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Sedimentation of a suspension of rods: Monte Carlo simulation
of a continuous two-dimensional problem
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The sedimentation of a two-dimensional suspension containing rods was studied by means of Monte Carlo
(MC) simulations. An off-lattice model with continuous positional and orientational degrees of freedom was
considered. The initial state before sedimentation was produced using a model of random sequential adsorption.
During such sedimentation, the rods undergo translational and rotational Brownian motions. The MC simulations
were run at different initial number densities (the numbers of rods per unit area), ρi, and sedimentation
rates, u. For sediment films, the spatial distributions of the rods, the order parameters, and the electrical
conductivities were examined. Different types of sedimentation-driven self-assembly and anisotropy of the
electrical conductivity were revealed inside the sediment films. This anisotropy can be finely regulated by
changes in the values of ρi and u.
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I. INTRODUCTION

Gravitational or centrifugal techniques are widely used in
practice for the separation of suspended particles [1], indus-
trial filtration [2], the clarification of solvents and the flotation
of suspended sewage solids [3], the production of colloidal
phases [4], and the preparation of electrically conductive and
transparent films [5]. An important characteristic of the de-
position process is the sedimentation length, λ, as determined
by Perrin in measurements of the Boltzmann constant, kB [6].
This value is defined as

λ = kBT

mg
, (1)

where kBT is the thermal energy, m is the buoyant mass of
the particle, and g is the acceleration. The buoyant mass of
the particle is defined as m = �ρV , where �ρ is the differ-
ence between the densities of the particle and the liquid and
V is the volume of the particle. In very dilute systems (ideal
gaslike systems), the equilibrium sedimentation profile of
particle number density, ρ, is barometric and decays exponen-
tially with height ρ = ρ0 exp(−y/λ), where ρ0 is the density
at the base of sediment, ρ0 = ρ(0). This approximation works
when the value of λ is large compared to the interparticle
correlation length but small compared to the vertical size of
the system.

For an isolated sphere of radius r with no-slip boundary
conditions on the surface, the sedimentation rate can be eval-
uated using Stokes’s law,

u = mg

ft
, (2)
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where ft = 6πηr is the Stokes friction coefficient related to
the translation diffusion coefficient as

Dt = kBT

ft
, (3)

and η is the viscosity of surrounding liquid [7].
The Péclet number is defined as the ratio of the Brownian,

τB, and sedimentation, τS , times of a particle over the same
distance (e.g., a distance of one radius), i.e., Pe = τB/τS [8].
Using the values τB = r2/Dt and τS = r/u, we can obtain
Pe = ru/Dt . Accounting Eqs. (1), (2), and (3),

Pe = r

λ
, (4)

i.e., the Péclet number simply presents the ratio of particle size
r and sedimentation length λ.

Uniformity in particle arrangement is expected when the
effects of diffusion are dominant (Pe � 1), whereas in the
opposite case, when the effects of sedimentation are dominant
(Pe � 1) a spatial gradient in the distribution of particles is
typically observed. For example, at room temperature, T =
298 K, �ρ = 103 kg/m3, and g = g0 = 9.8 m/s2 (g0 is the
acceleration due to gravity) at r = 0.5 μm, we have λ ≈
0.8 μm (Pe ≈ 0.62), i.e., a uniform arrangement, while, at
r = 15 μm, we have λ ≈ 0.1 μm (Pe ≈ 10), i.e., this repre-
sents a nonuniform arrangement. The experimental investiga-
tions performed for regimes of Pe � 1 [9] and Pe � 1 [10]
revealed different types of particle arrangement. Computer
simulation methods in different Péclet regimes have also been
applied to study the steady-state sedimentation of particles
with spherical [8,11] and nonspherical [12–15] shapes.

There is special interest in the sedimentation effects in
suspensions of impenetrable rodlike particles (rods). For ex-
ample, electrically conductive and transparent films prepared
from sediments of carbon nanotubes are of particular interest
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in the production of electrodes for supercapacitors, thin-film
transistors, and fuel cells [16].

For systems of elongated particles, self-assembly and
phase transition effects can introduce supplementary compli-
cations to the sedimentation regimes. For example, experi-
mental studies have revealed the presence of jamming and
orientational ordering in colloidal rod sedimentation [17].
A density-driven isotropic-nematic (IN) phase transition in
three-dimensional (3D) homogeneous system of rods with
infinite aspect ratio (length-to-diameter ratio a = ∞) was
theoretically predicted in the 1940s [18]. The theory predicted
coexisting isotropic and nematic phases between particle
number densities ρi ≈ 3.29 and ρn ≈ 4.19, and a transition
to the nematic phase with strong ordering at ρ � ρn. Spon-
taneous ordering in concentrated rod suspensions has been
experimentally confirmed in many studies [19–21].

In 2D, the Onsager theory predicts a continuous IN tran-
sition at a critical density of ρi = 3π/2 ≈ 4.7 [22]. Monte
Carlo (MC) simulations have revealed the IN transition as
the number density of rods, ρ, increases [23,24]. The ordered
phase becomes absolutely unstable with respect to discli-
nation unbinding at ρ < ρi, but a transition to a quasine-
matic phase at ρ � ρn ≈ 7.25 occurs. The quasinematic phase
demonstrates algebraic order (quasi-long-range order) and
the occurrence of a disclination-unbinding transition of the
Kosterlitz-Thouless (KT) type has been suggested. MC sim-
ulations of continuous 2D systems of rods revealed a 2D
nematic phase of the KT type at high densities for relatively
long rods with the high aspect ratio of a � 7 [24]. For
nonequilibrium 2D systems of rods obtained using a random
sequential adsorption (RSA) model, further self-assembly is
possible due to deposition-evaporation processes or to the
diffusion motion of particles. Several problems related to such
types of self-assembly of rods have previously been discussed
[25–31].

Pioneering work on computer simulation of the sedimen-
tation of dilute dispersions of randomly oriented rods was
performed in 1959 [32]. It was demonstrated that the volume
fraction of rods in the sediment decreases significantly with
increase of the aspect ratio, a, of the particles. Self-assembly
can be important at late stages of the sedimentation when
high-density layers are formed at the bottom. For example,
pronounced density oscillations near the base have been ob-
served in system of rods [33].

The sedimentation of non-Brownian rods is complicated by
the long-range nature of multibody hydrodynamic interactions
and has been extensively studied in theoretical, experimental,
and simulation works (for a review, see Ref. [34]). The
mechanism of instability and cluster formation in suspensions
of nonspherical sedimenting particles has been described in
Ref. [35]. Theoretical calculations have predicted that hydro-
dynamic interactions could result in coupling between the
particle orientations. Therefore, the flow field generated by
the particles can lead to their clustering and an enhancement
of the sedimentation rate.

Experimental investigations of the sedimentation of a
dilute suspension of non-Brownian fibers in a viscous fluid (at
very low Reynolds number, Re → 0) have been performed
under well-stirred conditions [36]. The aspect ratio of the
fibers was a ≈ 10 and the effective number density was
ρ = 0.09(2/l )3 (here l is the length of the particle). The

well-stirred suspensions were unstable, i.e., formation of
particle clusters was observed; within a cluster, individual
particles tending to align in the direction of gravity. These
investigations were extended to include the fibers with
different aspect ratios (a = 5 − 32) and with different
suspension concentrations [=(0.019 − 13) × (2/l )3] [37].
Different regimes of sedimentation were identified. The
velocity fluctuations were found to be large and anisotropic.
The formation of large-scale streamers from clusters of
fibers during the early stages of the sedimentation was
experimentally observed [38,39]. The streamers presented
highly correlated regions with similar downward velocities.
The “clumps” of parallel non-Brownian fibers settled more
rapidly than individual fibers.

The MC [40], dynamics simulations [41,42], and the theo-
retical kinetic model [43] have also predicted the formation
of clusters and the migration of fibers into narrow stream-
ers aligned in the direction of gravity at Re → 0. Three-
dimensional dynamical simulations have been performed
to study the sedimentation of large prolate non-Brownian
spheroids of aspect ratio a = 5 at a small but nonzero
Reynolds number (Re = 0.3) [44,45]. The results revealed
that, in dilute suspension, inertial effects tend to align the
particles horizontally (i.e., perpendicular to gravity), whereas,
with increasing concentration, the orientation of the particles
becomes opposite (i.e., parallel to gravity). These sedimenta-
tion data have been qualitatively supported by experimental
investigations into the sedimentation of non-Brownian fibers
at Re → 1 [46].

A computational hydrodynamic 2D model has been ap-
plied to simulate suspensions of rigid, thin fibers in a viscous
incompressible fluid with a nonzero Reynolds number and in
the absence of Brownian motion [47]. The data confirmed
fiber clustering in the small-Reynolds-number regime; by
contrast, dispersion, instead of aggregation, could be ob-
served in a high-Reynolds-number regime. Large-scale 3D
numerical simulations of gravity-induced sedimentation of
non-Brownian fibers in a highly viscous fluid have revealed
the existence of a densification phase (where the cluster den-
sifies and grows) and a coarsening phase (where the cluster
becomes smaller and less dense) [48].

Brownian motion randomizes the orientational ordering of
the fibers; however, at high concentrations, the Onsager type
of nematic ordering can also be important for entropic reasons
[49,50]. The Onsager theory and its Parsons-Lee extension
have been applied for calculation of the concentration profiles
of rods with aspect ratios over the range a = 10-80 in a gravi-
tational field [51]. The calculations revealed nematic ordering
at the bottom of the sediment and a strong dependence of
the calculated profiles on the value of a. The MC simulations
were applied to investigate sedimentation and phase equilibria
in suspensions of hard spherocylinders with aspect ratio of
5 [52]. The investigations revealed that sedimentation led to
multiphase coexistence of isotropic and different liquid crys-
talline phases. However, previous studies of sedimentation of
Brownian rods have not paid much attention to the effects
of the particle-density and sedimentation rate on the kinetics
of sedimentation, evolution orientational ordering, and the
electrical conductivity of the sediments.

This paper analyzes the self-assembly of Brownian rods
during sedimentation in 2D colloidal suspensions. MC

052135-2



SEDIMENTATION OF A SUSPENSION OF RODS: MONTE … PHYSICAL REVIEW E 99, 052135 (2019)

simulations have been applied. Note that the MC technique
is not aimed at generating dynamics. However, in the limit
of long durations, MC does produce trajectories equivalent to
those of a system under Brownian dynamics. Generally the
standard MC approach is faster than using Brownian dynam-
ics [42]. Moreover, proper rescaling of the MC accounting
for the acceptance rate of simultaneous trial displacements
and rotations allows a direct comparison between the MC
and Brownian dynamics simulations [53–56]. Recently such
approaches have been applied to study rodlike particles in the
isotropic phase [57]. The initial state was produced using an
RSA model with isotropic orientations of the rods, after which
the sedimentation was started and the rods were allowed to un-
dergo both translational and rotational diffusion. The kinetics
of the changes of structure and the electrical conductivity in
the horizontal x and vertical y directions have been analyzed.

The rest of the paper is constructed as follows. In Sec. II,
the technical details of the simulations are described, all
necessary quantities are defined, and some test results are
given. Section III presents our principal findings. Section IV
summarizes the main results.

II. COMPUTATIONAL MODEL

The initial state before sedimentation was produced using
an RSA model [58]. Rods of length l and thickness of d with a
large aspect ratio, a = l/d � 1, were deposited onto a plane
randomly (both their positions and orientations were random)
and sequentially until the desired initial number density ρi

(i.e., number of rods per unit area) were obtained. Their
overlapping with previously placed particles was forbidden.
An isotropic initial orientation of the rods was assumed. Since
the aspect ratio is large, we ignored the finite width of the rods
when looking for the rod intersections, i.e., in this case, the
rods were treated as zero-width objects.

The length of the system was L along the horizontal
x direction and periodic boundary conditions were applied
along this axis. The height of the system along the vertical
y direction was H . In the present work, all calculations were
performed using L = H = 32l . Zero flux boundary conditions
were applied at the upper and lower borders.

The simulation of the sedimentation assumed simultaneous
Brownian motion of the rods and their downward movements.
The Brownian diffusion of rods was simulated using the
MC procedure. At each step, an arbitrary rod was randomly
chosen, and its rotational and translational diffusion motions
were taken into consideration. The rotational diffusion coef-
ficient was calculated as Dr = kBT/ fr , and the translational
diffusion coefficients were calculated as D‖ = kBT/ f‖ and
D⊥ = kBT/ f⊥ [compare with Eq. (3) for spherical particles]
for the motions along and perpendicular to the direction of
the long axis, respectively. Here fr , f‖, and f⊥ are the Stokes
friction coefficients for rotational and translational motions.
For long rods, a � 1, the following formulas can be used [59]:

fr = πηl3

3(ln a + γr )
, (5a)

f‖ = 2πηl

ln a + γ‖
, (5b)

f⊥ = 4πηl

ln a + γ⊥
, (5c)

|||| /cos fmgu

fmgu /sin

y

x

mg

ux

uy

FIG. 1. To the evaluation of the components of the sedimentation
rates in the horizontal (x) and vertical (y) directions.

where η is the viscosity of the surrounding liquid and γr ≈
−0.662, γ‖ ≈ −0.207, and γ⊥ ≈ 0.839 are the end correction
coefficients.

The amplitudes of the Brownian motions are proportional
to the square roots of the corresponding diffusion coefficients.
The amplitude of the displacement along the long axis was
put as �r‖ = αl , where α was chosen to be small enough
(α = 0.05) in order to obtain satisfactory acceptance of the
MC displacement [60].

The other amplitudes were evaluated using the following
equations:

�r⊥/�r‖ = √
f‖/ f⊥, (6a)

l�θ/�r‖ = √
f‖/ fr . (6b)

For example, at a = 103, we have [see Eqs. (5) and (6)]
�r⊥/�r‖ = 0.76 and l�θ/�r‖ = 2.37α.

One MC time step (�tMC = 1) corresponds to two at-
tempted displacements and one rotation for all the rods in the
system. This time increment also corresponds to the Brownian
dynamics time increment that can be evaluated as [55]:

�tB = Ai

3
�tMC,

where Ai is the acceptance coefficient for the ith MC step.
The total Brownian dynamics time was evaluated as

the sum

tB = �tMC

3

tMC∑

i=1

Ai, (7)

where tMC is the MC time.
The sedimentation rate of a rod, u, depends on the angle

ϕ between its long axis and the direction of gravity (Fig. 1).
It can be estimated from a balance of the net sedimentation
force with the opposing translational frictional force [7], and
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hf

tB=1000 5×103

5×104104

FIG. 2. Example of the evolution of patterns at different sedi-
mentation times, tB, at sedimentation rate of u = 10−3 and initial
number density of rods of ρi = 3.

the maximum value is reached when ϕ = 0

u = mg/ f‖. (8)

Here m = �ρV is the buoyant mass of the rod, V =
π l3/(4a2) is the volume of the rod, and �ρ is the difference
between the densities of the particle and the liquid (compare
with Eq. (2) for spherical particles).

In the general case, when ϕ 	= 0, the sedimentation rates in
the horizontal (x) and vertical (y) directions were different

ux/u = (−1 + f‖/ f⊥) sin ϕ cos ϕ, (9a)

uy/u = (1 − f‖/ f⊥) cos2 ϕ + f‖/ f⊥, (9b)

and at each step the displacements of the chosen particle were
�x = lux/u and �y = luy/u. Finally, the Péclet number can
be evaluated as the ratio of the Brownian, τB, and sedimen-
tation, τS , times required for themotion of any rod over the
distance of l , i.e.,

Pe = τB/τS = u/α2. (10)

At the initial moment before settling the front of the settling
layer coincides with the upper border and it moves in the
downward direction in the course of the settling. Time count-
ing was started from the value of tMC = 1, being the initial
moment (before settling and diffusion), and the total duration
of the simulation was typically 106 − 107 MC time units.

Figure 2 presents an example of the evolution of the
patterns at a sedimentation rate of u = 10−3 and an initial
number density of ρi = 3 [61]. To calculate the running height
of the front of the settling layer, Hf , the film was divided along
the vertical axis into regular columns with widths L/32, then
the maximum value of the y coordinates of all rods in each
column was determined, and the value of Hf was defined as

0 0.2 0.4 0.6 0.8 1
100

101

102

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

S
*

h

h

tB=5400

2850
600

tB=5400
hf

600

2850

(a)

(b)

FIG. 3. Example of the profiles of the normalized number den-
sity ρ∗(h) = ρ(h)/ρi (a) and order parameter S(h) (b) along the
vertical axis y at different sedimentation times, tB. Here h = y/H is a
relative height. The sedimentation rate was u = 10−3 and the initial
number density was ρi = 3.

the mean value averaged along all the columns. The relative
height of the front of the settling layer was defined as h f =
Hf /H . The averaged number density of the particles in the
settling layer with a height below Hf can be calculated as
ρ f = ρi/h f .

The mean order parameter in the settling layer was calcu-
lated as

S f = 1

N

N∑

i=1

2 cos2 θi − 1, (11)

where θi is the angle between the axis of the ith rod and
the horizontal axis x and N is the total number of rods. To
characterize the orientation of rods at different heights, we
utilized S(y), i.e., the order parameter (11) calculated within
a narrow band y, y + �y, where �y = l . The profiles of the
normalized number density, ρ∗(y) = ρ(y)/ρi, and the order
parameter, S(y), along the vertical axis y were evaluated as
the averaged values of ρ/ρi and S in the layers with height of
y (y � Hf ).

Figure 3 presents an example of the profiles of the nor-
malized number density, ρ(h)/ρi, and order parameter, S(h),
along the vertical axis y at different sedimentation times, tB.
Here h = y/H is a relative height. These data were evaluated
at a sedimentation rate of u = 10−3 and an initial number
density of rods of ρi = 3. At the initial moment of time (t = 1)
the distribution of rods in the layer was homogeneous with
ρ∗(h) = 1 and S(h) = 0 inside the layer. In the course of
sedimentation a densified layer is formed near the bottom
with increased values of ρ∗ and S. The zone above y > h f

corresponds to the supernatant without particles in it.
To characterize the sediment film, the electrical conductiv-

ity at the end of simulation was calculated. The discretization
scheme of the problem used a supporting mesh with a mesh
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size L/m (m � 256) [62]. The cells of the supporting mesh
covered by rods were assumed to be conducting while the
others were assumed to be insulating. In fact, the use of a
supporting mesh for the calculation of electrical conductivity
is equivalent to rasterization of a structure of infinitely thin
rods and the substitution of them by rods having a finite aspect
ratio of the order of am ≈ m/L. The system with infinitely
thin rods corresponds to that with very large values of m/L.
However, the applied schema of discretization generates a
“zoo of lattice animals,” i.e., a set of polyominoes of different
shapes and sizes, especially, for small values of m. This
set is not complete because discretization of a rod cannot
produce polyominoes of all possible shapes [62]. Therefore,
we can only use this method for estimation of the behavior
of electrical conductivity. Similar approaches have previously
been applied for the estimation of electrical conductivities of
aligned rods [63,64] and dried films of rods [65].

In our work, the Frank-Lobb algorithm was applied to
evaluate the electrical conductivity [66]. Note that when the
electrical conductivity of a host matrix is insignificant and the
sticks are allowed to intersect, the use of a Kirchhoff network
approach can be also applied [67]. We put σi = 1 and σc =
106 in arbitrary units for the conductivities of the insulating
and conducting sites, respectively. The bottom layers with
different thicknesses, δ, were selected, the two conducting
buses were applied to the opposite borders, and the electrical
conductivity was calculated between these buses in the hor-
izontal, σx, and vertical, σy, directions (see Refs. [31,68] for
details).

For each given value of ρi or u, the computer experiments
were repeated up to 100 independent runs. The error bars in
the figures correspond to the standard deviations of the means.
When not shown explicitly, they are of the order of the marker
size.

III. RESULTS AND DISCUSSION

Figure 4 compares sedimentation patterns at different sed-
imentation rates, u, for a fixed value of the initial number
density of ρi = 3 with relatively long time of sedimentation,
tB = 2 × 105. Similar patterns were also observed at other
values of ρi in the interval between 1 and 7.

Comparison of the patterns allows the following prelimi-
nary conclusion to be drawn. For relatively high sedimentation
rates (u = 10−2, Pe = 4), the formation of a compact bottom
layer is observed. Its thickness increases with decreasing
values of u and at the smallest sedimentation rate (u = 10−4,
Pe = 4 × 10−2) no compact bottom layer can be observed
due to the presence of a sedimentation-diffusion equilibrium
(SDE).

Figure 5 presents the mean normalized number density
ρ∗ and order parameter S in the sediment layers versus the
sedimentation time tB for the particular value of initial number
density of rods of ρi = 3. For large sedimentation rates, u =
10−2, Pe = 4, the sedimentation includes two steps with the
formation of nonequilibrium porous film (a piled state with
a porous structure and poorly oriented rods) at the initial
stage (tB ≈ 102 − 103) followed by equilibration of the porous
structure and the formation of compact highly oriented films
(S ≈ 1) subsequently (tB > 104).

u=10-2 8 10-4

5×10-4 10-4

FIG. 4. Sedimentation patterns at different sedimentation rates,
u, for a fixed initial number density of ρi = 3 and tB = 2 × 105.

At smaller sedimentation rates (u < 2.5 × 10−3), only one
stage of sedimentation was observed. The time of film forma-
tion t f increased with decrease of u. Moreover, the saturation
level of the mean normalized number density ρ∗

m = ρm/ρi

and order parameter Sm for longer sedimentation times (tB �
5 × 105) decreased with decreasing values of u. At some
critical level below u ≈ 10−4 the value of ρ∗

m tend to 1.
That corresponded to the establishment of a SDE state (see
Fig. 4, u ≈ 10−4). Note that in the SDE state, the mean order

102 103 104 1050

0.2

0.4

0.6

0.8

1

102 103 104 105

101

102

tB

tB

5 10-4

2.5 10-3

S
*

10-2

*
m

Sm

10-2

5 10-4
u=10-4

u=10-4
8 10-4

10-3

2.5 10-3

10-3
8 10-4

(a)

(b)

FIG. 5. Evolution over time of (a) the mean values of the nor-
malized number density ρ∗ = ρ/ρi and (b) the order parameter S
in sediment layers at different sedimentation rates, u, and an initial
number density of rods of ρi.
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i=1 i=7

i=1 i=7

u=10-3 u=10-3

u=10-4 u=10-4

FIG. 6. Example of sedimentation patterns at tB = 106 at two
sedimentation rates (u = 10−3 and u = 10−4), and two initial number
densities (ρi = 1 and ρi = 7).

parameter was nonzero, S ≈ 0.5. It reflected the formation of
dense oriented layers near the bottom of the sediment.

Similar dependencies were observed for other studied val-
ues of ρi. The obtained data revealed some impact of the initial
number density of rods ρi on the sedimentation behavior.
Figure 6 compares the sedimentation patterns for a long
sedimentation time (tB = 2 × 105, near saturation regime) for
sedimentation rates (u = 10−3 and u = 10−4) and different
initial number densities (ρi = 1 and ρi = 7). At the relatively
high sedimentation rate of u = 10−3 (Pe = 0.4), compact
bottom layers were formed for both the ρi = 1 and ρi = 7
concentrations. However, at the smaller sedimentation rate
of u = 10−4 (Pe = 0.04), the SDE states for the ρi = 1 and
ρi = 9 concentrations were rather different. For the smaller
initial number density, ρi = 1, the upper part of the system
was fairly dilute, while at ρi = 9 the rods occupied the whole
volume and formed locally oriented structures near the bottom
layer.

The initial number density ρ∗
i also affects the kinetics of

the mean values of the normalized number density ρ∗ = ρ/ρi

and the order parameter S in the sediment layers (Fig. 7). The
presented data correspond to the near SDE regime (Pe = 0.1)
in presence of the equilibrium between the sedimentation
and diffusion processes. The data on ρ∗(tB) revealed that the
saturated normalized number density ρ∗ decreased and the
order parameter S increased with increasing initial number
density ρi.

Figure 8 summarizes the observed dependencies of the sat-
urated values of the normalized mean number density ρ∗

m(u)
and the order parameter Sm(u) in sediment layers at different
initial number densities, ρi. It is interesting that across a
wide range of sedimentation rates the ρ∗

m(u) dependencies

103 104 105

1.5

2

2.5

3

103 104 105
0

0.2

0.4

0.6

0.8

1

tB

tB

S
*

7
3
5

1i
=

5
3
7

i =

1

(a)

(b)

FIG. 7. Examples of the evolution over time of the mean values
of the normalized number density ρ∗ = ρ/ρi (a) and the order param-
eter S (b) in sediment layers at a sedimentation rate of u = 5 × 10−5

and different initial number density of rods ρi.

can be well fitted with high values of the coefficients of
determination (R2 > 0.991) by the power relation

ρ∗
m ∝ uβ, (12)

with the exponent of β = 0.987 ± 0.019. Therefore, all these
dependencies were almost linear over the investigated range
of sedimentation rates.

10-4 10-3 10-20
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0.8

1

10-4 10-3 10-2

10-1 100

100

101
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103

1
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5
7

S
m

* m
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Pe

I                       II
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FIG. 8. The maximum (saturated) values (at tB > 3 × 105) of
the normalized mean number density ρ∗

m = ρm/ρi (a) and the order
parameter Sm (b) in sediment layers at different sedimentation rates,
u, or values of Pe and initial number densities of rods, ρi.
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 σx
 σyu =2.5×10-3 u =10-2ρi=1

ρi=5

ρi=7

 δ =0.128

FIG. 9. Enlarged portion of the sedimentation patterns with size
of l (horizontal) ×0.5l (vertical) at tB = 3 × 105 for different initial
number density ρi, and two sedimentation rates (u = 2.5 × 10−3 and
u = 10−2). The horizontal dashed lines correspond to the bottom
layers with the thickness of δ = 0.128.

However, structures with a high mean order parameter,
S ≈ 1, were only observed at large values of u, u � 2.5 ×
10−3 (Pe � 1) (Fig. 8). From these dependencies we can
define the two zones of sedimentation rates that approxi-
mately correspond to the manifestation of the sedimentation-
diffusion equilibrium state (zone I, Pe < 1) and formation
of compact sediment films with high order parameter, S ≈ 1
(zone II, Pe > 1). At very high sedimentation rates (Pe > 10)
formation of nonequilibrium piled states, i.e., porous films
with poorly oriented rods, were also observed (data are not
presented).

The structure of the sediment at the boundary between
zones I and II can significantly depend on the initial number
density of the rods ρi. Figure 9 presents the enlarged portions
of the sedimentation patterns at tB = 3 × 105 for different
initial number densities ρi for two sedimentation rates u =
2.5 × 10−3 [at the boundary between zones I and II, Pe = 1
and u = 10−2 (Pe = 4)]. An increase in ρi resulted in an
increase of the height of the sediments at both sedimentation
rates. However, for large initial densities ρi > 5, significant
stacklike porous structures could be clearly observed for u =
2.5 × 10−3 but these were absent for u = 10−2.

Such differences in sediment film structures can affect their
physical properties. We performed tests of electrical conduc-
tivity on compact sediment films with high order parame-
ters at sedimentation rates (u = 2.5 × 10−3 and u = 10−2).
Figure 10 shows the electrical conductivity in the horizontal x
and vertical y directions versus the mesh aspect ratio of rods,
am, defined by the size of the supporting mesh. The data are
presented at tB = 3 × 105 with examples for fixed initial num-
ber density ρ = 5 and sedimentation rate, u = 2.5 × 10−3,
and different thicknesses of the bottom layers δ [Fig. 10(a)]
and fixed δ (δ = 0.128) and u = 10−2 and different initial
number densities over the interval ρ ∈ [1, 7] [Fig. 10(b)].

The similar tendencies in the σ (am) dependencies were
observed in both the x and y directions. At relatively small

200 400 600 800 1000 1200
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u =2.5×10-3

 σy
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100

ρi=5

 σx
 σy

0.032
0.064
0.128

δ=

δ

(a)
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am
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 σy
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 σx
 σy

1
3
7

ρi=

(b)

FIG. 10. Electrical conductivity (arbitrary units) in the horizon-
tal, σx , and vertical, σy, directions versus the mesh aspect ratio of
rods, am, at different thicknesses of the bottom layers, δ (ρi = 5, u =
2.5 × 10−3) (a) and different initial number densities ρi (u = 10−2,
δ = 0.128) (b), and tB = 3 × 105.

values of am (< 100), the electrical conductivity
was fairly high above the level of the mean geo-
metrical conductivity defined as σg = √

σiσc = 103.
We can treat a system with conductivity σ > σg

as conducting while a system with conductivity
σ < σg can be considered to be insulating [62,63]. The values
of σx and σy continuously decreased with increasing am, while
loss of percolation at electrical conductivities smaller than the
value of σg can occur at large values of am. This simply reflect
the damage of the connectivity inside the mesh clusters with
thinning of the mesh structure (increasing am).

At fixed am the increase of δ resulted in decrease of σy

and increase of σx, i.e., anisotropy of electrical conductivity
became larger [Fig. 10(a)]. It can reflect the changes in
connectivity for different thicknesses of the bottom layers.
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FIG. 11. Electrical conductivity (arbitrary units) in the horizon-
tal, σx , and vertical, σy, directions versus the initial number density
of rods ρi at two sedimentation rates (u = 5 × 10−4 and u = 10−3),
t = 106, and am = 900.

Figure 11 shows examples of the σ (ρi ) dependencies in
the horizontal and vertical directions at fixed am = 1000,
δ = 0.128 and two sedimentation rates (u = 2.5 × 10−3 and
u = 10−2). In the horizontal direction x, the electrical con-
ductivity σx exceeded the values of σg even at small initial
densities ρi > 1. In the vertical direction y, the values of σy

were approaching σg at ρi = 7. Moreover, the increase in
the sedimentation rate resulted in noticeable increase of both
the σx and σy. This evidently reflected the differences in the
sediment film structure displayed in Fig. 9.

IV. CONCLUSION

A continuous 2D model of the sedimentation in sus-
pension of rods was studied using MC simulation. During
the sedimentation, the rods underwent translational and ro-
tational Brownian motions. Significant sedimentation-driven
self-assembly of the rods was observed. Different steps were
observed, with the formation of nonequilibrium porous films
during the initial stage followed by equilibration and the
formation of compact highly oriented films over longer sed-
imentation time. Two zones of sedimentation rate were ob-
served approximately corresponding to the manifestation of
the sedimentation-diffusion equilibrium state (zone I, Pe <

1); the formation of compact sediment films with high order
parameter, S ≈ 1 (zone II, Pe > 1). Within zones I and II the
densities of the sediment films followed the power relation
ρ∗

m ∝ uβ with the exponent of β = 0.987 ± 0.019.
This study provides the scientific community with informa-

tion regarding the structure of sediment films of conducting
rods, as well as how the properties of these films depend on
the sedimentation conditions. The simulation of the electrical
conductivity in the horizontal x and vertical y directions
evidenced that the electrical conductivity of the resulting
sediment films displays high anisotropy with σx > σy. The
degree of anisotropy can be regulated by changing the rate
of sedimentation, u, and the initial number density of the rods
in suspension, ρi.
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