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In previous publications [Piron and Blenski, Phys. Rev. E 94, 062128 (2016); Blenski and Piron, High Energy
Density Phys. 24, 28 (2017)], the authors have proposed Debye-Hückel-approximate free-energy functionals of
the pair distribution functions for one-component fluids and two-component plasmas. These functionals yield the
corresponding Debye-Hückel integral equations when they are minimized with respect to the pair distribution
functions, lead to correct thermodynamic relations, and fulfill the virial theorem. In the present paper, we update
our results by providing simpler functionals that have the same properties. We relate these functionals to the
approaches of Lado [Phys. Rev. A 8, 2548 (1973)] and of Olivares and McQuarrie [J. Chem. Phys. 65, 3604
(1976)]. We also discuss briefly the nonuniqueness issue that is raised by these results.
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I. INTRODUCTION

Models of atoms in plasmas [1–6] should in principle
account for ion and electron correlations and their impact on
the atomic structure and dynamics. Attempts to account for
such effects are an active field of research [7–16]. In this kind
of self-consistent models, ions are viewed as classical parti-
cles interacting through an effective pair interaction potential
that depends on the electronic structure. In some approaches
[11,16], the free energy is built from several contributions,
including the classical-ion free energy, viewed as a functional
of the ion-ion pair correlation function.

A broader interest in variational formulations of approx-
imate theories based on a free-energy functional of the pair
distribution function is also well identified in the literature, as,
for instance, in Sec. 4.6 of Ref. [17]. Variational formulations
of this kind are used as a theoretical tool in a number of
works [18–20].

Free-energy functionals of the pair distribution function
were proposed in the framework of the hypernetted chain
(HNC) model by Morita and Hiroike [21], and also by Lado
[22,23]. In the case of the Debye-Hückel (DH) model [24],
same kind of functionals were proposed in Refs. [25,26].

Although it is only valid in the low-coupling limit, the DH
model qualitatively accounts for the screening of interaction
potentials and the decay of correlation functions, both in the
framework of simple and multicomponent fluids. Moreover, in
the case of long-range attractive interaction potentials, the DH
model allows to circumvent the “classical catastrophe” of col-
lapsing particles, which gives it a particular role in the physics
of electron-ion plasmas and electrolytes. The DH model is still
the object of theoretical studies. For instance, quite recently, it
was shown that the energy and virial routes to the compress-
ibility factor are equivalent in the DH model [27].

*Corresponding author: robin.piron@cea.fr

In the case of approximate models such as HNC, nonlinear
DH, and DH, one can derive the integral equation from the
classical density functional theory (DFT) of inhomogeneous
systems, using a suitable approximation for the intrinsic free
energy, and then applying the Percus trick [28]. This “trick”
consists in fixing the external potential of the inhomogeneous
system to the interaction potential of the homogeneous fluid of
interest. The density then gives the pair distribution function.
Such derivations are given in Appendix, with references.
However, even if it is an efficient way of deriving the model
integral equations, this method does not provide a route to the
free energy of the model. The reason is that, in the Percus
trick, one considers a deviation from the reference state of
an homogeneous fluid of interacting particles. Thus, one can
only evaluate the free-energy difference with respect to this
reference state, which, in the Percus trick framework, cor-
responds to the excess chemical potential (see, for instance,
Eq. (4.3.21) of Ref. [29]). In other words, this method can be
viewed as a charging method in which the interaction potential
of an additional, fixed particle of the homogeneous fluid is
gradually switched on.

Thus, one needs to construct the free energy, starting from
the approximate pair distribution function, or, equivalently,
from the integral equation. This can be performed using the
Debye-Kirkwood charging method [30]. This method uses an
exact relation between the excess free energy and the pair
distribution function. In this charging method, the interaction
potential of all pairs of particles is gradually switched on. This
charging process is therefore different from that described in
previous paragraph. This point is discussed in the literature,
as, for example, in the paragraph between Eqs. (8) and (11)
of Ref. [31]. In the Debye-Kirkwood charging method, the
reference can be a system of noninteracting particles. This
method then gives access to the excess free energy.

In Ref. [22], Lado derives a HNC correction to the free
energy of a reference system, using the Debye-Kirkwood
charging relation. If one assumes a noninteracting reference
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system, then his result can be viewed as an HNC excess-free-
energy functional of the pair distribution function. The same
expression was also previously derived by Morita and Hiroike
[21]. It can be shown that this free energy leads to correct
thermodynamics and fulfills the virial theorem. In addition to
giving the equilibrium free energy, this free-energy functional
yields the HNC integral equation when it is minimized with
respect to the pair distribution function (it is a generating
functional). This functional interpretation was already pointed
out in Refs. [21,22].

In Ref. [25], our derivation of a Debye-Hückel (DH)
excess-free-energy functional was based on the same starting
point as Ref. [22]. In the present work, we follow even
more closely the derivation of Ref. [22], and show that we
can obtain a different free-energy functional. The latter has
the same thermodynamical properties while having a simpler
expression. It is also more similar to the expression of [22]
for the HNC free energy. This expression can be recovered
from the method described by Olivares and McQuarrie in
Ref. [32]. However, their method is focused on the construc-
tion of generating functionals and does not in itself provide
systematically a free-energy functional.

In this paper, starting from a short summary of Lado’s
derivation, we derive this alternative DH free-energy func-
tional in the one-component and multi-component cases. Each
time, we show that it leads to the same thermodynamics as
our previously-proposed functionals. We also discuss how the
methods of Refs. [22,32] complement each other. Finally, we
address briefly the nonuniqueness issue which is raised by the
present work.

II. KEY STEPS OF LADO’S CALCULATION

The derivation of the HNC free energy given in Ref. [22],
as well as ours in Ref. [25], starts from the charging relation,

Aξ
eq(�, T )

V
= �2

2

∫ ξ

0
dξ ′

∫
d3r

{
hξ ′

eq(r)u(r)
}
, (1)

where Aξ
eq/V is the equilibrium renormalized excess free

energy per unit volume [33] of the simple fluid having inter-
particle interaction potential ξu(r). hξ

eq(r) + 1 is the equilib-
rium pair distribution function [hξ

eq(r) is called the equilibrium
correlation function]. This charging relation is fulfilled for
the exact equilibrium quantities. In the present context, we
require it to hold for the approximate equilibrium quantities,
stemming from an approximate model such as HNC or DH.
The approximate equilibrium pair distribution function is such
that the following closure relation holds:

ln
(
hξ

eq(r) + 1
) = −βξu(r) + hξ

eq(r) − c
{
hξ

eq(r′); r
}

− bapprox
{
hξ

eq(r′); r
}
, (2)

with bapprox{hξ (r′); r} denoting the approximate bridge func-
tion corresponding to the chosen model. c{h(r′); r} is the
direct correlation function, which we regard as a functional
of h(r) defined through the Ornstein-Zernike (OZ) relation,

h(r) = c(r) + �

∫
d3r′{h(r′)c(|r − r′|)}. (3)

Performing the derivative with respect to ξ of the equilib-
rium relation Eq. (2), we obtain easily

hξ
eq(r)βu(r)

= ∂

∂ξ

([
hξ

eq(r)
]2

2
− [

hξ
eq(r) + 1

]
c
{
hξ

eq(r′); r
}− βξu(r)

)

+ c
{
hξ

eq(r′); r
}∂hξ

eq(r)

∂ξ
− [

hξ
eq(r) + 1

] ∂

∂ξ
b
{
hξ

eq(r′); r
}
.

(4)

Using again Eq. (2) in the first term of the latter equation’s
right-hand side, we get

hξ
eq(r)βu(r)

= ∂

∂ξ

([
hξ

eq(r)
]2

2
+ hξ

eq(r)βξu(r) − [
hξ

eq(r) + 1
]

× [
hξ

eq(r) − ln
(
hξ

eq(r) + 1
)− b

{
hξ

eq(r′); r
}])

+ c
{
hξ

eq(r′); r
}∂hξ

eq(r)

∂ξ
− [

hξ
eq(r) + 1

] ∂

∂ξ
b
{
hξ

eq(r′); r
}
.

(5)

Using this equation in the charging relation, Eq. (1), the
first term is straightforwardly integrated over the charging
parameter ξ . For the purpose of integrating the second term,
we switch to the Fourier space and use the OZ relation (i.e.,
the definition of c{hξ (r′); r}) to show that∫

d3r

{
c{hξ (r′); r}∂hξ (r)

∂ξ

}

= ∂

∂ξ

1

�2

∫
d3k

(2π )3

{
�hξ

k − ln
(
1 + �hξ

k

)}
. (6)

Here, we used the following definition of the Fourier trans-
form of a function f (r):∫

d3r{ f (r)eik.r}. (7)

In the case of the HNC model, which is considered in
Lado’s paper, the bridge function is disregarded: b{h(r′); r} =
0. Taking ξ = 1, this leads to the approximate free energy:

AHNC
eq (�, T )

V
= �2

2β

∫
d3r

{
[heq(r)]2

2
+ heq(r)βu(r)

− [heq(r) + 1][heq(r) − ln(heq(r) + 1)]

}

+ 1

2β

∫
d3k

(2π )3
{�heq,k − ln(1 + �heq,k )}.

(8)

This expression can be viewed as the HNC-equilibrium value
of a functional of h(r): AHNC

eq (�, T ) = AHNC{h(r); �, T }|eq.
That is, AHNC{h(r); �, T } is defined from the right-hand side
of Eq. (8), treating heq(r) as a variable. Moreover, it can be
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checked a posteriori that minimization of AHNC with respect to
h(r) yields the HNC closure, i.e., Eq. (2) with b{h(r′); r} = 0.

Taking the problem from the other side, one can first search
for the functionals of h(r) that yields the OZ equation with
a chosen closure relation, here: the HNC closure. Such a
systematic approach is exposed in Ref. [32]. Once these are
found, one can then pick among them a functional that fulfills
the charging relation. We will further comment on this point
in Sec. IV.

III. ALTERNATIVE DEBYE-HÜCKEL FREE-ENERGY
FUNCTIONAL

The DH integral equation for a simple fluid is

hξ
eq(r) = −βξu(r) − �βξ

∫
d3r′{hξ

eq(r′)u(|r − r′|)}. (9)

This is equivalent to the OZ relation, Eq. (3), with the closure

c
{
hξ

eq(r′); r
} = −βξu(r). (10)

From Eq. (2), one can thus write the corresponding bridge
function as

b
{
hξ

eq(r′); r
} = hξ

eq(r) − ln
(
hξ

eq(r) + 1
)
. (11)

It turns out that the last term in Eq. (5) can then be readily
rewritten as

[
hξ

eq(r) + 1
] ∂

∂ξ
b
{
hξ

eq(r′); r
} = 1

2

∂
[
hξ

eq(r)
]2

∂ξ
(12)

We end up with

ADH
eq (�, T )

V
= �2

2β

∫
d3r{heq(r)βu(r)}

+ 1

2β

∫
d3k

(2π )3
{�heq,k − ln(1 + �heq,k )} (13)

= ADH{h(r); �, T }
V

∣∣∣∣
eq

. (14)

Like in the previous section, ADH{h(r); �, T } is defined from
the right-hand side of Eq. (13), treating heq(r) as a variable.
Here again, one can readily check that minimization of ADH

with respect to h(r) yields the DH closure, Eq. (10).
In Ref. [32], the mean spherical model, which is closely

related to the DH model, is addressed in order to find a
generating functional of the direct correlation function c(r).
However, one can also use the results of Ref. [32] to obtain the
functional of Eq. (13). This is discussed in the next section.

The most direct way of checking the thermodynamical
relations obtained using Eq. (13) is to compare the equilibrium
value of ADH with that of our previous expression, given in
Eq. (19) of Ref. [25]. Let us first recall this expression:

ADH ′{h(r); �, T }
V

= �

β

∫
d3k

(2π )3

{(
1 + 1

�βuk

)

×
(

1 − ln(1 + �βuk )

�βuk

)

× hk

(
hk

2
+ βuk + �β

2
hkuk

)}
. (15)

Inserting the DH equilibrium value of hk ,

heq,k = −βuk

1 + �βuk
, (16)

we get after a few simplifications

ADH ′{heq(r); �, T }
V

= 1

2β

∫
d3k

(2π )3
{−�βuk + ln(1 + �βuk )}.

(17)

Furthermore, it can be easily checked that inserting Eq. (16)
into Eq. (13) leads to the same expression as Eq. (17).

This identity, in the sense of thermodynamical functions,
of both free-energy functionals, when taken at the DH equilib-
rium, immediately yields the identity of all thermodynamical
functions, i.e., derivatives of the equilibrium free energy with
respect to the thermodynamic parameters �, T , and also with
respect to u(r) [34].

Moreover, it is worth noting that the expression for the
internal energy can be obtained more easily from Eq. (13) than
from Eq. (15):

U DH
eq (�, T )

V
= ∂

∂β

(
βADH{h(r); �, T }

V

)∣∣∣∣
eq

, (18)

∂

∂β

(
βADH{h(r); �, T }

V

)
= �2

2

∫
d3r{h(r)u(r)}. (19)

It is also easier to show that the virial theorem is
fulfilled:

PDH
eq (�, T ) = �2 ∂

∂�

(
ADH{h(r); �, T }

�V

)∣∣∣∣
eq

, (20)

�2 ∂

∂�

(
ADH{h(r); �, T }

�V

)
= �2

2

∫
d3k

(2π )3
{hkuk}

+ 1

2β

∫
d3k

(2π )3
{ln(1 + �hk ) − ck{h(r)}}, (21)

PDH
eq = U DH

eq

V
+ 1

2β

∫
d3k

(2π )3
{�βuk − ln(1 + �βuk )} (22)

= PDH
virial, (23)

where the expression for PDH
virial can be checked in Ref. [25],

Eq. (16).
As is discussed in Ref. [25], the thermodynamical con-

sistency of the obtained free-energy functional is deeply
related to the fact that we required Eq. (1) to hold at
equilibrium.

Although the functional of Eq. (13) leads to the same ther-
modynamics as that of Eq. (15), they still differ as functionals.
Among the differences between the two is that the functional
of Eq. (13) has the following derivative:

δ

δu(r)

ADH

V
= �2

2
h(r), (24)
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whatever h(r) is considered, whereas this relation is only
fulfilled at equilibrium with the functional of Eq. (15).

As is noted in Appendix B of Ref. [20], having Eq. (24) to
be fulfilled at equilibrium is essential to the thermodynamic
consistency of the free-energy functional. This equation in-
deed follows from the charging relation. However, fulfilling
Eq. (24) for all h(r) is a sufficient, but not a necessary,
condition for ADH to be a free-energy functional.

IV. RELATION TO THE OLIVARES-MCQUARRIE
APPROACH

In Ref. [32], Olivares and McQuarrie propose a some-
how systematic method to find generating functionals for the
integral-equation models based on the OZ relation. The final
purpose of this approach is thus to find functionals F{h(r)}
such that the integral equation of the model is equivalent
to

δF{h(r)}
δh(r)

= 0. (25)

They choose to first search for a functional C{h(r)} such that
the OZ relation is equivalent to

δC{h(r)}
δh(r)

= −�2c(r), (26)

that is

δC{h(r)}
δhk

= −�2hk

1 + �hk
. (27)

This leads to

C{h(r)} = C∗ +
∫

d3k

(2π )3
{�hk − ln(1 + �hk )}, (28)

C∗ being a constant with respect to h(r). Then, a functional
F{h(r)} can be formed in the following way:

F{h(r)} = F∗ + α∗(C{h(r)} + A{h(r)}), (29)

where F∗, α∗ are constants with respect to h(r), and where
A{h(r)} is such that the closure relation is equivalent to

δA{h(r)}
δh(r)

= +�2c(r). (30)

If the closure relation has the form c(r) = ψ (h(r); r), then this
amounts to requiring

δA{h(r)}
δh(r)

= �2ψ (h(r); r), (31)

which leads to

A{h(r)} = A∗ + �2
∫ 1

0
dt
∫

d3r{h(r)ψ (th(r); r)}, (32)

where A∗ is constant with respect to h(r). In view of Eq. (29),
we can choose to set C∗ = A∗ = 0 and keep only F∗ without
loss of generality.

We can go a step further than Olivares and McQuarrie
toward free-energy functionals by requiring the charging re-
lation to hold at equilibrium. Let us assume a closure relation

of the form: c(r) = −βu(r) + ψ ′(h(r); r), where ψ ′(h(r); r)
does not depend on u(r). If one writes the functional F ξ

related to a system with interaction potential ξu(r), then one
has

F ξ {h(r)} = F∗ ξ + α∗ ξ

(∫
d3k

(2π )3
{�hk − ln(1 + �hk )}

− �2β

∫
d3r{h(r)ξu(r)}

+ �2
∫

d3r

{
h(r)

∫ 1

0
dt{ψ (th(r); r)}

})
. (33)

On the other hand, we can recast the charging relation for the
renormalized excess free energy, Eq. (1), as

∂

∂ξ

(
Aξ
{
hξ

eq(r); �, T
}

V

)
= �2

2

∫
d3r

{
hξ

eq(r)u(r)
}
, (34)

with the condition that Aξ
eq(�, T )/V = 0 if ξ = 0. Differenti-

ating the equilibrium value of F ξ with respect to ξ , we get

∂F ξ
{
hξ

eq(r)
}

∂ξ
= ∂F ξ {h(r)}

∂ξ

∣∣∣∣
hξ

eq(r)

(35)

= −α∗ ξ �2β

∫
d3r

{
hξ

eq(r)u(r)
}+ ∂F∗ ξ

∂ξ

+ ∂α∗ ξ

∂ξ

(∫
d3k

(2π )3
{�hk − ln(1 + �hk )}

− �2β

∫
d3r{h(r)ξu(r)}

+ �2
∫

d3r

{
h(r)

∫ 1

0
dt{ψ (th(r); r)}

})
.

(36)

Thus, the choice α∗ ξ = −1/(2β ), F∗ ξ = 0 is sufficient to
fulfill Eq. (34). This choice leads to the functional of Eq. (13)
in the DH case, and to Lado’s functional of Eq. (8) in the HNC
case. However, in view of Eq. (36), this choice is sufficient
but not necessary. Finding another set of α∗ ξ , F∗ ξ which
fulfills Eq. (34) is probably possible but may be cumber-
some. However, this is mostly a matter of formulation of the
problem.

Let us now consider a slightly different formulation in
the DH case. If one addresses the same problem of finding
a functional F such that the DH equation is equivalent to
Eq. (25), but without separating explicitly the OZ relation
through the functional C, then one can search for

δF{h(r)}
δhk

= γ ∗
k (hk + βuk + �βhkuk ), (37)
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with γ ∗
k independent of hk . This leads to

F{h(r)} = F∗ +
∫

d3k

(2π )3

{
γ ∗

k hk

(
hk

2
+ βuk + �β

2
hkuk

)}
,

(38)

which corresponds to the form that we postulate in Eq. (11)
of Ref. [25]. Then, requiring the charging relation to hold at
equilibrium leads to our previous result, recalled in Eq. (15).

V. EXTENSION TO MULTICOMPONENT FLUIDS

In Ref. [32] the authors extend to multicomponent fluids
the formalism that we use in previous section. We can then
use their approach to extend our free-energy expression of
Eq. (13) to multicomponent fluids. For that purpose, we define
the matrices of functions:

¯̄f (r) =

⎡
⎢⎢⎣

�1 f11(r)
√

�1�2 f12(r) ...√
�1�2 f12(r) �2 f22(r) ...

...
...

. . .

⎤
⎥⎥⎦, (39)

where f can be the correlation function, the interaction po-
tential, or the direct correlation function. The indices label the
various species of the multicomponent system. The multicom-
ponent OZ relation is

hi j (r) = ci j (r) +
∑

�

��

∫
d3r′{hi�(r′)c� j (|r − r′|)}. (40)

Using the matrices defined in Eq. (39), in the Fourier space,
the OZ relation can be written as

¯̄ck = (I + ¯̄hk )−1 ¯̄hk . (41)

The functional C such that

δC{ ¯̄h(r)}
δ ¯̄hk

= −(I + ¯̄hk )−1 ¯̄hk (42)

is given in Ref. [32] as

C{ ¯̄h(r)} =
∫

d3k

(2π )3
{ln ( det(I + ¯̄hk )) − Tr( ¯̄hk )}, (43)

where we have set the constant C∗ to zero.
The multicomponent DH closure relation is

ci j (r) = −βui j (r). (44)

The functional A such that

δA{ ¯̄h(r)}
δ ¯̄hi j (r)

= −β ¯̄ui j (r) (45)

can be written as

A{ ¯̄h(r)} = −β

∫
d3r

⎧⎨
⎩
∑
i, j

¯̄hi j (r) ¯̄ui j (r)

⎫⎬
⎭, (46)

where we have set the constant A∗ to zero. Again, a generating
functional for the DH integral equation can be constructed as

F{ ¯̄h(r)} = F∗ + α∗(C{ ¯̄h(r)} + A{ ¯̄h(r)}). (47)

In the multicomponent case, the charging relation reads

∂

∂ξ

(
Aξ
{ ¯̄hξ

eq(r); T
}

V

)
= 1

2

∫
d3r

⎧⎨
⎩
∑
i, j

¯̄hξ
eq,i j (r) ¯̄ui j (r)

⎫⎬
⎭.

(48)

Like in the one-component case, we can choose α∗ ξ =
−1/(2β ), F∗ ξ = 0, which is sufficient to fulfill Eq. (48).
Finally, we obtain for the DH free-energy functional

ADH{ ¯̄h(r); T }
V

= 1

2β

∫
d3k

(2π )3
{Tr( ¯̄hk ) − ln (det(I + ¯̄hk ))}

+ 1

2

∫
d3r

⎧⎨
⎩
∑
i, j

¯̄hi j (r) ¯̄ui j (r)

⎫⎬
⎭. (49)

First, one can readily check that in the one-component
case, Eq. (49) reduces to Eq. (13). Moreover, it was shown that
the functional of Ref. [26] reduces to that of Ref. [25] in the
one-component case. Therefore, it is clear that the functional
of Eq. (49) is distinct from that of Ref. [26].

However, in the two-component case, one can compare the
equilibrium value of the present functional to that of Ref. [26].
For a two-component fluid, the equilibrium correlation func-
tions are given by

�1heq,11;k = 1 + β�2u22;k

Dk
− 1, (50)

�2heq,22;k = 1 + β�1u11;k

Dk
− 1, (51)

√
�1�2heq,12;k = −β

√
�1�2u12;k

Dk
, (52)

with

Dk = 1 + β(�1u11;k + �2u22;k ) + β2�1�2
(
u11;ku22;k − u2

12;k

)
.

(53)

Substituting these into Eq. (49), one can check that the equi-
librium value of the functional is

ADH{ ¯̄heq(r); T }
V

= 1

2β

∫
d3k

(2π )3
{ln(Dk ) − �1βu11;k

− �2βu22;k}, (54)

which is identical to Eq. (21) of Ref. [26]. Once again, the
identity, in the sense of thermodynamical functions, of both
free-energy functionals, taken at equilibrium, immediately
yields the identity of all thermodynamical functions.

Like in the one-component case, a notable difference
between the free-energy functional of Eq. (49) and that of
Ref. [26] is the fact that the present functional has the
derivative

δ

δ ¯̄u(r)

ADH

V
= 1

2
¯̄h(r) (55)

for all ¯̄h(r).
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VI. DISCUSSION

In Eqs. (13) and (49), we propose two free-energy func-
tionals that are distinct from the functionals of Refs. [25,26],
respectively. The former two, however, have the same ther-
modynamical properties as the latter two and, indeed, are
identical to them at the DH equilibrium. They only differ
when one considers pair distribution functions (or, equiva-
lently, correlation functions) that are not solutions of the DH
equation.

In the present work, we are dealing with the statistical
physics of a homogeneous fluid, which can be addressed, for
some aspects, using the DFT of a nonhomogeneous system,
and then the Percus trick. As is explained in the Appendix,
only approximate integral equations for the pair distribution
functions and approximate expressions of the chemical poten-
tial can be obtained from this approach. The grand potential
used in this derivation does not provide us with the free
energy of the homogeneous system. To derive the approximate
free energy, we need to obtain it from the approximate pair
distribution function. We perform such derivation using the
Debye-Kirkwood charging method, which is not related to the
DFT formalism. Deriving the free energy through this method,
it is also possible to obtain the free energy as a generating
functional of the approximate integral equation.

As we explain in Sec. IV on the DH case, several generat-
ing functionals fulfilling the charging relation at equilibrium
can be obtained, through different choices of integration con-
stants. There is no uniqueness of the generating free-energy
functional in this context. The various generating free-energy
functionals are meaningless when the corresponding, approx-
imate, equilibrium integral equation is not fulfilled (see the
Appendix). Somehow, this implies that variational approaches
to homogeneous-fluid models proceeding by minimization
with respect to the pair distribution function should be con-
sidered as practical mathematical formulations, rather than as
physically-motivated ways of deriving the integral equations
of these models.

Finally, let us mention that for practical approaches in
which a classical-fluid free-energy functional is used, choos-
ing a functional that fulfills Eq. (24) for all h(r) [or Eq. (55)
for all ¯̄h(r)] can have a strong practical interest. For instance,
the free-energy functional of Eq. (49) was used in Ref. [16]
to construct a variational theory of electron-ion plasmas.
In this theory, the classical-fluid free energy is added to a
contribution stemming from the quantum shell-structure of the
ions. The shell-structure is accounted for in the classical-fluid
part through self-consistent pair interaction potentials, that
have to be determined from the minimization of the total free
energy. In such a context, choosing a free-energy functional
fulfilling Eq. (55) for all ¯̄h(r) allows one to greatly simplify
the variational calculation. Constructing the same kind of
model with the free-energy functional of Ref. [26] would have
yield a much more complicated derivation, leading eventually
to the same result for the equilibrium model equations.

VII. CONCLUSION

In the present article, we supplement the results of
our previous publications [25,26] by proposing alternative

Debye-Hückel free-energy functionals in both the cases of
one-component and multicomponent fluids. While resulting in
the same thermodynamical relations, these functionals differ
for pair distribution functions which do not fulfill the Debye-
Hückel equation. We discuss how these functionals can be
obtained following the approach of Lado [22] as well as
that of Olivares and McQuarrie [32]. We also show that the
nonuniqueness issue, which is raised by these results, may
be explained through a choice of constants that appear in
the method of Olivares and McQuarrie. Finally, we comment
briefly on this nonuniqueness issue in the context of the
statistical physics of homogeneous fluids.

APPENDIX: DENSITY FUNCTIONAL THEORY AND
APPROXIMATE MODELS OF HOMOGENEOUS FLUIDS

We recall here briefly how the classical DFT can be used to
derive the integral equations of the HNC, nonlinear DH, and
DH approximate models. We also explain how such deriva-
tions allow us to calculate the excess chemical potential of the
system, but neither the free energy nor the grand potential.

In the density functional theory, the grand potential for a
system of particles in an external potential vext(r) is viewed
as a unique functional of the particle density n(r). We denote
this grand-potential functional as �{n(r), vext(r); μ, T }. It is
written as

�{n(r), vext(r); μ, T } = Fid{n(r); T } + Fex{n(r); T }
+
∫

d3r{n(r)(vext(r) − μ)}, (A1)

where Fid is the ideal-gas part of the intrinsic free energy, Fex

is the excess free energy, and μ is the chemical potential. The
ideal-gas part of the intrinsic free energy is written as

Fid{n(r); T } = 1

β

∫
d3r{n(r)[ln(n(r)3) − 1]}, (A2)

where  = h/
√

2πmkBT is the classical thermal length.
So as to apply the Percus trick afterwards, we first approx-

imate the excess free energy using a second-order expansion
around a homogeneous reference system, of density n0. n(r)
tends to n0 far from the origin:

Fex{n(r); T } = Fex{n0; T } +
∫

d3r

{
[n(r) − n0]

δFex

δn(r)

∣∣∣∣
n0

}

+ 1

2

∫
d3rd3r′

{
[n(r) − n0][n(r′) − n0]

× δ2Fex

δn(r)δn(r′)

∣∣∣∣
n0

}
. (A3)

For the total intrinsic free energy F , we have the relation

δF

δn(r)
= δ

δn(r)
(Fid + Fex) = μ − v{n(r′); r}, (A4)

where v{n(r′); r} is the external potential such that n(r′) is the
equilibrium density. In the case of the homogeneous system
of density n0, we then have

δFex

δn(r)

∣∣∣∣
n0

= μ0 − 1

β
ln(n0

3), (A5)
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μ0 being the chemical potential of the homogeneous system.

1. HNC model

We define the second-order direct correlation function of
the homogeneous system, c(|r − r′|), as

c(|r − r′|) = − δ2βFex

δn(r)δn(r′)

∣∣∣∣
n0

. (A6)

This function fulfills the OZ equation, which relates it
to the exact correlation function h(r) (see, for instance,
Refs. [28,29]). Here, we will consider the OZ relation as a
definition for c(r), holding also with the approximate h(r), as
in Eq. (3).

Minimizing � with respect to n(r), for a given external
potential, we get

ln

(
n(r)

n0

)
= β[μ − μ0 − vext(r)]

+ n0

∫
d3r′

{[
n(r′)

n0
− 1

]
c(|r − r′|)

}
. (A7)

One immediately sees that, if n(r) tends to n0 far from the
origin, then we have μ = μ0.

Finally, we use the Percus trick, that is we consider the
density n(r) around a particle of the homogeneous fluid fixed
at the origin. This density is directly related to the pair
distribution function of the homogeneous fluid [28]:

vext(r) ≡ u(r) ;
n(r)

n0
= g(r) ; n0 ≡ �, (A8)

where u(r) is the pair interaction potential, and g(r) = h(r) +
1 is the pair distribution function. We denote by � the particle
density of the homogeneous fluid. We get

ln (g(r)) = −βu(r) + �

∫
d3r′{h(r′)c(|r − r′|)}, (A9)

and, using the OZ relation, we obtain

ln (g(r)) = −βu(r) + h(r) − c(r), (A10)

which is the HNC closure. Such a derivation is, for example,
given in Refs. [29,35].

Of course, one can formally write the grand potential from
Eq. (A1). However, this expression includes the reference
excess free energy Fex{n0; T }, which is not known a priori.
One thus needs to relate Fex{n0; T } to the pair distribution
function in some way. This is the purpose of paragraph 4 of
Ref. [21] and, somehow, of Ref. [22]. The charging relation
of Eq. (1), used in these papers, is one of the routes to
construct the free energy from the pair distribution function.
This relation is rigorously obtained in the case of the exact
free energy and pair distribution function. However, as soon
as one uses this relation with an approximate pair distribution
function, one should check the thermodynamical consistency
of the obtained approximate free energy.

Even if the above, DFT-based approach does not give in
itself the grand potential of the system, one can nonethe-
less evaluate its increment, which corresponds to the excess

chemical potential (see, for instance, Ref. [29]):

μex = �

β

∫
d3r

{
1

2
h(r)[h(r) − c(r)] − c(r)

}
. (A11)

The renormalized excess chemical potential is

μrenorm
ex = μex − �

∫
d3r{u(r)} (A12)

= �

β

∫
d3r

{
1

2
h(r)[h(r) − c(r)] − c(r) − βu(r)

}
.

(A13)

It can be checked that this expression can be recovered
from Lado’s free-energy functional recalled in Eq. (8), by
calculating

μrenorm
ex = ∂

∂�

(
AHNC

V

)∣∣∣∣
eq

, (A14)

with |eq denoting the HNC equilibrium.

2. Nonlinear DH model

In the nonlinear DH model, like in the HNC model, we use
the exact expression for the ideal-gas part of the intrinsic free
energy Fid. However, we treat the excess-free-energy term in
the mean-field approximation. In the mean-field approxima-
tion, each particle of the homogeneous fluid interacts with the
nonhomogeneous average density of the other particles. This
amounts to write

Fex{n(r); T } = Fex{n0; T } +
∫

d3r

{
[n(r) − n0]

δFex

δn(r)

∣∣∣∣
n0

}

+ 1

2

∫
d3rd3r′{[n(r) − n0][n(r′) − n0]

× u(|r − r′|)}. (A15)

First, it is worth noting that, in the mean-field approxima-
tion, the Fex{n0; T } term still includes a correlation part, that
is, from the homogeneous-fluid point of view, it accounts for
two-body correlations in the interactions. For that reason, the
problem is of the exact same kind as in the HNC case: We
need to obtain the free energy starting from the approximate
pair distribution function. At present, we do not know of such
a derivation for the nonlinear DH model of homogeneous fluid
with arbitrary interaction potential.

It is also worth noting that the mean-field approximation
does not require the definition of a direct correlation function
through the OZ relation.

As in the HNC case, even if we cannot directly obtain
the free energy or the grand potential, we can obtain the
integral equation for the pair distribution function from the
minimization of � and the Percus trick. Minimization of �

yields

ln

(
n(r)

n0

)
= β(μ − μ0 − vext(r))

−βn0

∫
d3r′

{(
n(r′)

n0
− 1

)
u(|r − r′|)

}
.

(A16)
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Using the Percus trick, Eq. (A8), we get

ln (g(r)) = −βu(r) − �β

∫
d3r′{h(r′)u(|r − r′|)}, (A17)

which is the nonlinear DH integral equation.
We can also obtain the excess chemical potential:

μex = �

β

∫
d3r

{
1

2
h(r)[ln (g(r)) + βu(r)] − h(r) + ln (g(r))

+βu(r)

}
. (A18)

3. DH model

In the linear DH model, while keeping the mean-field
approximation of Eq. (A15) for the excess free energy, we
limit ourselves to a second-order expansion of the ideal-gas
part of the intrinsic free energy Fid:

Fid{n(r); T } = Fid{n0; T } +
∫

d3r

{
[n(r) − n0]

1

β
ln(n0

3)

}

+ 1

2

∫
d3rd3r′

{
[n(r) − n0][n(r′) − n0]

× δ3(r − r′)
βn0

}
. (A19)

Here, minimization of � yields

n(r)

n0
− 1 = β(μ − μ0 − vext(r))

−βn0

∫
d3r′

{(
n(r′)

n0
− 1

)
u(|r − r′|)

}
.

(A20)

Again, using the Percus trick, Eq. (A8), we get

h(r) = −βu(r) − �β

∫
d3r′{h(r′)u(|r − r′|)}, (A21)

which is the DH integral equation, Eq. (9).
In the latter case, it is the purpose of Refs. [25,26] and of

the present paper to obtain a free-energy expression from the
DH integral equation, through the Debye-Kirkwood charging
method. However, one can note that, in the particular case of
the Coulomb interaction, paragraph 78 of Ref. [36] describes
another route, which consists in integrating over the inverse
temperature β rather than over a charging parameter. These
two methods can be shown to be equivalent in the case of an
exact system. It is also shown in Ref. [25] that they lead to
identical thermodynamics in the DH case.

Finally, we can write the excess chemical potential:

μex = �

∫
d3r{u(r)} + �

2

∫
d3r{h(r)u(r)}, (A22)

μrenorm
ex = �

2

∫
d3r{h(r)u(r)}. (A23)

The latter equation is easily recovered from our functional of
Eq. (13), in the same way as described in Eq. (A14).

4. Link with the nonuniqueness issue

The DFT derivation of the approximate integral equations
can be summarized as follows. We write the grand potential
for the nonhomogeneous fluid corresponding to the Percus
situation:

�{n0g(r), u(r); μ, T } = F {n0; T } + �F {n0g(r), n0; T }
+
∫

d3r{n0g(r)[u(r) − μ]},
(A24)

with a suitable approximation of the �F term. Here, � is a
unique functional of g(r). The approximate integral equation
is obtained through

g(r) = Argmin
g(r)

�{n0g(r), u(r); μ, T }, (A25)

that is

δ�{n0g(r), u(r); μ, T }
δg(r)

= 0. (A26)

This does not give access to F {n0; T }, which is seen here as
constant with respect to g(r). Calculating F {n0; T } from the
approximate g(r) is the purpose of using the Debye-Kirkwood
charging method, and we choose to formulate it such that

F {n0; T } = Min
g(r)

F ′{n0, g(r); T }, (A27)

with F ′{n0, g(r); T } being minimal for that g(r) which fulfills
the approximate integral equation. The approximate integral
equation is then given by

g(r) = Argmin
g(r)

F ′{n0, g(r); T }. (A28)

Despite the formal similarity with Eq. (A25), this is a different
minimization and there is no reason for which F ′ should be a
unique functional of g(r). Indeed, we show in the case of the
DH model that it is not.
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