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Disordered magnets, martensitic mixed crystals, and glassy solids can be irreversibly deformed by subjecting
them to external deformation. The deformation produces a smooth, reversible response punctuated by abrupt
relaxation “glitches.” Under appropriate repeated forward and reverse deformation producing multiple glitches,
a strict repetition of a single sequence of microscopic configurations often emerges. We exhibit these features
by describing the evolution of the system configuration from glitch to glitch as a mapping of N states into
one another. A map U controls forward deformation; a second map D controls reverse deformation. Iteration
of a given sequence of forward and reverse maps, e.g., DDDDUUUU necessarily produces a convergence to a
fixed cyclic repetition of states covering multiple glitches. The repetition may have a period of more than one
strain cycle, as recently observed in simulations. Using numerical sampling, we characterize the convergence
properties of four types of random maps implementing successive physical restrictions. The most restrictive is the
much-studied Preisach model. These maps show only the most qualitative resemblance to annealing simulations.
However, they suggest further properties needed for a realistic mapping scheme.
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I. INTRODUCTION

Much recent interest has focused on cyclic annealing of
disordered materials, i.e., deforming them repeatedly in a
prescribed way. Example materials are magnets, dense col-
loidal suspensions, sheared amorphous solids, or granular
packs, for which experimental and numerical results have
been reported [1–16]. As these materials are deformed by
increasing amounts, they suffer a series of abrupt yielding
events that move them discontinuously to new internal states.
Repeated large-amplitude cycles of deformation cause many
such yielding events in each cycle; these events differ with
every cycle as new internal configurations are encountered.
However, it often happens that this annealing process reaches
an end point at which every subsequent cycle leads to the same
sequence of yielding events involving the same sequence of
configurations. Thus the deformation process has led the
system to a small family of specific states from among the
much larger number of available ones. Our aim in this paper
is to explore a minimal mechanism for the attainment of this
order based on certain qualitative features of these systems.

In the systems considered above, the configurations tra-
versed form a discrete set, defined by locally stable configura-
tions. The transitions associated with these traversals depend
deterministically on the prior state and on the deformation ap-
plied to induce it. The transitions are in general irreversible, so
that a given configuration or state may have been reached from
more than one possible prior state. These features amount to
saying that the evolution may be described as iterations of a
map on a finite set. On iteration, such mappings generically
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yield convergence to a cycle [17], as is also observed in the
physical examples above. Here we develop a correspondence
between cyclic annealing and the iteration of finite maps.
We can thus compare the behavior of the maps with that of
physical systems.

The convergence phenomena we aim to explain are well
illustrated in the numerical studies of Regev et al. and Fiocco
et al. [6–8]. These system consists of a periodically contin-
ued box of a binary mixture with several thousand solidlike
spheres. These interact via a short-range repulsive poten-
tial without friction. The box is filled with enough spheres
that they are held in position by the repulsions from their
neighbors. The annealing deformation consists of a shearing
deformation of the box with a shear strain γ that increases
with time. At every increment of strain the spheres are moved
until local equilibrium is found. The increments of strain are
made small enough that limiting adiabatic behavior is reached.
This is referred to as the athermal quasistatic regime [18].

The increasing strain leads to mechanical instability. The
normal contact forces become aligned so that they can no
longer support the applied shear stress, and the spheres move
spontaneously without restoring force. This motion is sim-
ulated as though dominated by viscosity, with no inertial
forces. The contact network evolves during this motion until
a new equilibrium state—a new local minimum of potential
energy—is reached. In the simulations of amorphous packings
these discontinuous motions or “glitches” may involve few
spheres or many. After such a glitch has occurred, the shear
strain again is increased as before, thus creating a sequence
of glitches. After some chosen maximum strain γm is reached,
the strain is reversed until the strain has decreased to −γm.
Then γ is reversed until it again reaches +γm. The strain
continues to be varied through a number of such cycles.
Glitches occur throughout these cycles; increments of shear
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between glitches are generally small compared to γm. For
systems of the size studied, one may clearly distinguish all
glitches from numerical noise.

During these annealing cycles, the glitches keep the same
character but they differ in specifics: The displacements of
the particles are different each time. Moreover, these differ-
ences tend to decrease with succeeding cycles. Ultimately,
each glitch in the cycle produces the same displacements
and occurs at the same strain as in previous cycles. This
constancy remains until the driving is changed in some way,
e.g., by a subsequent change of the maximum amplitude γm.
Such changes disrupt the cycle and a transient of a number
of cycles is required until convergence to a new cycle is
achieved. Once a given sequence of glitches is disrupted, it
is generally not recovered. The convergence process depends
on the amplitude: Larger amplitudes require more annealing
cycles. Further, there is generally a limiting amplitude γ ∗,
called the yielding transition, above which convergence is
impossible. The convergence time is observed to diverge as
γm increases toward γ ∗.

Above we have noted that cyclic annealing can lead a
system from a very large set of states to a well-defined and
small class of discrete states. We have also observed that
this process is deterministic; once any configuration is given
and a direction of shear is specified, the next discontinuous
change of state is uniquely determined. This defines a map
from an initial state to a succeeding state. When extended to
all possible states, such a map would dictate the sequence
of transitions during increasing shear. It would be a com-
plicated function of the disordered geometry of the system.
Nevertheless, the convergence to a small subset of states when
periodically driven suggest that these maps have common
features that one can hope to capture by simpler models.

A similar convergence is an intrinsic property of discrete
maps, without consideration of the mechanical origin of
the mapping function. Such maps occur widely in statistics
and computer science [17,19,20] and have also been studied
within the context of spin glasses [21]. Iterating such maps
produces convergence to a repeated limit cycle of one or more
states, as with cyclic annealing in the sheared amorphous
solids. In the following, we aim to adapt such maps so as
to describe annealing, with as little further restriction as
possible.

Our approach of using random maps to model the irre-
versible and athermal dynamics of disordered systems has
precedence. Within the context of Kauffman’s Boolean net-
works [22] random maps have been considered, for example,
in Refs. [23–25]. Much closer to our aims is the transition
matrix (TM) approach of Fiocco et al. [9], introduced in
order to describe the athermal dynamics of a periodically
sheared amorphous solid. In their approach an ensemble of
random maps is constructed where each random map Pγ ,�γ

captures the transitions associated with a given strain change
γ → γ + �γ that is assumed to be small. The periodical
shearing is implemented by a concatenation of these maps.
Inspired by the TM approach, our work expands theirs by (i)
noting that only two maps suffice to define the convergence
process, (ii) explicitly making connections with the theory
of random maps and the available results in the literature,
and (iii) using these connections to understand the relation

between the structure of the maps and the resulting limiting
behavior they produce.

The paper is organized as follows. In the next section,
Sec. II, we recall the statistical features of arbitrary maps, also
called random maps. We focus on the number of limit cycles
these maps contain and the average number of iterations
needed to converge to them. In these maps there is no notion
of the sequence of strain induced by increasing or decreasing
shear. There is also no notion of repeated oscillation of the
shear. Thus in the following Sec. III we build a representation
of annealing cycles using the discrete maps; it allows us
to distinguish between small-amplitude and large-amplitude
annealing. We then introduce in Sec. IV a succession of
maps progressing from least restrictive to most restrictive,
describing how each is constructed. In the subsequent Sec. V,
we sample numerically from these maps and show how the
convergence to a limit cycle depends on the number of states
N in the set and on the annealing amplitude. The convergence
differs markedly from that seen in annealing simulations.
In the final Sec. VI we discuss possible reasons for these
discrepancies. There we point to further scope for improving
the map representation of annealing.

II. ITERATED DISCRETE MAPS

Given a set S of N elements, a discrete map is a mapping
from S into itself. The properties of discrete maps have
been well studied by group theorists [26]. In this background
section we review the statistical properties explained, e.g.,
in Flajolet and Odlyzko [17], for later comparison with our
results.

It is convenient to think of a discrete map as a directed
graph, the functional graph of the map, in which each element
of S is a node, and each node has a single directed edge
pointing to some other node. Figure 1 gives an example.
Evidently, the map can be such that a proper subset of S may
map into itself and the functional graph may thus contain
disjoint pieces. These pieces are known as “components.”
Every node of such a graph has a sequence of images under
the map, following each directed edge in turn. At some point
in this sequence some element of S must be revisited. The
subsequent steps in the sequence must thence retrace previous
steps to return again and again to the first revisited element.
Given any initial element, this cycle is dictated by the map.
Thus any given element of S may only map to one cycle.
The part of the sequence preceding this cycle is known as the
“tail.”

Just as every element leads to a cycle, two elements in
the same component must lead to the same cycle, as we
now argue. Being in the same component means that the
two elements are connected via the functional graph. That
is, following the graph from each of the two elements must
lead to one common element. Subsequent elements after the
first common one are necessarily also common. This includes
the cycles of both elements. Thus two elements in the same
component necessarily share a cycle. Thus every component
has exactly one cycle. The end of the tail of a given element is
an element of this cycle. The tails of numerous elements may
meet at this end point. The subgraph of these elements may
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FIG. 1. Functional graph associated with a random map of
N = 100 elements. The functional graph consists of nc = 3 compo-
nents, each terminating in a limit cycle. The lengths �c of the limit
cycles are �c = 4, 1, 1 and the vertices of the limit cycles are colored
in blue. Each blue cycle node is the root of a tree. For three of the
cycle nodes this tree is has only the blue root node; the other trees
have 2, 3, and 87 additional red nodes. The sizes of the components
are sc = 95, 4, 1.

contain no cycles; it is thus a tree graph whose root is the end
point. The union of all these roots is the cycle.

We next consider an arbitrary element and the �t elements
of its tail leading to its cycle. Any element in this tail may
be joined by tails from other elements. We now consider a
second arbitrary element. If the tail of this element does not
lead to the same cycle, then it must therefore belong to another
component. We use this fact below to estimate the number of
components.

To summarize, every map on N elements consists of some
number nc of disjoint components, each of which contains
a single cycle with some �c elements. To each cycle there
are attached disjoint directed trees, each rooted in an element
of the cycle. A given element in such a tree is joined to its
cycle by some �t tail elements. The number of elements in
a component is denoted by sc, the size of the component.
The functional graph of a typical random map is illustrated
in Fig. 1.

We next consider the ensemble of discrete maps of a set
of N elements into itself. We call such a map a simple
random map in order to distinguish it from the map ensembles
to follow. Using generating-function techniques [17], it is
possible to work out how the expectation values of the features
defined above vary asymptotically with N :

nc = 1
2 lnN + 1

2 ln 2 + γ , (1)

sc = 2
3N , (2)

�c = �t =
√

πN
8

, (3)

where γ is the Euler-Mascheroni constant [27]. The statistics
for �c, �t , and sc are formed by averaging also over the nodes.
For example sc is the size of the component that a node

belongs to, where both the map and the node are selected at
random and uniformly. Likewise, �c is the expected length of
the cycle associated with this component, etc. Further details
can be found for example in Refs. [17,20,28], and references
therein.

It is instructive to obtain the large-N scaling behavior of
these estimates from simple arguments. To illustrate this, we
note that for random maps the ensemble for N + 1 elements
may be constructed inductively from its N -element counter-
part.

The average number of components in a random map
nc(N ) may be estimated in this way [28]. We consider the
average number of new components �nc(N ) that appear
when one new element is added to N . The new element must
map to one of the existing elements or to itself. Only the
latter choice creates a new component. And this choice has a
probability 1/(N + 1). Adding these increments for integers
up to N yields nc(N ) ∼ lnN . Likewise, the average number
of elements in a component sc scales as N / lnN .

If an element of a map is chosen at random and its
successive images are recorded, then there must come a point
where a prior element is repeated. The sequence from this
prior element to the current one must then repeat cyclically,
as noted above. The average length of a sequence to the
first repeated element is called its six-length �6; all of its
elements are necessarily mutually distinct. The probability
that the first step in this sequence happens to be a repetition is
1/N since the first node’s image must be itself. For large N ,
the probability that the second step is a repetition, becomes
2/N : The second node’s image may be either the first node
or itself. Similarly, the first repetition occurs at the kth step
with probability k/N provided k � N . Thus the cumulative
probability of a repetition after k steps is of order k2/N . This
probability grows to the order of unity when k2 ∼ N . At this
point k is of the order �6, so that �6

2 ∼ N . The six-length
�6 consists of two parts: the “tail” sequence, of length �t ,
preceding the repeated element, and the cyclic sequence of
length �c following it. Since given a six-length sequence, the
starting position of the cyclic segment is equally likely to be
anywhere on it, the expectation value of the tail and cycle
lengths must be the same. Thus �t ∼ �c ∼ �6 ∼ √

N .
It is useful to introduce some notation. Let P and Q be

two maps that map a set of N elements into itself. Then
the action of the composite map PQ on some element A is
obtained by mapping A first according to Q, the result of
which we denote by QA, and then applying P to it, to obtain
the element P(QA) ≡ PQA, by associativity. Observe that we
apply a sequence of maps from right to left. An iteration is
a composition of a map with itself, e.g., PP . . . P, which we
write as Pn, with n indicating the number of iterations.

A property of maps that will prove important below is
the contraction factor: A given element A maps to exactly
one element, but more than one element may map to A. An
element may also have no such inputs. The contraction factor
z of a map is the average number of inputs to an element with
at least one input. Thus the number of elements contracts by
a factor z on iteration. The fraction of the elements with no
inputs is given in terms of z as 1 − z−1. Arney and Bender [19]
report results for a variety of cases where the random maps
are further constrained by the specification of the contraction
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factor z. In particular, they find that the large N scaling of the
number of components nc and their size sc remains unaltered,
given by (1) and (2), while the cycle and transient lengths now
become

�c = �t =
√

πN
8λ

, (4)

with λ depending on z in a known way. This equation is
identical to Eq. (3), with N replaced by N /λ. Thus the scaling
with N is unaltered.

III. REPRESENTATION OF ANNEALING

The discrete maps defined above represent two features of
the cyclic annealing process we wish to treat. They represent
the discreteness of the sequence of states and the determinism
of the transitions between them. Here we make further re-
strictions on the maps to enable a more faithful description of
annealing. This description raises potential confusion between
two notions of cycles, which we now take pains to clarify.
In the preceding section we noted that all finite maps when
iterated terminate in limit cycles. These are intrinsic to the
map in question and have nothing to do with cyclic driving.
The physical annealing processes of, e.g., a granular packing
discussed in the Introduction are not intrinsic to the system
but are imposed externally through the periodic driving. We
will call the repetitions constituting this periodic driving “an-
nealing cycles.” Our goal is thus to see how annealing cycles
can be represented by maps and to compare the behavior of
the maps with that of the annealing simulations. Specifically,
we wish to reproduce the physical phenomenon in which a
repetition of annealing cycles leads to a cyclic repetition of
configurations, as described above.

We have noted that the increasing of the imposed strain
causes a sequence of discrete changes of state—the glitches
defined above. Our mapping scheme gives us no way to
infer the strains at which a glitch occurs. Still, we may use
the glitches as a proxy for the transition from one strain
state of the sample to another. Thus for any packing in a
particular configuration A that is stable under a given strain,
the configuration B obtained by adiabatically increasing the
strain through a single glitch is a deterministic function of A,
leading to a new stable state that we denote as UA. The en-
semble of successors of all configurations A under increasing
strain defines the map U. Likewise, if the configuration A is
subjected to a decreasing strain through a single glitch, this
results in a new configuration C and defines an analogous map
D. We write this transition as DA = C.

Conventional annealing is done by monitoring the driving
parameter (e.g., the strain γ ) at which a given configuration
shifts to another as one proceeds through a fixed range of γ

values. Our proxy for this procedure is to repeatedly increase
the strain through p glitches and then decrease it through
q glitches. The map for a complete annealing cycle is thus
given by DqUp. This map need not correspond to an explicit
range of γ : Our driving is oscillatory but γmax and γmin can
change from driving period to the next. Still, our procedure
does prescribe a form of cyclic annealing. If repeating this
process leads to a limiting cycle of configurations, then that
cycle necessarily occurs for some fixed limits γmin and γmax.

For simplicity we shall consider an annealing cycle with
p upward glitches followed by p downward, ones. In terms
of our maps U and D this corresponds to iterating U p times
and composing the result with D applied p times to form the
“annealing cycle map,”

Rp = DpUp. (5)

A pattern of glitches that repeats with every annealing cycle
corresponds to a fixed point of Rp, mapping the state at the
beginning of the annealing cycle into itself. We shall call this
type of response synchronous response. Larger limit cycles of
Rp would correspond to subsynchronous response [29], i.e.,
repetition of the states after two or more annealing cycles, as
observed in some simulations and experiments [6,30].

A. Functional graphs of U and D and partial ordering

The U map is defined by increasing strain; this constrains
the structure of its functional graph. Indeed, the strain γ +(A)
at which a given state A undergoes an up transition must be
lower than that of its image, i.e., γ +(UA). Thus successive
up transitions, must have strictly increasing γ + values. Now,
it is possible for a given state to be repeated at some larger
shear value. This means that a state may have more than one
external increasing strain that produces its glitch. Once such
a state is encountered, the subsequent U maps must follow
a cycle. Thus cycling of the states (or a fixed point) would
occur under increasing strain, without the need to do external
cycling. This simple behavior does not appear to occur for the
small shear amplitudes (less than γ ∗) of interest here. Thus for
our purpose we may suppose that no state A can be repeated
on successive U maps [31]. The functional graph must thus
be a tree or a group of disjoint trees or forest. Such acyclic
maps are necessarily partially ordered, since each element has
a fixed number of steps to the root of its tree. Thus there is a
fixed order of precedence in the path from a given state to that
root. The D map is also acyclic, treelike and partially ordered
by the same reasoning. Since annealing convergence happens
for mild strain cycles far below the yielding strain, we suppose
that the depths of these trees are large compared to the number
of glitches p in an annealing cycle.

The partial ordering property constrains U and D individu-
ally but gives no constraining relationship between U and D.
However, in order for the pair of maps (U, D) to correspond
to annealing, it should obey some additional conditions, which
we now address.

B. Compatibility

Every state A in the physical system has a stable interval
of strain bounded by an upper and a lower strain denoted
γ +(A) and γ −(A). The spread between the γ − of a state and
its γ + is a natural measure of its stability. If this spread is
much narrower than the range of strains γ imposed during an
annealing cycle, then one may say that the states have little
stability. One can gauge the degree of stability by considering
an arbitrary state A that is stable for some strain γ and then
increase or decrease γ until a glitch occurs. The initial γ

necessarily lies between γ −(A) and γ +(A). The necessary
change in γ is then a rough gauge of the spread γ + − γ −
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of the that state, which we denote by δγ (A). In the rich
final states we seek to explain, there are many glitches in the
annealing cycle. Accordingly, we will focus on systems whose
δγ is small on the scale of the annealing range. Following the
above reasoning, we shall suppose δγ to be comparable to
the typical interval of γ between glitches as one traverses the
annealing cycle.

We now consider the successor to A on increasing the
strain to γ +(A), i.e., UA. It can happen that the lower strain
γ −(UA) is higher than γ −(A). In that case, the successor
under decreasing strain, viz. DA, cannot be UA, since γ −(DA)
must be smaller than γ −(A). We say that this choice of DA is
incompatible with UA.

When the upper and lower strains have a small spread of
strains δγ , this puts a compatibility constraint on the pair of
maps (U, D). Each glitch encountered on increasing strain
from a state A increases the γ + by an amount of order δγ . By
our reasoning above, it also increases its γ − by a comparable
amount. On average then, the new γ −(UA) lies above γ −(A).
Successive upward glitches from A steadily raise the typical
values of both γ + and γ −. Thus they steadily diminish the
probability that the new γ −(UnA) lies below the original
γ −(A). Each successor is thus less likely to be compatible
with A.

Now take the first glitch encountered on decreasing the
strain from state A and consider DA. The γ − of this state,
i.e., γ −(DA) is necessarily below γ −(A). According to the
last paragraph, the U successors of A have limited likelihood
of being compatible with DA. Furthermore, successors DDA,
etc., have progressively less likelihood of being compatible.

Evidently the requirement of compatibility limits the D
maps that are admissible for a given U map. Clearly, one
cannot decide whether a given D map is compatible without
knowledge of the γ range associated with each state A. Still
as argued above, the compatibility condition influences the
possible D and U successors of a state A: Namely states in the
D tail of A are unlikely to be in the U tail of the same A. We
may eliminate these unlikely events entirely without knowl-

edge of the γ ranges. Accordingly, we denote any (U, D)
pair where the U and D tails of every A are disjoint as a
tail-compatible pair. Below we shall consider the effect of
tail compatibility and stronger conditions on the convergence
properties of maps.

C. Simplifying restrictions

For the sake of simplicity, we will constrain the U and D
maps even further. First, as justified above, we shall suppose
that both U and D are rooted trees. This means that each state
inherits a label providing the number of U steps to the U
root. We denote this label as the U generation of the state.
Each state A has an analogous D generation. A step in the
U direction necessarily decreases the U generation of A by
one. This step need not change its D generation. However, we
shall ensure tail compatibility of U and D by restricting the
D generation of UA: We require that under a step of U or D,
the two generations may not both increase or decrease. We call
this condition generation compatibility and note that it suffices
to achieve tail compatibility as defined above. We show an
example of two generation-compatible maps in Fig. 2.

These restrictions, aimed at representing realistic condi-
tions of cyclic annealing, are minimal and they constitute
a null model that captures the irreversible transitions under
adiabatic increases and decreases of the driving parameter.
Our aim therefore is to explore numerically (i) whether these
restrictions have a potentially large effect on the scaling
behavior when compared with that of generic random maps
and (ii) how well these restrictions reproduce the observed
behavior seen in cyclic annealing experiments.

IV. SAMPLE MAPS

We consider four types of map pairs (U, D), progressing
from least restrictive to most restrictive. The least restrictive
takes U and D to be a pair of simple random maps in the
sense of Ref. [17], and we denote this by Rand. We next

(a) (b) (c)
U D R1 = DU R2 = D2U2

g + 2

g + 1

g

g − 1

g − 2

FIG. 2. Functional graphs for iterated U and D maps. (a) Graph detail for a U tree and a compatible D tree. Nodes (red dots) are arranged
in rows having a common distance g from the U root. The U mappings are shown as black arrows; D mappings are shown as red arrows. Dotted
edges go to nodes not shown. These maps are “generation compatible”: Every D arrow connects from a node to another below it. (b) Graph
detail of the map R1 ≡ DU showing three fixed points and one three-cycle. (c) Graph detail of the map R2 ≡ DD UU showing a single fixed
point.
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0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

0001 0010 0100 1000
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g = 4

g = 3

g = 2

g = 0

g = 1

(a)
1111

0011 0101 0110 1001 1010 1100

0111 1011 1101 1110

0001 0010 0100 1000

0000

(b) (c)
UGCRand

GCSRand

U PreisachPreisach GCRandGCRand

FIG. 3. Functional graphs for GCRand, GCSRand, and Preisach maps with 24 nodes compared. Nodes shown as red dots are arranged
by generation as in Fig. 2. Spin labels described in the text are shown above each node. Thus each row contains the same number of 1 spins.
Within a row the labels are arranged in numerical order. In all three panels, the “backbone” U edges leading from the D root to the U root
are indicated. (a) Contrasts GCRand and GCSRand maps on these nodes. For GCRand maps, each node may map to any node in the row above.
For GCSRand the choices are restricted as indicated by the red shading. Starting from the g = 4 node, all g = 3 options are allowed (since all
have a single 1 spin). Given the choice made for this mapping, the next mapping to the g = 2 row may only be one of the red-shaded nodes in
that row. Thus the dashed arrow is not allowed in GCSRand. (b) The Preisach map with the same backbone as in (a). Here, the ordering of
the Preisach γ +’s is dictated by the backbone. Since this ordering determines the entire U map, the rest of the map, shown in light arrows, is
determined. (c) A general GCRand map with the same backbone.

add the restriction of compatibility and then impose increas-
ingly stronger additional constraints, leading in turn to the
map-classes GCRand, GCSRand, and, finally, Preisach. We
describe their constructions next.

A. Rand

We present this example to show the effect of composing
two maps without further restrictions. Here U and D are
two independently constructed simple random maps, each
mapping a set of N elements into itself, as described in Sec. II.
We are thus ignoring all restrictions considered in Sec. III. Let
�Rand be the set of all (U, D) map pairs that can be constructed
in this manner. Thus �Rand has N 2N elements [32].

B. GCRand

These “generation-compatible random” maps obey the re-
strictions introduced in Sec. III. They are intended to show
how much these restrictions affect the scaling properties seen
in Rand. Thus we now take U and D to be trees. We implement
a strong form of generation compatibility as shown in Fig. 3:
Given a node A with U generation g, we require that UA
and DA are nodes of generation g − 1 and g + 1, respectively.
Denoting by L the total number of U generations, it follows
that a state having U generation g has simultaneously D gen-
eration L − g [33]. We further let N (g, L) be the number of
nodes in generation g. Equating the corresponding generations
of U and D, we require that N (g, L) = N (L − g, L) [34]. In
particular, we will choose

N (g, L) =
(

L
g

)
(6)

to be the binomial coefficients, so that N = 2L. Clearly, this
strict generation compatibility entails the looser generation

compatibility defined above and the latter in turn assures the
tail compatibility property related to physical constraints on
packings.

Such maps have a natural interpretation in terms of a spe-
cific configuration set, namely the 2L configurations of L two-
state “spins” denoted “up” and “down.” Here the generation
corresponds to the number of down spins. The U map is one
that decreases the number of down spins by one. The D map is
one that increases that number by one. Evidently, no annealing
cycle may have more than 2L glitches.

The map U of GCRand is then constructed as follows. We
first designate a set of nodes for each generation g from 0 to
some L. The number of nodes assigned to generation g is the
N (g, L) of Eq. (6). Then for each node A of generation g,
we assign for UA a node picked uniformly and at random
among those in generation g − 1. The map D is generated
independently and in a similar manner. We denote by �GCRand

the set of all pairs (U, D) of maps that can be constructed in
this way. �GCRand has

∏L
g=1 N (g, L)2N (g−1,L) elements.

C. GCSRand

These “generation-compatible single random” maps are a
subset of �GCRand. We think of the states as spin configura-
tions, and as in GCRand, UA is a configuration with one more
up-spin than A. However, in GCSRand UA is chosen among
configurations that differ from A by a single spin changed
from down to up. Likewise, DA is the A configuration with
one up-spin changed to a down-spin. Evidently, the number
of elements in �GCSRand is given by

∏L
g=1 g2N (g−1,L).

D. Preisach

The Preisach model [35] is a spin model of annealing for
which the pair of maps (U, D) can be constructed as well.
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Here each binary spin i evolves based on two shear thresholds:
a smaller one γ −

i and a larger one γ +
i . We further require

γ −
i < γ +

j for all i, j [36]. In this case, only the rank orderings
of γ +

i and γ −
i suffice to determine U and D. Moreover, for

each of the 2L configurations, there exists a range of values γ

over which none of the spins flip. Whenever the applied shear
γ increases through γ +

i the corresponding spin i becomes or
remains 1. Thus increasing γ causes a succession of spins to
increase, one at a time. This defines a U map from any given
spin state that proceeds by single spin flips. Specifically, UA
is the state that one obtains from A by raising the 0 (down)
spin having the smallest γ +

i . On decreasing γ , every spin
i becomes 0 when γ decreases through γ −

i . A D map is
similarly defined. Given any spin state: DA is the state in
which the 1 (up) spin of A with the largest γ −

i is lowered.
Both maps proceed by single spin flips only. Thus the Preisach
model obeys the rules of the GCSRand class and is a subset of
that class. Denoting by �Preisach the set of all Preisach map
pairs (U, D), we see that �Preisach has (L!)2 elements.

Note in particular that �Preisach ⊂ �GCSRand, i.e., every
Preisach necessarily is also a GCSRand map. The converse is
not true in general, as follows immediately from a comparison
of the number of elements that these two sets contain.

Since each class of maps was defined by making restric-
tions on the previous class, the sets � are related by

�Preisach ⊂ �GCSRand ⊂ �GCRand ⊂ �Rand, (7)

as illustrated in Fig. 3. Moreover, the elements in one subset
constitute an asymptotically vanishingly small fraction of the
elements in the set containing it, as is readily shown. Note
that conceptually we can think of these maps as mean-field
models, since they do not contain any reference to an under-
lying spatial structure. Instead, the mapping pattern is largely
determined by assigning nodes to classes, prescribing where
members of these classes can map to and then selecting the
map images randomly from the possible choices.

Now that the U and D maps have been defined for these
different models, we may readily determine the effect of an
annealing cycle Rp = DpUp as described in Sec. III. Once an
Rp is constructed, we may readily analyze the convergence to
limit cycles as defined in Sec. III.

This response is especially simple in the Preisach model,
due to its return-point-memory (RPM) feature [37], which
the other classes of maps lack in general. The “return point”
γm of an annealing cycle is the point at which the direction
of shearing reverses. It is thus the point at which γ is alge-
braically maximal or minimal. A well-known route to RPM
is via the no-passing property (NP) [38], which is a dynamic
constraint enforcing the preservation of some partial ordering
of the states. NP implies RPM [1]. Return point memory via
NP implies that repeated iterations with a given return point
γm revisit the same configuration whenever γ returns to γm [1].
Thus convergence is always achieved in one annealing cycle,
the first time γm is revisited. Moreover, under NP the response
is synchronous, i.e., �c = 1 [39]. It can be shown that the
dynamics of the Preisach model has the NP property [40].

The RPM property restricts the hysteresis loop of the
system, i.e., the plot of total spin as a function of strain. In a
system with RPM, these loops are nested: If a large-amplitude

strain cycle is followed by a smaller-amplitude one, the
smaller loop lies within the larger one. The general structure
of the functional graphs associated with map pairs (U, D)
when RPM is present, has been worked out in Ref. [39].

Evidently the RPM property requires immediate conver-
gence to a fixed sequence of states from the first annealing
cycle onward once the range of shear γ has been established.
This convergence is less immediate for the Rp annealing
cycles explored below. These Rp cycles do not entail a fixed
range of strain until the limiting behavior is reached. Thus the
convergence length �t need not be reached in a single iteration
of Rp.

V. NUMERICAL SAMPLING

In this section we present the results of our numerical
sampling from the maps introduced in Sec. IV. Our ultimate
goal is to compare qualitatively with the annealing experi-
ments the following quantities: (i) the length of the transients
before limit cycles set in, (ii) the length of the resulting limit
cycles, and (iii) the dependence of these quantities on the
map properties. We explore how each of the classes of (U, D)
map pairs converges to its limiting behavior under cyclic
annealing in the limit of large system sizes N ≡ 2L and how
this convergence depends on p. We start out with a description
of the sampling. We then briefly summarize our main findings
before presenting these in detail.

For a given N , we examine annealing cycles of the form
Rp = DpUp for amplitudes p = 1–5. We examine L ranging
from 8 to 15 so that N ranges from 256 to 32 768, spanning
a little more than two decades. For each size N and type
of map construction, we generate RL random realizations,
where RL = 1000 (213−L ). We then identify the different
components and calculate nc, �c, �t , and sc, as defined in
Sec. II for each map and perform averages over the number
of realizations.

Let us summarize our main numerical findings next. As
we go from Rand to Preisach by gradually imposing more
restrictions on the map, the resulting convergence behavior
changes. The map class Rand behaves like the simple iterated
random map, whose scaling properties are given by (1)–(3).
In GCRand with generation compabibility, the number of
components is increased. But in both Rand and GCRand the
components structure is dominated by a few large components
whose size scales linearly with the system size. Most of the
nodes are trapped into limit cycles with long periods with
respect to the annealing cycles giving rise to subsynchronous
response, i.e., �c > 1, as defined in Sec. III. Typical cycle
lengths grow as

√
N . Adding further restrictions in going

from GCRand to GCSRand, we observe that the component
structure where a few macroscopic components contain most
of the state is broken up now. Consequently, in GCSRand
transient lengths and lengths of limit cycles are substantially
reduced. Subsynchronous response is still present, but �c tends
to one with decreasing p. Finally, in the Preisach family
of maps, we find �c ≡ 1 and �t � 2. Both of these are a
consequence of the no-passing property, which in turn implies
the RPM property, as discussed above. Thus the classes of
maps we consider here span a broad range of response. We
now turn to a detailed discussion of these results. We will
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FIG. 4. Sample-averaged statistics of Rp = DpUp for the random map classes Rand, GCRand, GCSRand, and Preisach (from left to right
column), introduced in Sec. III. The first and second rows show the average number of components nc and component sizes sc versus system
size N . The color and width of the symbols correspond to the different values of p, as indicated in the lower left plot. The black dashed lines
are the predictions for the simple random map, (1) and (2).

relate these findings to the experimental annealing results in
the Discussion Sec. VI.

A. Component size and number

We start out by looking at the component structure emerg-
ing from the different classes of maps. In Fig. 4 we show our
results for the number of components nc and their sizes sc

for the four types of maps considered. We have plotted the
sample averaged statistics of the maps Rp = DpUp against
system size N for different powers p. From left to right, each
column corresponds to one of the four random maps: Rand,
GCRand, GCSRand, and Preisach, respectively, with the first
and second rows showing the behavior of nc and sc. The color
and width of the plotting symbols represent p and the legend
is given in the inset of the bottom-left plot. The black dashed
lines in each plot are the predictions for the simple random
map, (1) and (2).

We begin with Rand (first column). In this case Rp is
the composition of the pth powers of two random maps.
The component size sc (second row) does not change with p
and agrees very well with the random map prediction of (2),
indicated by the black dashed line. The number of components
nc on the other hand, does depend on p, decreasing with
increasing p. Nevertheless, comparing with the prediction for
the random map (2), the leading order behavior of (lnN )/2

seems to be preserved and there appears to be an additive
correction whose value depends on p.

Comparing with the results for GCRand in the second col-
umn, we see that the introduction of generation compatibility
has modified the logarithmic dependence of the number of
components nc on N . We observe larger values of nc, but as
in the case of Rand, nc remains small compared to the system
sizes N with the powers p considered.

For GCRand the component size sc does also show a
dependence on p. However, this dependence diminishes with
increasing N . The fact that the number of components scales
as lnN while sc scales as N , suggests that the component
size distribution is broad [41]. Indeed, the typical functional
graphs contain few components whose size is comparable to
the system size and many others that are much smaller. This
is already apparent in Fig. 1. In fact, for the simple random
map Flajolet and Odlyzko [17] predict that the expected
size of the largest component scales with N as smax/N =
0.75782. Similarly, for Rand we find smax/N ≈ 0.8, with
no discernible dependence on p or N , while for GCRand
and for the values considered smax/N approaches 0.2 both
for large N and large p. This is consistent with the sc

behavior of GCRand. This suggests that the introduction of
generation compatibility in GCRand has reduced the expected
size of the largest component, but its size still scales linearly
with N .
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FIG. 5. Sample-averaged statistics of Rp = DpUp for the random map classes Rand, GCRand, GCSRand, and Preisach (from left to right
column), introduced in Sec. III. The average cycle lengths �c (
) and transient lengths �t (�) are plotted against N . The color and size of the
symbols correspond to the different values of p, as indicated in the left-most plot. The black dashed lines are the predictions for the simple
random map, (3), the blue dotted line in GCSRand is a power law with exponent 1/3 and serves as a guide to the eye.

The behavior of nc and sc for GCSRand and Preisach
(third and fourth columns), while similar to each other, is
markedly different from both Rand and GCRand. The number
of components nc is much larger and proportional to N
at large values of p (note that y axes for both maps are
on a logarithmic scale). In both GCSRand and Preisach,
we find that at constant p, nc appears to increase with N
according to a power law and the scaling exponent has a
weak dependence on p. The corresponding component sizes sc

change in a reciprocal manner and this behavior is similar for
GCSRand and Preisach. We also find that for both GCSRand
and Preisach the ratios smax/N do not remain constant but
instead decrease with N for all p. We thus see that while for
Rand and GCRand the functional graphs of Rp are dominated
by a few large components whose size remains comparable
to N , the restrictions leading to the maps GCSRand and
Preisach change this picture drastically. The number of
components for both are now comparable to the system size
N and correspondingly, the component size distribution is less
broad.

B. Transient and cycle length

The numerical results for the transient and cycle lengths,
�t and �c, are shown in Fig. 5. Recall that for the simple
random map �t = �c, given by (3). For both Rand and GCRand
this seems to be retained, the apparent deviations being
of the same order as the statistical fluctuations. Likewise,
the leading-order

√
N dependence survives but with a p-

dependent prefactor. As one would expect, for fixed N , �t and
�c decrease monotonically with increasing p.

1. Cycle length

For GCSRand and Preisach the situation is again different.
First, �t �= �c. In fact, for given N and p we have �t > �c.
For Preisach moreover we find that �c = 1 for all p, exactly.
This is a direct consequence of the RPM property, as discussed
at the end of Sec. IV. For GCSRand and p = 1 we find that
�c is slightly greater than 1. With N fixed, �c grows with

increasing p. Within statistical precision this behavior appears
to be monotonic.

2. Transient length

We consider next the transient lengths �t . During the
transient, the range of γ covered need not be the same for
every cycle, as noted in Sec. IV. Thus the RPM property,
which is based on a fixed range of γ , must be used with
caution. Remarkably, for both GCSRand and Preisach, at
fixed N and increasing p, the behavior of �t is nonmono-
tonic. For Preisach �t increases for p = 1, 2 and thereafter
starts to decrease, while for GCSRand and depending on N
the maximum is attained at p = 2 or p = 3. For Preisach
the maximum transient length trivially satisfies �t � L, as is
readily checked [42]. The observed average transient length is
well less than that; �t < 2 for the range of N and p considered.
Similarly, for GCSRand we observe mean transient lengths
less than seven annealing cycles. Thus for both GCSRand and
Preisach, �t � N , in contrast with Rand and to a lesser
extent GCRand.

The nonmonotonic behavior of �t with p observed in the
maps GCSRand and Preisach is worth commenting on. We
consider first the decrease in �t with increasing p (at fixed N ).
Recall that in all the generation-compatible maps we con-
sidered, U acting on a node A reduces its U generation g
by 1, while D increases it by 1. Thus the map Rp = DpUp

acting on a node A of generation g, is effectively a map from
the set of nodes of generation g into itself. Clearly, given a
node of generation g, the probability that it is revisited on
the next annealing cycle depends on the number of nodes
N (g, L) in generation g. In general it will also depend on the
number of nodes in generations g − 1, g − 2, . . . g − p, since
Rp = DpUp moves the node up and down p generations (for
simplicity we are assuming that g + p < L).

It is not hard to see how the contraction factor can in-
fluence the length of a transient. Consider the extreme case
where N (g + p, L) = 1. Then starting with any node A in
generation g, UpA maps it to the single node of generation
g + p. The subsequent map Dp brings it back to some node
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B in generation g. Note, however, that at this point a limit
cycle of length one has been established: Starting from A and
under repeated applications of Rp, we have A → B → B . . ..
In going from GCRand to GCSRand to Preisach, by imposing
further restrictions, we effectively make the maps Up and Dp

more contracting. This in turn tends to reduce transient and
cycle length.

3. Nonmonotonicity

It is harder to understand the nonmonotonicity in p ob-
served for GCSRand and Preisach. We believe that this arises
out of an interplay of p with N (g, L) as follows: Recall that
for both types of maps the nodes can be interpreted as spin
configurations. The spin configurations of UA and DA differ
from those of A in a single spin flip, those of U2A and D2A in
two flips, etc. Thus for small values of p, the probability that
RpA = A will also depend on the number of available spins to
flip, i.e., the generation g that A belongs to.

By our choice of N (g, L) as a binomial factor, (6), a
large number of nodes are assigned to generations g ∼ L/2.
To lowest order the image of nodes in the most populous
generations determines the map statistics. Pick a node A
belonging to generation L/2 and consider its images under the
map Rp = DpUp. For small values of p, the number of nodes
N (L/2 + p, L) in generation L/2 + p will be comparable to
those in generation L/2 and thus the length of the transient
will be dominated by the probability that spins flipped in the
course of applying Up are undone by a subsequent application
of Dp. For small values of p this probability is expected to
decrease and the expected transient length therefore increases
with p.

On the other hand, when p becomes sufficiently large
so that N (L/2 + p, L) is much smaller than N (L/2, L), a
focusing due to the large contraction factor of the map Up

comes into play. The easiest way to see this is to consider the
equivalent map UpDp that maps the set of nodes in generation
L/2 + p into itself. Since N (L/2 + p, L) decreases rapidly
with increasing p this will also reduce the expected transients
length of this map, with the extreme case occurring when
N (L/2 + p, L) = 1, as discussed before.

These types of ideas are very similar to those developed by
Coppersmith in the context of Kauffman networks [43] and
the problem of determining whether a node is the image of
some other node. We leave a more thorough analysis of our
map classes for future work.

VI. DISCUSSION

Here we address the motivating question of the paper:
Can the convergence to periodic behavior observed in cyclic
annealing of bead packs be captured using generic discrete
maps? Apart from the mere existence of convergence, we
also ask whether the convergence behavior of maps matches
that of cyclic annealing [7,10]. This convergence behavior
includes the behavior of the transient length �t and the cycle
length �c with the shear amplitude. In bead pack annealing
these two lengths are typically comparable and they grow with
increasing shear amplitude. For systems of a few thousand

particles �t and �c are of order 10 cycles or less, and hence
�t and �c show no dramatic dependence on system size, which
is consistent with similar findings [10]. One also observes sub-
synchronous motion when the shear amplitude approaches the
“yielding transition” at which convergence to cyclic behavior
is lost.

Here we investigated this question using arbitrary maps on
an N -object set. The N objects represent all the locally stable
configurations of a packing—exponential in the number of
particles N . The image of object i under the map is the new
configuration reached on changing the shear amplitude until
an instability occurs. We distinguished two maps; one map
U dictating the transitions encountered on one direction of
shear and the other (D) dictating transitions under shear in the
opposite direction. We restricted these maps in various ways
and observed the effect on their convergence properties. In
these studies the number of mapped states or configurations N
was small relative to the physical systems we aim to describe.
Moreover, the size of the annealing cycles was kept small
relative to those observed in physical systems. The number
of elementary transitions or glitches in an annealing cycle of
our maps never exceeded 10, while the number observed in
Refs. [7,10] reached many dozens.

At the most qualitative level, these maps produce conver-
gence to a periodic cycle of states that repeats every one
or more annealing cycles in accord with observations. The
convergence length increases sublinearly with the number of
states N , in

√
N steps or fewer. However, the convergence

showed two major differences from the packings. First, the
convergence was qualitatively unphysical. It was either much
too fast (a single cycle for Preisach) or much too slow. Sec-
ond, the convergence was typically faster for larger-amplitude
cycles (larger p), in contrast to the packing simulations. This
is natural since each increase in p dictates a reduction in
the remaining active states by a contraction factor z, and
thus larger-amplitude annealing cycles produce a larger net
contraction factor for an annealing cycle and, hence, faster
convergence.

The restricted maps that we used, GCRand and GCSRand,
improved the agreement with the packings modestly. They
reduced the transient lengths �t . Unlike the packings, the
transient length still grew superlinearly in the number of
degrees of freedom N (∼ logN ), as indicated by the dashed
lines in Fig. 5. As for Preisach, its transient length was of
order unity for all of our runs. When used with conventional
annealing between two limiting γ ’s, its intrinsic transient
length is precisely unity, in view of its return-point memory
property. Thus the Preisach limit excludes the possibility of
realistic annealing.

One promising feature of our map approach is the natural
appearance of the subsynchronous behavior seen in pack-
ing simulations. Indeed, strongly subsynchronous behavior
covering many annealing cycles with �c  1 was the rule
rather than the exception in our mappings. We only observed
the desired simple synchronous behavior (�c = 1) when p
was large enough to approach saturation of the U and D
trees.

Much of the discrepancy between the map picture and
the packing annealing stems from identifying N as the
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(exponentially large) number of configurations in the system.
Using this basis for choosing N clearly gives transient lengths
that are enormously longer than is seen in the packings.
If the mapping picture is to have any resemblance to the
packing behavior, then the effective number of accessible
configurations must be qualitatively less than the total number
of configurations. Since the observed convergence rates seem
roughly independent of system size, the map picture can only
be applicable if the effective N is also roughly independent of
the size of the system.

The effective N of a map need not be comparable to the
number of configurations. Certainly, if a map happens to map
small subsets of the configurations into themselves, then its
effective N is the size of these subsets. More generally, any
map that tends to revisit states recently visited is more likely to
repeat itself after a small number of iterations. The tendency
of a map to revisit recently visited states can be thought of
as a form of “locality.” If the number of accessible states
grows with the number of mappings performed so that the
maps become increasingly nonlocal, then one then expects
effective N to grow as well. Thus, expanding the annealing
cycle (increasing the number of iterations 2p in a cycle)
would tend to slow the convergence to a periodic behavior,
as observed in the packings. The transition to nonconvergence
as the strain amplitude reaches γ ∗ can be understood within
the map picture as an increase of nonlocality thereby causing
an increase in the effective N of the map.

The maps we devised did restrict the possible set of states
reachable under iteration. For example in GCRand DpU p maps
from a given generation g to itself. This restriction limits the
accessible states to a fraction of N but not to a number inde-
pendent of N . Thus it cannot give the fast convergence rates
observed. But other restrictions can provide much smaller
effective N . If, for example, there exists a measure of distance
between the states, then one can restrict the maps to be
local with respect to this distance. Such a restriction is not
unphysical, since glitches are often observed to be localized
disturbances in the sample.

VII. CONCLUSION

The picture introduced above aims to lay a common de-
scriptive basis for explaining the remarkable convergence to
periodic motion seen in many irreversibly annealed systems.
As we have seen, one can depict the annealing process via our
abstract map language and compare the annealing behavior
observed with that of realistic systems. The maps are a useful
way to capture the determinism of the annealing process. They
clarify the inevitability of the convergence to a cyclic behav-
ior whenever the iteration of the map leads to a repetition.
Understandably, the minimal maps we used do not achieve
realistic convergence behavior. This shows that the realistic
convergence requires further physical restrictions, like the
spatial locality mentioned above. Exploring such restrictions
is a promising path to gain insight about how synchronous
and subsynchronous behavior arise. Conversely, one may use
the packing simulations to gain information about the actual
maps governing annealing for both geometric packing models
and explicit discrete-state models [1]. We look forward to
exploring these avenues in future work.
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