability
density p(|C j |) of Voronoi cell volumes versus the scaled cell volume |C j |/|C| plotted on a semi-log scale (larger panel) and a linear scale
(inset). Here, |C| represents the expected cell volume. (b), (e) The spectral densities versus wave number k for small wave numbers plotted
on a log-log scale. Inset in (b) is on a linear scale. Here, we note that all packings are rescaled to the common packing fraction φ = 0.01.
(c)–(f) Log-log plots of the spectral densities for progenitor packings (saturated RSA) and associated constructed packings according to
sample size N .
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FIG. 8. Simulation results for disk packings converted from 2D equilibrium hard-disk liquids of N = 105. (a) Probability density p(|C j |)
of Voronoi cell volumes versus the scaled cell volumes |C j |/|C| plotted on a semi-log scale. (b) The spectral densities versus wave number k
for small wave numbers plotted on a log-log scale. Theoretical values of χ̃V (0) are obtained from Eq. (31). (c) The spectral densities versus
wave number k for intermediate and large wave numbers plotted on a semi-log (upper) and a linear (lower) scales. Here, sample size is N = 103

and a is the mean particle radius of the constructed packings.

We compute the Voronoi tessellations of the three afore-
mentioned types of progenitor packings via VORO++ library
[96] (see Appendix A for the implementation), and then per-
form our methodology without changing particle centers. To
get a visual sense of the resulting hyperuniform packings, we
show representative but small hyperuniform sphere packings
in 2D and 3D derived from RSA initial conditions in Fig. 5.

We computed the local volume-fraction variances σ 2
V (R) of

certain progenitor and constructed packings by Monte Carlo
sampling of windows [34,97] for many values of R up to
L (i.e., side length of the simulation box). For illustrative
purposes, Fig. 6 plots such variances for progenitor packings
that are 2D saturated RSA packings of various system sizes
(N = 104, 105, and 106). We note that these results for σ 2

V (R)
are reliable only up to a window radius R < L/4 [98,99]
due to the finite-size effects. The constructed packings ex-
hibit a common scaling σ 2

V (R) ∼ R−(d+1), as predicted from
the heuristic rationale associated with Fig. 2. This rationale
also predicts that such a scaling starts from window sizes
R � 5�max, where �max is the maximal cell length defined in
step 1 [cf. Eq. (18)], from which the region where volume-
fraction fluctuations arise (the gray-shaded region in Fig. 2)
can be effectively regarded as window boundary. Since the
Voronoi tessellations of 2D saturated RSA that have a small
�max (�1.7ρ−1/2), the class I hyperuniform scaling is well-
established in length scales over several orders of magnitude
(even beyond the reliable regime) for even relatively small
samples (N = 104) and the largest ones (N = 106); see Fig. 6.

Figures 7, 8, and 9 summarize the simulation results for
packings that were converted from RSA, equilibrium hard-
sphere liquids, and vacancy-riddled lattices, respectively. By
construction, these constructed packings have particle-volume
distributions that are identical to those of Voronoi cell volumes
in their progenitors; see Figs. 7(a), 7(d), 8(a), and 9(a). Fur-
thermore, since particle centers are fixed in the procedure, the
progenitor packings and their associated constructed packings
have identical Voronoi tessellations and thus obviously have
identical local statistics associated with Voronoi cells. This
implies that local statistics alone generally may or may not
determine hyperuniformity, which we elaborate in Sec. VIII.

Isotropic spectral densities of progenitor and constructed
packings are computed by using Eqs. (6) and (9). To compare
them, we rescale all packings to a common packing fraction
φ = 0.01; see Figs. 7(b), 7(e), 8(b), and 9(b). For small wave
numbers (i.e., 0 < ka � 1, where a ∼ 0.1ρ−1/d is the mean
of particle radii), as shown in these figures, the spectral den-
sities of the progenitors are significantly different from those
of the constructed packings. While progenitor packings are
clearly nonhyperuniform (i.e., H ∼ 0.1−0.01 for RSA pack-
ings and equilibrium hard-sphere liquids), the constructed
packings are class I hyperuniform with a common power-law
scaling χ̃V (|k|) ∼ |k|4. Similar to the case of σ 2

V (R) shown in
Fig. 6, this power-law scaling is particularly well-established
over several orders of magnitude, even for relatively small
samples [N = 103 as shown in Figs. 7(c) and 7(f)]. This
k4-scaling results from |J̃(1)(k)| ∼ |k|2, which comes from

FIG. 9. Simulation results for constructed disk packings from 2D lattice packing for various values of vacancy concentration c. (a) Semi-log
plots of probability density functions of Voronoi cell volumes (Ns = 106). (b) Log-log plots of the spectral densities for progenitor packings of
various vacancy concentrations and the constructed packings (Ns = 106). (c) Log-log plots of the spectral densities of the constructed packings
of various sample sizes (c = 0.4).
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TABLE I. Extrapolated values of χ̃V (0) and hyperuniform metric
H of the constructed packings. In the second column, the parameters
for the progenitor RSA and hard-sphere liquids (HLS) are the initial
packing fractions, while those for the vacancy-riddled lattices are the
vacancy concentrations. For the progenitor packings, H ∼ 0.1–0.01.
We do not compute H for the imperfect lattices because they possess
Bragg peaks. See the Supplemental Material [93] for additional
details and data.

Progenitors/Parameters χ̃V (0) H

φsat ≈ 0.5471 2.29(54) × 10−18 1.36(32) × 10−14

2D RSA 0.41025 4.7(15) × 10−18 3.4(11) × 10−14

N = 107 0.27350 1.15(60) × 10−17 1.01(52) × 10−13

0.13675 3.1(18) × 10−17 3.0(17) × 10−13

φsat ≈ 0.3841 1.97(31) × 10−12 1.51(24) × 10−8

3D RSA 0.288 1.39(31) × 10−12 1.27(28) × 10−8

N = 106 0.192 3.77(85) × 10−12 3.90(88) × 10−8

0.096 1.44(32) × 10−11 1.66(36) × 10−7

2D HSL 0.65 2.03(32) × 10−14 6.03(98) × 10−11

N = 105 0.40 6.7(19) × 10−14 4.5(13) × 10−10

0.20 2.48(76) × 10−13 2.20(67) × 10−9

3D HSL 0.45 −1.4(32) × 10−13 7.0(162) × 10−10

N = 106 0.30 9.2(47) × 10−13 7.6(39) × 10−9

0.20 7.7(32) × 10−13 8.0(33) × 10−9

Imperfect Z2 0.10 6.9(50) × 10−20 -
Ns = 108 0.20 2.1(15) × 10−19 -

0.40 2.49(95) × 10−18 -

Imperfect Z3 0.10 4.1(71) × 10−15 -
Ns = 27×106 0.20 5.0(20) × 10−14 -

0.40 2.42(76) × 10−13 -

special correlations in X j ; see Sec. IV. Some values of
χ̃V (0) and H are summarized in Table I; see, for additional
details and data, Sec. I C in the Supplemental Material [93].

However, for intermediate wave numbers (i.e., 1<ka<3),
the spectral densities of the constructed packings largely re-
semble those of their progenitors; see, for example, Fig. 8(c).
This result reflects that local statistics of both packings are
identical at corresponding length scales. At large wave num-
bers (i.e., ka > 3), however, the spectral densities of progen-
itor and constructed packings again become different from
each other because the spectral density at this regime mainly
depends on the particle-size distributions; see Fig. 8(c).

C. Nonspherical particles

As shown in the derivation in Sec. IV, the tessellation-
based procedure can result in class I hyperuniformity even
for nonspherical particle shapes, including regular and ran-
dom polyhedrons. However, since it is generally nontrivial to
compute the form factors of those particle shapes, we consider
a simple geometric shape, i.e., a d-dimensional hypercubic
particles; see Eq. (10).

For simplicity, we take advantage of the sphere packings
constructed in Sec. V B by replacing the spherical particles
with the inscribed cubic particles. In this case, the correspond-
ing maximal packing fraction for cubes will be related to
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FIG. 10. Simulation results for χ̃V (k) of the constructed packings
depending on particle shapes. Here, the progenitor point patterns are
the centers of saturated RSA packings with N = 106 in (a) two and
(b) three dimensions.

that of spheres as follows: φcube
max = �(1+d/2)2d−1

(dπ )d φ
sphere
max . We con-

sider two cases: (identically) oriented particles and randomly
oriented particles. Figure 10 summarizes the simulation
results for 2D and 3D packings converted from saturated RSA
packings of N ≈ 106. We note that the results for squares
or cubes are largely indistinguishable from those for spheres
because both particle shapes have comparable length scales
and the Fourier transforms of both a cube (10) and a sphere (9)
are isotropic near the origin and have similar profiles. How-
ever, these spectral densities will exhibit different behaviors at
intermediate and large wave numbers, depending on particles
shapes and orientations.

VI. MULTISCALE COATED-SPHERES MODEL

The tessellation-based methodology can be applied to any
type of tessellations of space besides the Voronoi tessellations,
as long as they obey the bounded-cell condition (18). One
interesting example is a tessellation of space that consists of
nonoverlapping spherical cells. Since a monodisperse sphere
packings in d > 1 cannot occupy all space, spherical cells in
such tessellations should have a polydispersity in size down
to the infinitesimally small; see Fig. 1(b). For these (mul-
tiscale) sphere tessellations, the bounded-cell condition can
be guaranteed by making the ratio of the largest cell-volume
to the sample volume, δ = vmax/|VF |, sufficiently small. Im-
plementing our methodology from these tessellations should
result in hyperuniform packings regardless of particle shapes,
positions, and numbers per cell.

A simple but important case of such disordered hyperuni-
form packings are ones in which each cell includes only a
single particle to which the cell is concentric; see Fig. 1(d).
Since particle shapes are similar to those for cells, the local-
cell packing fraction φ of those packings can span up to
unity, as mentioned in Sec. III. In addition, we can use the
expression of the second moment of a sphere of radius R,
Mαβ = 1

(2+d ) R
2δα,β , X j = 0, and Eq. (28) to obtain the

following power-law scaling for the spectral density:

χ̃V (k) =
[
φ(1 − φ2/d )

2(2 + d )

]2
1

|VF |

∣∣∣∣∣∣
∞∑
j=1

v1(R j ) (kR j )
2e−ik·x j

∣∣∣∣∣∣
2

+ O(k5) ∼ φ2(1 − φ2/d )2k4, (32)

where radius of cell j is denoted by R j .
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It is crucial to observe that cells and the associated particles
form composite spheres that fill all space. Each composite
sphere is comprised of a spherical core (particle) of one
phase that is surrounded by a concentric spherical shell of
the other phase such that the fraction of space occupied by
the core phase is equal to its global phase volume fraction,
which is guaranteed by our procedure. Thus, this structure
is a packing (dispersion) in which spherical particles (blue
regions) are “well-separated” from one another in a fully
connected (continuous) void (matrix) phase (red region). This
is traditionally understood as a key characteristic of optimal
two-phase structures [50,54].

Surprisingly, these hyperuniform multiscale structures are
identical to the Hashin-Shtrikman multiscale coated-spheres
models [34,51–53], which are perhaps the most famous results
from the theory of heterogeneous materials. These special par-
ticle composites are optimal for the effective electric (thermal)
conductivity and bulk elastic modulus for a given phase frac-
tions and phase properties. This observation will shed light on
the origin of nearly optimal transport properties of disordered
stealthy hyperuniform packings [19,20] and cellular networks
derived from hyperuniform systems [54].

The coated-spheres structures are infinitely degenerate
with varying degrees of order/disorder. The most ordered
structures would be ones, derived from certain deterministic
sphere tessellations, such as Apollonian gaskets, or initial
lattice packings of identical spheres in which particles are
added in a sequential multiscale manner.

A. Simulation model

In what follows, we describe our model to simulate the
coated-spheres model and ascertain their hyperuniformity. We
first construct very dense disordered sphere packings via a
multistage version of the RSA procedure, in which volume
of the inserted spheres reduced in every stage. These dense
“precursor” packings are later used to simulate ideal sphere
tessellations. The coated-spheres model is then simulated by
scaling spheres in the precursor packings at a certain ratio.

Specifically, these precursor packings are constructed from
an empty simulation box VF in Rd under the periodic bound-
ary conditions. The construction procedure has two control
parameters: the upper bound vmax on cell volumes and a
positive decreasing function g(i) of positive integers i, which
satisfies g(1) = 1 and

∑∞
j=1 g( j) < ∞. The infinite-sample-

size limit can be achieved as the upper bound vmax tends
to be infinitesimally small with the simulation box fixed.
Subsequently, one determines the prescribed number N of
spheres that will be inserted in every stage and the maximum
cell volume v(1) to fill all space:

N ≡ |VF |/(vmaxG)�, (33)

v(1) ≡ |VF |/(NG), (34)

where G ≡ ∑∞
j=1 g( j) and x� is the ceiling function. Every

sphere in the mth stage has volume v(m) = v(1) g(m) and the
associated diameter Dm. Using these parameters, the precursor
packings are constructed by the following steps:

FIG. 11. A representative of disordered coated-disks model with
the local-cell packing fraction φ = 0.25 derived from a sphere
tessellation for a power-law scaling with p = 1.5 and m = 400.
Here, inclusions are only displayed; see Sec. II in the Supplemental
Material [93] for an enlarged image.

(1) In the first stage (m = 1), irreversibly, randomly, and
sequentially add (i.e., via RSA procedure) nonoverlapping
spheres of a diameter D1. The insertion stops when N spheres
are added, unless the packing becomes saturated.

(2) In the mth stage (m > 1), nonoverlapping spheres of
a diameter Dm (<Dm−1) are added via the RSA procedure.
Make sure that newly inserted spheres do not overlap with the
spheres in the previous stages 1, 2, . . . , m − 1. The insertion
stops when the packing reaches to a prescribed covering frac-
tion N/|VF | ∑m

i=1 v(i), unless the packing becomes saturated.
(3) The procedure stops when it reaches to a prescribed

number of stages; see Fig. 1(b).
Note that the aforementioned voxel-list algorithm [90] is

implemented in steps 1 and 2 described in Sec. III. Using the
mth stage precursor packings, we simulate the coated-spheres
model of the inclusion volume fraction φ by reducing these
spheres at a volume ratio φ. Figure 11 shows a representative
but small disordered multiscale coated-disks construction.

We note that due to saturation at each stage, the number
Nm of spheres inserted in the mth stage can be different
from the prescribed number N . Let Nm ≡ ∑m

i=1 Ni and ηm =∑m
i=1 Niv

(i)/|VF | denote the total number of spheres at the end
of the mth stage and the fraction of space covered by these
spheres, called the covering fraction, respectively. By con-
struction, ηm cannot exceed the prescribed covering fraction
in the mth stage:

ηm � N

|VF |
m∑

i=1

v(i). (35)

Thus, in a finite mth stage, the precursor packings will not
cover all space but have gaps that can be only covered by
smaller spheres in the next stages. As the number of stages
tends to be infinite, those gaps are eventually covered by
spheres of size down to the infinitesimally small, i.e., ηm → 1
as m → ∞.
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In this work, we consider two different types of volume
scalings: a power-law scaling and an exponential scalings.
For the power-law scaling, the cell volume in the m stage is
determined by

v(m)/v(1) = 1/mp, (36)

for a given scaling exponent p > 1. From this relation, it is
straightforward to derive the relation between maximum cell
volume v(1) and the prescribed insertion number N , and the
prescribed covering fraction:

|VF | = Nv(1) ζ (p) , (37)

1 − ηm = 1

ζ (p)

∞∑
j=m+1

1/ j p, (38)

where ζ (p) denotes the Riemann zeta function.
For the exponential scaling, cell volume in the mth stage is

determined by

v(m)/v(1) = 1/qm−1, (39)

for a given scaling base q > 1. The analogues of Eqs. (37) and
(38) are

|VF | = Nv(1)q/(q − 1), (40)

1 − ηm = 1/qm. (41)

B. Theoretical analyses

While in the limit of m → ∞ our coated-spheres model
is predicted to be strongly hyperuniform [see Eq. (32)], our
model in a finite mth stage will be nearly hyperuniform, rather
than perfectly hyperuniform, due to the uncovered gaps (ηm <

1). To estimate the degree of hyperuniformity of our model
in the mth stage, we consider the associated spectral density
χ̃ (m)

V
(k), given by

χ̃ (m)
V

(k)

= 1

|VF |

˝∣∣∣∣∣∣
Nm∑
j=1

m̃(k; φ1/dR j ) e−ik·x j − φ

∫
VF

dy e−ik·y

∣∣∣∣∣∣
2˛

,

(42)

where φ denotes the local-cell packing fraction. Without
any prior knowledge of cell-volume distribution, its rigorous
bound can be obtained by using some simple inequalities (see
Appendix C 1):

χ̃ (m)
V

(k) � 2 F (k; φ) + 2φ2|VF |(1 − ηm)2, (43)

where

F (k; φ) ≡ 1

|VF |
[
φ(1 − φ2/d )

2(2 + d )

]2

×
˝∣∣∣∣∣∣

Nm∑
j=1

v1(R j ) (kR j )
2e−ik·x j + O(k4)

∣∣∣∣∣∣
2˛

∝ [φ2(1 − φ2/d )2]|k|4, |k| → 0. (44)

Here, the constant term φ2|VF |(1 − ηm)2 is the largest
volume-fraction fluctuations that can arise from uncovered
gaps in the mth stage coated-spheres model. Importantly, the

constant term depends on φ(1 − ηm), i.e., the deviation be-
tween the local-cell packing fraction φ and the global packing
fraction φηm, which will vanish as the uncovered gaps become
completely filled in the limit of m → ∞. Thus, in this limit,
the upper bound implies that our model becomes perfectly
hyperuniform of class I, consistent with Eq. (32).

Although the upper bound (43) is rigorous, it is a gross
overestimation compared to corresponding simulation results.
Thus, we obtain a better estimate of Eq. (42) by assuming
that the uncovered gaps are spatially uncorrelated, which
effectively removes the ensemble average of their cross terms,
yielding

χ̃ (m)
V

(k) ≈ F (k; φ) + φ2

|VF |

〈 ∞∑
j=Nm+1

v1(R j )
2

〉
, (45)

where the summation term becomes dominant as |k| → 0
because F (k; φ) shows a power-law scaling; see Appendix C 2
for details.

Further estimation of the second term in Eq. (45) requires
the cell-size distribution. Consider two distinct cell-size scal-
ings discussed in Sec. VI A: a power-law form (36) and an
exponential functional form (39). For the power-law scaling,
using Eqs. (37) and (38), the summation in Eq. (45) can be
written as〈 ∞∑

j=Nm+1

v1(R j )
2

〉
= N (v(1) )2

∞∑
j=m+1

1

j2p

= v(1)|VF | ζ (p) (1 − ηm)2 f (m) , (46)

where f (m) ≡ (
∑∞

j=m+1 j−2p)/(
∑∞

j=m+1 j−p)2. Substituting
Eq. (46) into Eq. (45) yields an approximation of the residual
spectral density in the small-wave-number limit as follows:

χ̃ (m)
V

(k → 0) ≈ v(1) f (m) ζ (p) [φ(1 − ηm)]2. (47)

For the exponential scaling, Eqs. (40) and (41) are used to
simplify Eq. (45) as follows:〈 ∞∑

j=Nm+1

v1(R j )
2

〉
= N

[
v(1) q

qm(q − 1)

]2 (q − 1)2

q2 − 1

= |VF |v(1) q

q + 1
(1 − ηm)2, (48)

which results in the following leading-order term of the spec-
tral density in the mth stage:

χ̃ (m)
V

(k → 0) ≈ v(1) q

q + 1
[φ(1 − ηm)]2. (49)

C. Simulation results

For the purpose of illustration and simplicity, we specialize
to two dimensions to generate multiscale-disk tessellations
for the aforementioned cell-size scalings: power-law and
exponential functional forms, as defined by Eqs. (36) and
(39), respectively. Using the power-law functional forms, the
simulations proceed up to the 400th stage, yielding a scaling
exponent p ranging from 1.5 to 1.8, and the ratios of the
maximal cell volume to the sample volume δ = 10−3 and
10−4. For the exponential functional forms, the constructions
proceed to achieve around covering fraction ηm ≈ 0.99 for
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FIG. 12. Simulation results for multiscale-disk tessellations. For
the power-law scaling (36), (a) the semi-log plot of fraction of
uncovered space (1 − ηm ) versus the number of stages m, and
(b) the log-log plot of total cell number Nm versus (1 − ηm ). For the
exponential scaling (39), (c) the semi-log plot of (1 − ηm ) in the mth
stage, and (d) the log-log plot of total cell number Nm as functions
of (1 − ηm ). Here, we note that dashed lines represent prescribed
covering fractions, given by Eqs. (38) and (41), and δ ≡ vmax/|VF |.

values of a scaling base q = 1.05, 1.10, and 1.20, and the ratio
δ = 10−3.

For both types of scaling functions, as the scaling pa-
rameters increases, the smaller is the number of stages
needed to achieve a prescribed covering fraction. Instead,
for even larger scaling parameters, the precursor packings
are more likely to be saturated [100], which often results in
significant computational costs. This is because as the packing
approaches to a saturation state, the voxel-list algorithm that
we employ subdivides current voxels with an increasingly
finer resolution, which requires increasingly larger computer
memory and computational times. For this reason, we choose
scaling parameters smaller than 2.

To obtain multiscale-disk tessellations that nearly fill space
(ηm ≈ 0.95), these procedures need to continue up to around
a few hundred stages [Figs. 12(a) and 12(c)]. For m � 10,
cell volumes in the exponential scalings do not change much,
compared to those in the power-law scalings. Thus, the tessel-
lations in the exponential scalings can cover a larger fraction
of the simulation box with a smaller number of stages than
those for the power-law scaling. Instead, for the exponential
scaling, the precursor packings more easily achieve saturation
from relatively low covering fractions (ηm ≈ 0.65). Then,
the simulated covering fraction never keeps up with the
prescribed covering fraction (41); see Fig. 12(c). However,
the number of total cells Nm required to reach to a certain
covering fraction will be similar for both cases; see Figs. 12(b)
and 12(d).

FIG. 13. Simulation results for the coated-disks models for (a), (b) power-law and (c), (d) exponential scalings of cell volumes. (a), (c)
Log-log plots of the spectral densities χ̃ (m)

V
(k) versus wave number k for our coated-spheres model at various values of stages. (b), (d) Log-log

plots of the associated spectral densities χ̃ (m)
V

(k = kmin ) at the minimal wave number as functions of the fraction of uncovered space (1 − ηm ).
The dashed lines represent the values calculated from Eqs. (47) and (49), respectively.
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From these precursor polydisperse packings, we simulate
the coated-disks model with the inclusion volume fraction
φ = 0.5. To ascertain their hyperuniformity, we compute
the associated spectral densities χ̃ (m)

V
(k). As shown in

Fig. 13(a) and 13(c), the packings in the finite stages (around
ηm ≈ 0.95) are effectively hyperuniform. Importantly, this
comes from the fact that the precursor packings have un-
covered gaps, and thus the local-cell packing fraction φ

and their global packing fraction φηm have a discrepancy.
The consequent volume-fraction fluctuations are estimated by
Eqs. (47) and (49). Figures 13(b) and 13(d) show that while
the numerical results in χ̃ (m)

V
(k = kmin) and these theoretical

estimations conform to each other for low covering fractions
(ηm � 0.8), they significantly deviate for relatively high cov-
ering fractions. This is because the uncovered gaps are no
longer spatially uncorrelated in high covering fractions.

However, for high covering fractions, the residual spectral
densities χ̃ (m)

V
(k = kmin) vanish with an error on the order of

(1 − ηm)2. Thus, our upper bound (43), which although is a
gross overestimation, correctly predicts the scaling behavior
of χ̃ (m)

V
(k = kmin). Both the theoretical and numerical results

show that the coated-spheres model should be strongly hype-
runiform in the limit of m → ∞.

It is noteworthy that as the number m of stages increases,
the spectral densities in Fig. 13(a) and 13(c) tend to resemble
one another for intermediate wave numbers. In addition, the
terms χ̃ (m)

V
(k = kmin), as shown in Fig. 13(b) and 13(d),

collapse to a single curve that seemingly only depends on
the fraction of uncovered space. From these observations, we
surmise that the spectral densities of the multiscale coated-
spheres structures (ηm → ∞) are identical to one another,
regardless of the cell-volume distributions of the precursor
sphere packings. This universal behavior of spectral densities
is apparently related to the fact that the coated-spheres struc-
tures have identical effective properties.

VII. FABRICATION OF OUR DESIGNS

Disordered hyperuniform structures, constructed by nu-
merical simulations have been produced via modern fab-
rication technologies [14,101]. Here, we explicitly discuss
how our designed hyperuniform packings (dispersions) can
be fabricated via state-of-the-art technologies, such as 2D
photolithographic [81] and 3D printing techniques [78–80].

Photolithography is a microfabrication technique that uses
light to transfer a designed 2D pattern in the photomask on the
photosensitive chemicals coated on a flat substrate. Then, after
a series of chemical treatments, the desired pattern is engraved
on the material, or material is deposed on the pattern. These
methods are widely used in industry and research because of
their high efficiency and exact control over the shapes and
size of the patterns. Instead, diffraction tends to round all
sharp corners in the designed pattern, the radius of which
is associated with the minimum feature size. State-of-the-art
photolithography techniques are capable of creating patterns
on a 30-cm-diameter wafer with the minimum feature size
down to 25 nm [81]. With equipment of 1.5 μm minimum
feature size, one can readily fabricate our 2D hyperuniform
disk packings (probably derived from Voronoi tessellations)
that include more than one million particles.

Three-dimensional hyperuniform packings can be fabri-
cated using 3D additive manufacturing techniques [78–80].
3D printing refers to various processes that solidify materials
layer by layer to create a 3D object (e.g., fused filament
fabrication, stereolithography, and selective laser melting). A
printed structure must be topologically connected such that
it can be mechanically self-supporting after the procedure.
Thus, the void (matrix) phase of our 3D hyperuniform
packings(dispersions) can be readily printed [102]. Due
to recent developments in 3D printing methods, some
commercial desktop 3D printers can print a sample with
dimensions 125 × 125 × 125 cm3 in 50 h with around
100 μm XY resolution and 20 μm in Z resolution. Setting
the minimum pore size is 300 μm, such devices can readily
fabricate our 3D hyperuniform sphere packings that include
up to 50 million pores. If pore sizes are on the order of the
resolutions, then spherical pores will be suitable to reduce the
effect of thermal deformations during the printing process.

VIII. CONCLUSIONS AND DISCUSSION

In summary, we have introduced the tessellation-based
methodology to construct disordered hyperuniform packings
(dispersions) in d-dimensional Euclidean space Rd . This
procedure is simple to implement because it only involves
computing cell volumes, each of which can be performed
exactly and in parallel. Furthermore, it guarantees that the
constructed packings are perfectly hyperuniform of class I in
the infinite-sample-size limit, as we analytically showed in
Eqs. (26), (27), and (29). We have implemented numerically
our methodology from two distinct types of disordered tessel-
lations: Voronoi tessellations of nonhyperuniform progenitor
packings and sphere tessellations.

In the case of Voronoi tessellations, we demonstrated that
our methodology provides a remarkable mapping that con-
verts virtually all samples of any statistically homogeneous
point pattern, whether hyperuniform or nonhyperuniform, into
perfectly hyperuniform packings. Furthermore, the fact that
it is easy to create a Voronoi tessellation of a very large
point pattern with the combination of our efficient procedure
enables us to construct very large samples (of the order of
108 particles) of perfectly hyperuniform disordered packings.
Such large system sizes have not been possible for previous
numerical methods.

In the case of sphere tessellations, we established that the
optimal Hashin-Shtrikman multiscale dispersions are hyper-
uniform of class I. In addition to the fact that the spherical
inclusions in such dispersions are “well-separated” from one
another [54], hyperuniformity is apparently another important
structural attribute to attain optimal effective transport and
elastic properties [34,38,51–53]. In this regard, it is note-
worthy that some disordered hyperuniform packings [19,20]
and cellular networks derived from hyperuniform systems
[54] have been reported to possess (nearly) optimal effective
transport and elastic properties. Thus, it will be interesting to
investigate the physical properties of hyperuniform packings
constructed by our procedure.

Furthermore, it is important to observe that our procedure
allows many distinct types of tessellations as long as they meet
the bounded-cell condition (18). Besides Voronoi tessellations
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and sphere tessellations studied in this work, examples include
disordered isoradial graphs [76], Delaunay triangulations,
“Delaunay-centroidal” tessellations [44,54], dissected tessel-
lations [77], and various generalizations of Voronoi tessella-
tions, such as Laguerre tessellations [74,75], and tessellations
in Manhattan distances [103]. Since constructing progenitor
packings is the most time-consuming step in our numerical
implementations, one would increase sample sizes by employ-
ing other tessellations that can be efficiently generated.

We note that similar to our procedure, a 1D model [104]
and the “equal-volume tessellation” [105] enable the gener-
ation of hyperuniform point mass patterns and hyperuniform
point patterns from certain initial tessellations, respectively.
Specifically, these two models place a point mass [104] and
point particles [105] in each cell such that mass densities and
number densities in the cells become identical, respectively.
Thus, the hyperuniform systems in both models can be re-
garded to be a zero-φ limit of the hyperuniform packings in
our procedure. Importantly, however, both previous models
[104,105] do not consider volume-fraction fluctuations, which
is our central concern and accounted for by our procedure. In
addition, the mass density of point masses in this 1D model
does not change the structural characteristics of the resulting
systems, which again is different from our methodology. We
also note that the equal-volume tessellation is less versatile
in its initial tessellations than our procedure because all cell
volumes in an initial tessellation should be integer multiples
of a common unit volume.

We have shown that our procedure enables a mapping
that converts a nonhyperuniform packing into a hyperuni-
form one without changing the initial tessellation, i.e., the
tessellation is an invariant under the transformation. In other
words, packings that have identical tessellations can either
be nonhyperuniform or hyperuniform by simply tuning lo-
cal characteristics. It immediately follows that any tessella-
tion statistic, including the distributions of nearest-neighbor
distances and Voronoi-cell volumes, are identical for both
the progenitor nonhyperuniform point patterns and their
corresponding constructed hyperuniform packings. These re-
sults reinforce previous observations that local structural char-
acteristics may or may not determine the hyperuniformity of
systems, e.g., substantial local clustering of particles may not
be inconsistent with hyperuniformity [106] and disordered
systems with appreciable short-range order are often not hy-
peruniform [90]; see Ref. [3]. Moreover, our results also show
that transitions from a nonhyperuniform state to a hyperuni-
form state can be achieved without correlated movements of
particles/mass across all length scales. Such transitions stand
in contrast to those in some previous hyperuniform systems in
thermal equilibrium [7,8,19,40,41,62] as well as nonequilib-
rium [11,12,55,58,59,65,66], in which the transitions always
involve collective rearrangements of the particles.

It should not go unnoticed that our methodology also
allows ones to tune particle shapes, positions, and num-
bers within each cell with preserving hyperuniformity of the
constructed packings. For instance, one can engineer these
two-phase systems at large length scales (i.e., k � 1) by
choosing nonspherical particles with various aspect ratios and
placing them away from the centroids of the associated cells.
However, at intermediate length scales the two-phase me-

dia are structurally similar to their progenitor patterns (see
Sec. V B). One can tune local structures of the hyperuniform
packings to achieve the “well-separated” condition, which is
a necessary requirement to attain the optimal transport and
mechanical properties (see Sec. VI). Moreover, the small-k
scaling of the spectral density can either be χ̃V (k) ∼ k2 or
χ̃V (k) ∼ k4 by engineering particle displacements X j with
respect to the associated cell centroids (see Sec. IV). Due
to this tunability, our methodology allows ones to design an
enormous class of hyperuniform packings, including (nearly)
optimal structures. Combining our computational designs
with the aforementioned 2D and 3D fabrication techniques
[82] is expected to accelerate the discovery of novel disor-
dered hyperuniform two-phase materials.

There are several other open questions for future
exploration. For example, could other types of initial
tessellations lead to scaling behaviors of the spectral density
besides quadratic or quartic shown here? To what extent
can our procedure be generalized by relaxing the identical
local-cell packing faction constraint (e.g., giving certain
spatial correlations in local-cell packing fractions)? Can such
generalized versions of our procedure construct “disordered”
stealthy (i.e., χ̃V (k) = 0 for k < K) [40–43] or class II
hyperuniform (i.e., χ̃V (k) ∼ k, such as MRJ packings [9,61])?
If possible, then this would certainly allow one to obtain more
general scaling behaviors.
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APPENDIX A: VORONOI TESSELLATIONS

The Voronoi tessellation of a given progenitor packing
is computed via VORO++ library [96]. To enhance the
performance, we divide the particle centroids of the progen-
itor packing into several domains and compute the Voronoi
tessellations for each domain in parallel. To avoid any defor-
mation in Voronoi cells due to domain boundaries, we choose
domains in the following steps:

(1) Divide the simulation box into several disjoint subdo-
mains in cubic shape.

(2) Add a marginal region surrounding each subdomain,
and these two regions form a domain. Here, the thickness W
of the marginal region is chosen as 6ρ−1/d , where ρ is the
number density.

Then, for each domain, we compute the Voronoi cells of
points inside “subdomains.” For point patterns with larger
holes, the thickness of the marginal region should be increased
accordingly.

Since VORO++ is designed for three-dimensional geome-
tries, its 2D implementation is performed in a quasi 3D sim-
ulation box whose height (in z component) is unity. To avoid
any possible “memory leakage” in this 2D implementation,
the number of particles within a domain should be smaller
than 105.
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APPENDIX B: DERIVATION OF EQ. (24)

First, we rewrite the Fourier transform of the particle indicator function J̃ (k), given in Eq. (21):

J̃ (k) =
N∑

j=1

e−ik·x j [m̃(k; P j ) e−ik·X j − φ m̃(k; C j )]

=
N∑

j=1

e−ik·x j [(m̃(k; P j ) − φ m̃(k; C j )) + m̃(k; P j ) (e−ik·X j − 1)].

Here, we substitute the form factors m̃(k; P j ) and m̃(k; C j ) with their Taylor expansions (22), which yields

J̃ (k) =
N∑

j=1

φ|C j |e−ik·x j

{
− kαkβ

2
[Mαβ (P j ) − Mαβ (C j )] + ikαkβkγ

6
[Mαβγ (P j ) − Mαβγ (C j )]

+
[

1 − kαkβ

2
Mαβ (P j )

]
(e−ik·X j − 1)

}
+ O(k4) (B1)

= φ

N∑
j=1

|C j |e−ik·x j

{
(e−ik·X j − 1) − kαkβ

2
[Mαβ (P j ) − Mαβ (C j )]

+ ikαkβkγ

6
[Mαβγ (P j ) − Mαβγ (C j )] − kαkβ

2
Mαβ (P j ) (e−ik·X j − 1)

}
+ O(k4)

= φ

N∑
j=1

(e−ik·X j − 1)|C j |e−ik·x j

︸ ︷︷ ︸
J̃(1) (k)

+ (−1)φ
kαkβ

2

N∑
j=1

[Mαβ (P j ) − Mαβ (C j )]|C j |e−ik·x j

︸ ︷︷ ︸
J̃(2) (k)

+ φ
ikαkβkγ

6

N∑
j=1

[Mαβγ (P j ) − Mαβγ (C j ) + 3(X j )γ Mαβ (P j )]|C j |e−ik·x j

︸ ︷︷ ︸
J̃(3) (k)

+ O(k4) . (B2)

In Eq. (B1), we used the identical local-cell packing fraction condition, i.e., |P j | = φ|C j | for j = 1, . . . , N . In Eq. (B2), (X j )γ
is the γ th Cartesian component of a vector X j , and we apply the Taylor expansion (e−ik·X j − 1) = −ikγ (X j )γ + O(k2),
which is a good approximation due to the bounded-cell condition (18).

APPENDIX C: DERIVATIONS OF THE SPECTRAL DENSITY OF THE mTH STAGE COATED-SPHERES MODEL

Here, we compute upper bounds on the spectral density χ̃ (m)
V

(k) defined in Eq. (42) in three cases of cell-volume distributions:
unknown, a power-law scaling, and an exponential scaling.

1. Upper bounds of the spectral density

From Eq. (42),

χ̃ (m)
V

(k) = 1

|VF |

˝∣∣∣∣∣∣
Nm∑
j=1

[m̃(k; φ1/dR j ) − φ m̃(k;R j )]e
−ik·x j − φ

∞∑
j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

(C1)

= 1

|VF |

˝∣∣∣∣∣∣
φ(1 − φ2/d )

2(2 + d )

Nm∑
j=1

v1(R j ) (kR j )
2e−ik·x j + O(k4) − φ

∞∑
j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

. (C2)

Now, note the following inequality for two complex numbers A and B:

|A + B|2 � (|A| + |B|)2 = |A|2 + |B|2 + 2|A||B| (C3)

� 2(|A|2 + |B|2), (C4)

which is obtained by successively applying the triangle inequality and then the inequality of arithmetic and geometric means,
and thus equality occurs if and only if A = B. Using this inequality, we obtain a rigorous upper bound on the spectral density
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described in Eq. (C2):

χ̃ (m)
V

(k) � 2

|VF |
(

φ(1 − φ2/d )

2(2 + d )

)2
˝∣∣∣∣∣∣

Nm∑
j=1

v1(R j ) (kR j )
2e−ik·x j + O(k4)

∣∣∣∣∣∣
2˛

+ 2φ2

|VF |

˝∣∣∣∣∣∣
∞∑

j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

. (C5)

Subsequently, we derive an upper bound on the second term in Eq. (C5) by applying the triangle inequality:
˝∣∣∣∣∣∣

∞∑
j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

�

˝∣∣∣∣∣∣
∞∑

j=Nm+1

| m̃(k;R j ) |
∣∣∣∣∣∣
2˛

�

˝∣∣∣∣∣∣
∞∑

j=Nm+1

v1(R j )

∣∣∣∣∣∣
2˛

= |VF |2(1 − ηm)2, (C6)

where the inequality in Eq. (C6) comes from the fact that | m̃(k; R) | � v1(R); see Eq. (9). We note that the last term in Eq. (C6)
can be regarded as the largest volume-fraction fluctuations contributed from the uncovered gaps. Combining Eqs. (C5) and (C6),
we obtain a rigorous bound as follows:

χ̃ (m)
V

(k) � 2 F (k; φ) + 2φ2|VF |(1 − ηm)2, (C7)

where F (k; φ) is defined by Eq. (44). We remark that this bound is derived without any prior knowledge of the cell-volume
distribution.

2. Derivation of Eq. (45)

We can approximate the spectral density given in Eq. (42) by assuming that its contributions from composite spheres [the first
term in Eq. (C2)] and uncovered gaps are uncorrelated, which effectively removes an ensemble average of their cross terms:

χ̃ (m)
V

(k) ≈ F (k; φ) + φ2

|VF |

˝∣∣∣∣∣∣
∞∑

j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

. (C8)

Here, the second term can be further simplified by assuming that the uncovered gaps are spatially uncorrelated:

φ2

|VF |

˝∣∣∣∣∣∣
∞∑

j=Nm+1

m̃(k;R j ) e−ik·x j

∣∣∣∣∣∣
2˛

≈ φ2

|VF |

〈 ∞∑
j=Nm+1

m̃(k;R j )
2

〉
≈ φ2

|VF |

〈 ∞∑
j=Nm+1

v1(R j )
2

〉
, (C9)

where the last approximation comes from | m̃(k; R) | ≈ v1(R) + O(k2) when kR � 1; see Eq. (9).
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