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We investigate the dynamics of the asymmetric exclusion process at a junction. When two input roads are
initially fully occupied and a single output road is initially empty, the ensuing rarefaction wave has a rich spatial
structure. The density profile also changes dramatically as the initial densities are varied. Related phenomenology
arises when one road feeds into two. Finally, we determine the phase diagram of the open system, where particles
are fed into two roads at rate « for each road, the two roads merge into one, and particles are extracted from the

single output road at rate 3.
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I. INTRODUCTION

In exclusion processes, sites can be occupied by at most
one particle and particles hop to empty sites. This paradig-
matic model sheds much light on nonequilibrium steady
states, large deviations, and other aspects of strongly inter-
acting infinite-particle systems (see, e.g., Refs. [1-7] and
references therein). The totally asymmetric simple exclusion
process (TASEP), where particles can hop to neighboring
empty sites in one direction, is a minimalist realization of
exclusion processes that is particularly tractable and also has
a diverse range of applications [8—11].

In this work, we investigate the properties of the TASEP at
a junction, where a small number of incoming roads, that each
carry a TASEP, meet at a single point and particles leave via
an outgoing road (or roads) also by the TASEP (Fig. 1). Our
initial motivation came from the observation of maddening
delays that arise when disembarking from a passenger plane.
Here the aisle(s) get clogged with passengers who are either
slow in retrieving their belongings or in walking, leading to
a clogging at the exit door of the plane. Our junction TASEP
model is a rough caricature for this disembarkment process.
We study in detail (Sec. III) the (2,1) junction geometry
with two roads that start at x = —oo and merge at x =0
into a single outgoing road that extends to x = 4+00. We
also analyze the (1,2) junction geometry (Sec. IV) and finite
systems (Sec. V). Our analysis can be generalized to other
junction geometries.

For the (2,1) junction geometry, one might expect a pileup
of particles as the junction is approached, reminiscent of
what occurs when highway traffic approaches a lane con-
striction. The role of blockage in the TASEP has been con-
sidered previously in a one-dimensional geometry in which
the hopping rate of a single bond is reduced from 1 to
r < 1 [12-14]. For the slow bond problem, particles jam
upstream from the blockage, as one might anticipate, and the
focus of Refs. [12—14] was to characterize this jam (see also
Refs. [15—17] for reviews of this problem). A complementary
TASEP model, in which particles may fly to any empty
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site when they reach a single special site was introduced in
Ref. [18]. All these studies focused on stationary properties.
The slow bond problem with the domain wall initial condition
was studied in Refs. [19-21]. A related line of research has
focused on the role of an intersection on the TASEP, with the
same number of incoming and outgoing roads at a junction
[22-29]; Refs. [27,29] study aspects of the TASEP in the
junction geometries similar to those considered in our work.

In what follows, we assume that the hopping rates at each
site are the same in all roads and set them equal to 1. Thus
each particle can hop to the right only if its right neighbor is
empty. We define the location of the junction as the origin. We
employ a hydrodynamic description and use the continuous
density p(x,t) as the basic dynamical variable in the long-
time limit.

For the “downstep” initial condition in the (2,1) junction
geometry, in which each site on the two incoming roads are
initially occupied while the single outgoing road is empty, the
density profile at long times contains both a constant-density
jammed segment upstream from the junction, as well as a
downstream linear rarefaction wave (Fig. 2). As the initial
density in the incoming roads is decreased, the form of the
rarefaction wave changes dramatically and a shock wave can
even arise. Similarly, rich phenomenology arises for the (1,2)
junction geometry. Finally, we study the open (2,1) system in
which current is fed in to the system at rate « at each upstream
road far from the junction and current is extracted at rate 8 in

(a) (b)

FIG. 1. Illustration of the TASEP at (a) a (2,1) junction and (b) a
(1,2) junction. Shown is the downstep initial condition in which sites
are fully occupied for x < 0 (solid circles) and empty otherwise
(open circles).
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FIG. 2. (a) Schematic, but to scale, scaled density profile for
a rarefaction wave (blue) at a (2,1) junction for an initial density
downstep with p; = 1. The corresponding current is shown in red.
(b) Simulation data for the scaled density profile for this same initial
condition for t = 125 (red), 250 (green), 500 (brown), and 1000
(blue).

the single road far downstream from the junction. We map out
the phase diagram of this system and highlight the differences
with the open TASEP system on the line.

II. SHOCK AND RAREFACTION WAVES

As a preliminary, we recapitulate the well-known (see, e.g.,
Ref. [7]) density profile that arises in the TASEP on the line
for the initial density step,

o x<0
p= or x>0’

(D

where pr and pg are constant densities to the left and to the
right of the step. The hydrodynamic behavior is governed by
the continuity equation

dp 9j

— 4 L =

ot 0x
with the current given by j = p(1 — p). The solution to
Eq. (2) subject to (1) has a remarkably simple scaling form

0, 2

px, 1) = f(z), z=ux/t. 3)

When this scaling form is substituted into (2), two distinct
behaviors arise that depend on whether p;, > pg or o < pg:

(i) Rarefaction wave (p, > pg). An initial downstep re-
laxes to the rarefaction wave

oL z<1-2p
pe,t)=141—2) 1-2p, <z <1-2pz. (4a)
PR z> 1-2pg

(i1) Shock wave (o < pg). An upstep persists as a shock
wave and merely translates:

z<c
p(x, 1) = {pL

o 2> (4b)

with shock speed c = 1 — pgr — pr.

III. RAREFACTION AT A (2,1) JUNCTION

We now investigate the evolution of the initial density step
(1) at a junction where two roads merge into one. Here, and
in the following section, the system is unbounded, with the
incoming road(s) extending to x = —oo and the outgoing
road(s) extending to x = 4-0o. For simplicity, we treat the
special case where the outgoing road is empty, pg = 0, and
where the initial densities in the incoming roads are both
equal to p; . Three distinct behaviors arise for (a) o > p4, (b)
o+ > pr > p_,and (c) pr < p_, where p; and p_ are critical
densities whose values are given in Eq. (6) below. We discuss
these three cases in turn.

A. High input density: o, > p,

As in the conventional TASEP, a density downstep de-
velops into a rarefaction wave in the subrange 0 < x < .
However, for p; > py, a density pileup develops just up-
stream from the junction, with a sudden density drop at x = 0
(Fig. 2). This same qualitative behavior occurs as long as the
initial input density p; is greater than p.. Upstream from
the pileup, the density profile is again given the the classic
rarefaction wave.

This rich behavior can be readily understood in the hydro-
dynamic limit. Substituting the scaling form (3) into the con-
tinuity equation (2) shows that the scaling function satisfies

f@I =2f()— 21 =0, (&)

where the prime denotes differentiation with respect to z. The
only solutions to this equation are either

flat profile  f(z) =0,
linear profile f = %(1 —2).

Any solution is a combination of these elemental forms.
For the conventional TASEP, the solutions are the aforemen-
tioned rarefaction and shock-wave solutions, Egs. (4a)—(4b).
To determine the rarefaction wave at a (2,1) junction, note that
the current just to the right of the junction cannot exceed the
maximum possible value of j.x = %. If one starts at z = —1
(equivalently x = —¢) and increases z, then the density decays
from 41 as p(z) = %(1 — z). Correspondingly, the current
increases as j(z) =2p(1 — p) =2 x +(1 —z%), where the
prefactor 2 accounts for the two upstream roads. Because the
current cannot exceed %, J(z) must “stick” at this value when

first reached, which happens when z = —1/+/2. Thus for z in
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the range —1/+/2 < z < 0, the density also sticks at a pileup
value that corresponds to this maximal current. This maximal
current condition is 2p(1 — p) = }1, with solutions

1 1 1
+ NG p-=3 NG (6)
It is the larger root p; = 0.853553 that is realized for the
downstep initial condition, as shown in Fig. 2.

For z = 0", there is only a single road and the density must
suddenly drop to %, so that the current at z = 0" matches
the maximal current jy.x = % atz=0".For 0 <z <1, the
density decays linearly with z until the density reaches O at
z = 1. Thus in the high-density regime defined by p; > o4,
we conclude that the scaled density profile consists of five

distinct segments:

N =

P+ =

oL z<1-2p

%(l—z) 1_2'0L<Z<_\/L§
f=1p+ —5<2<0 : (7

i1-20 0<z<l

0 z>1

Simulation data converge to this five-segment form, with
finite-time corrections that systematically vanish as 7 increases
[Fig. 2(b)]. For the step initial condition, the system length is
effectively infinite because the spatial range over which the
density is varying is less than the actual system length.

B. Intermediate input density: p_ < o < p4+

Distinct behavior arises when p; lies between the two
critical values p; and p_. For py in this range, the current
in each incoming road is less than jy.x, but the sum of the
currents in the two roads exceeds jmax. Thus there again must
be a pileup of particles upstream from the junction point, as
the maximum current that can be transmitted at the junction
1S Jmax = }1. To match the outgoing current at the junction,
the pileup density must equal p,. On the other hand, the
asymptotic density for z - —oo is py. As a result, a shock
wave must arise whose speed is given by 1 — p, — pr. Thus
when p_ < pp < p;, the asymptotic density profile consists
of four segments:

PL z<l=—pr—pL
_ )+ l—pr—pL<z<0
f= %(1—z) 0<z<l1 ’ ®)
0 z>1

Even though this initial density downstep leads to a rarefac-
tion wave in the classic TASEP, the road constriction leads to
a jam the manifests itself as a left-moving shock wave on the
upstream side of the junction. A typical example profile for
the case of p; = 2/3 is shown in Fig. 3.

C. Low input density: p;, < p_

Finally, we treat the low-input-density regime, where the
incoming density obeys p; < p—. Now the total current in the
two incoming roads is always less than or equal to jy.x = }1.
Consequently, all the incoming current can be accommodated
by the single output road. Therefore, there is no pileup at
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FIG. 3. (a) The scaled density profile in Eq. (8) for the (2,1)
junction with p, = 2/3. (b) Simulation data for this same initial
condition for r = 125 (red dots), 250 (green), 500 (brown), and 1000
(blue). The linear rise in the density near z = 1 — p, — p, gradually
steepens for increasing ¢, showing that this behavior is a finite-size
effect.

x = 0 and the density profile in the incoming roads does not
change in time.

In the special case of p;, = p_, the total input current to
the junction equals jp,x = }‘, corresponding to the maximum
current that can be accommodated by the output road. Here the
density profile for z > 0 is again the classic rarefaction wave.
When p; < p—, the input current to the junction, 2p; (1 — p.),
is less than jp.x. To have a consistent scaling solution for
z > 0, there must be a flat profile immediately to the right
of the junction, with density pg, that eventually joins to the
rarefaction wave p(z) = %(l — 7). We determine the density
in the flat region to the right of the junction by matching the
input and outgoing currents at z = 0. This yields

Jin =2p.(1 — pr) = pr(1 — pr) (9a)
from which
1—1=8p.(1—pr)
on = 2:0L PL . (9b)

Assembling these results, the scaled density profile con-
sists of three segments when p;, = p4 [Fig. 4(a)]:

oL z<0
f={30-2 0<z<1 (10a)
0 z>1
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FIG. 4. The scaled density profile for (a) o, = p_ ~ 0.146 and

1
oL = 15-

and four segments for p; < p4 [Fig. 4(b)]:

PL z<0
PR 0<z<1—=2pf

=1, . (10b)
5(1—2) 1 —2or<z<1

0 z>1

IV. RAREFACTION AT A (1,2) JUNCTION

The same type of arguments as those given above can be
applied to the (1,2) junction [see Fig. 1(b)]. It is again natural
to consider the initial condition of p = p; forz < 0Oand p =0
for z > 0 and study the behavior as a function of p;. As in the
(2,1) junction, a rich set of behaviors arises for varying o,
(Fig. 5).

For the initial state where p; = 1, that is, the input road is
fully occupied and the two downstream roads are empty, we
can exploit particle-hole duality of the TASEP to immediately
infer the density profile. In this duality, a particle moving to
the right corresponds to a hole (a vacancy) moving to the left.
The density of holes pj, is related to the particle density p by
pn = 1 — p. Thus the dynamics of a right-moving TASEP at
a (1,2) junction with the downstep initial state of p =1 for
z < 0and p = 0 for z > 0is equivalent to the TASEP dynam-
ics of holes that move to the left in the (2,1) junction geometry
with p, = 1 for z > 0 and p, = 0 for z < 0. The latter is the
same as the particle density profile in a right-moving TASEP
at a (2,1) junction, after making the replacements p — 1 — p
and z — —z. Simulations show that the density profile in this
case is the mirror image of the density profile in Fig. 2(b).

An input density py < 1 in the (1,2) junction geometry
corresponds to a (2,1) junction with density p = 1 for z < 0

-1.0 -0.5 0.0 0.5

o e
0.3

0.2

0.1 RS

-1.0 -05 00 0.5 1.0
(b)

FIG. 5. Simulation data for the density profile for the (1,2)
junction, for (a) p, = 2/3 and (b) p, = 1/3 for t = 125 (red dots),
250 (green), 500 (brown), and 1000 (blue).

and p =1 — p, for z > 0; this correspondence is obvious
after making the replacements p — 1 — p and z — —z. Itis
simpler to describe the dynamics in terms of a right-moving
TASEP at a (2,1) junction with the initial condition of p = 1
for z <0 and p = pg > 0 for z > 0 and we do so in what
follows.

For t > 0, the density upstream from the junction again
exhibits a pileup, in which the scaled profile f =1 for
z<—1, f= %(1 —z) for —1 <z < —1/«/5, and, finally,
f = py for —1/+/2 < z < 0. For pg < %, the incoming cur-
rent equals its maximum value of le‘ This incoming cur-
rent can be accommodated by a rarefaction wave for z > 0
that ends when the density decays to pg. On the other
hand, for pg > 1, the outgoing current is density limited
and, therefore equal to jg = pr(1 — pg). This means that the
pileup density p; at z = 0~ is determined by matching the
currents at z = 0. This matching gives 2p,(1 — p.) = jr, Or
pr = 3(1+ /T=2jg), in agreement with the density profile
shown in Fig. 5(b).

V. OPEN (2,1) JUNCTION GEOMETRY

We now study the (2,1) junction with open boundary
conditions with input rate o and output rate 8. When the
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leftmost sites of the system are empty, particles are inserted
with rate «; one could consider distinct rates oy and o, for
the two roads, but we limit ourselves to the symmetric case of
o) = ap = «. Similarly, when a particle reaches the rightmost
site, it is extracted with rate 8. These rates may take arbitrary
positive values, but we limit ourselves to the range 0 < o < 1
and 0 < B < 1. This restriction corresponds to the system
being coupled to reservoirs with particle density « on the left
and density 1 — B on the right.

The behavior of this open system can be analyzed using the
so-called domain wall theory [30-34]; the basic predictions
of this theory agree with exact analyses (see Refs. [5,34] for
reviews). To put our results in context, it is helpful to first
summarize the properties of an open single-road TASEP. Here
there are three phases (Fig. 6): (i) a low-density (LD) phase,
when o < % and o < B; (ii) a high-density (HD) phase, when
B > % and o > B; and (iii) a maximal-current (MC) phase,
when o, 8 > % For the (2,1) junction, the same three phases
arise, but the locations of the phase boundaries are different
than in a single-road system. The new feature for the (2,1)
junction geometry, which already arose in the closed system,
is that current conservation at the junction leads to distinct
densities just to the left and to the right of the junction.

A. LD phase: « < p_ and 8 > pr(c)

In the low-density phase, the exit rate 8 is relatively fast
and the particle density is limited by the rate at which particles
enter the system. Thus the density for z < 0 is p; = «. This
statement holds as long as o < p_, so that the current is
less than i. In this case, the right-half of the system can
support and transmit this incoming current. Using the current
conservation statement (9a) across the junction, as well as
oL = o, we immediately obtain, for the density in the right
half of the system,

pri@) = 3[1 = /1= 8a(l —a)].

The current in this LD phase is j(o) = 2a(1 — ).

(11a)

B. HD Phase: « > p,(f8) and § < %

In the high-density phase, the exit rate § is relatively slow
and the particle density is determined by the rate at which
particles enter the system. In this HD phase, the density for
z> 0 is pp = B. We again invoke the current conservation
statement (9a) across the junction and now solve for p; to
give

pL(B) = 311 — /1 =2B(1 - B)]. (11b)

The current in this HD phase is j(8) = B(1 — B).

C. MC phase: & > p_and § > 1
The density before the junction in the MC phase is

_Jo- when p_ <a < py
PL= {,o+ when p. < « ' 2)

The density in the two input roads can be either p_ or p, to
ensure that the total incoming current is the maximal possible
current in a single road. Interestingly, the density in the left

P P,
1 H
PlLp|  Mc
12 F ’
HD |, [mc
HD
0 o 1

FIG. 6. Phase diagram for the open (2,1) junction. Inside the
MC phase, @ > p_ and 8 > %, the dashed vertical line at @ = p,
separates a regime where the incoming road density is low, p; = p_
when o < p,, from a high-density regime, o, = p, when o > p,.
The inset shows the corresponding phase diagram for the open
single-road system.

half of the system changes discontinuously when the input rate
o = p.. For both cases the density in the right half of the
system is pg = % and the current is j = i (see Fig. 7).

D. Coexistence line

The coexistence line is defined by the condition
pr(a) = B, with pr(e) given by Eq. (11), or equivalently
pL(B) = o, with p () given by Eq. (11b). The additional
conditions ¢ < p_ and B < % must also hold. This line (ma-
genta in Fig. 6) separates the LD and HD phases. In the
case of the single-road TASEP, subtle behaviors occur on
the coexistence line0) <o = 8 < % It is known [31] that the
density profile is a stationary shock wave with p = « near
the left end and p = 1 — « near the right end. The location
of the shock is a uniformly distributed random variable. By
averaging over all possible locations of the shock for the open

1.0

08 | ]

06 | ]
Pr(0)

0.4 | ]
i(o0)

02 | ]

p()
0.0 1 1 1 1
0.0 02 0.4 0.6 0.8 1.0

FIG. 7. The bulk densities p; (), pgr(er), and the current j(o)
when 8 > %
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system on the interval —L < x < L, the density is given by

_l 1 X 13
p(x)—§+<§—a>z~ (13)

We anticipate a similar behavior on the coexistence line for
the (2,1) junction. The density near the entrance is « and the
density near the exit is 1 — §. In the simplest situation when
the shock is located at the junction

I I
However, the distribution of the position of the shock front

is unknown, and the lengths L; and L, of the incoming and
outgoing roads may play a significant role.

—L|<)C<0

0<x<Ly 14)

VI. DISCUSSION

We introduced a simple extension of the TASEP, in which
multiple roads meet at a junction. We focused on two simple
geometries, namely the (2,1) and the (1,2) junctions, in which
either two roads merge into one or one road splits into two.
We first treated the density downstep initial condition, which
normally leads to a rarefaction wave. For the (2,1) junction
geometry, we found much richer behavior in which there can
be a particle pileup upstream from the junction. Additionally
a shock wave can arise for a suitable range of initial densities.
These phenomena qualitatively resemble what occurs in real
traffic that approaches a constriction on a highway.

We also investigated nonequilibrium steady states in the
(2,1) junction with open boundaries in which particles are
continuously fed in at the left end and removed from the
right end. We analyzed this system using domain-wall the-
ory [30-34], which is known to correctly predict the phase
diagram for the TASEP and more complicated lattice gases.
It would be desirable to study junctions with open boundaries
using exact approaches. One possibility is to attempt to extend
the matrix product approach [35] to the junction geometry. If
the matrix product formulation can be extended to the junc-
tion geometry, then it should be feasible to provide detailed
insights into the spatial structure of the nonequilibrium steady
states. For example, the matrix product approach should be
able to give the behavior of the density profile in the boundary
layers near the left and right ends of the system and in the
inner layer near the junction. In the single-lane TASEP, these
boundary layers exhibit qualitative changes within the low-
density and high-density phases: The LD phase may be sub-
divided into LD-I and LD-II and similarly for the HD phase.
A more accurate description of the open (2,1) junction phase
diagram may perhaps be richer still due to the potentially
different behaviors in the inner layer on either side of the
junction.

Apart from generalizations to the (m, n) junction geometry
and to models with different hopping rates in the incoming
and outgoing roads (which could be viewed as different speed

limits in the two types of roads), one can probe the influence
of the coupling between the parallel lanes in the bulk, in
addition to the local interaction at the junction site. Multilane
models can exhibit rich behaviors even without junctions (see,
e.g., Refs. [11,36-38]). Junction-like geometries have been
recently investigated in modeling pedestrian traffic [39,40];
however, the movement rules in these pedestrian movement
models were significantly different from TASEP dynamics.

It would be also interesting to study the TASEP on more
complicated graphs with vertices mimicking junctions. One
amusing example is the TASEP on a figure-eight geometry,
in which a particle can pass through the junction of the figure
eight only when it is clear. This geometry is inspired by the in-
famous automobile races on the Islip Figure-Eight Speedway
[41] that were held between 1962 and 1984. The course is in
the shape of a figure eight, with a collision point where the two
loops of the figure eight meet. In this figure-eight geometry,
we anticipate large collision-induced temporal fluctuations in
the current passing through the junction.

Finally, we emphasize that our analysis of junction ge-
ometries relied on hydrodynamic techniques, which yield
only average characteristics. Fluctuations in the TASEP have
attracted considerable interest. For example, for the density
downstep initial condition, the total number of particles N(t)
that flow to the initially empty half-line by time ¢ is a random
quantity whose fluctuations scale as #'/3, that is,

N@t) =1t +1"¢. (15)

The distribution P(£) of the random variable £ was estab-
lished by Johansson [42]. Remarkably, the same and related
Tracy-Widom distributions were derived earlier in the context
of random matrices [43], and they arise in a wider range of
problems (see Refs. [44,45] and references therein). For the
(2,1) junction we anticipate the same functional form (15),
but the distribution of the corresponding random variable is
unknown. For the (1,2) junction, we expect that the total
numbers of particles in each of the the two roads are

Ni@) =gt +t"Pny, M) =gt+1"Pn. (16)

The random variables 1; and 7, are correlated, and computing
the joint distribution P(7;, n,) appears to be challenging.
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