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Entropy production and heat capacity of systems under time-dependent oscillating temperature
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Using stochastic thermodynamics, we determine the entropy production and the dynamic heat capacity of
systems subject to a sinusoidally time-dependent temperature, in which case the systems are permanently out of
thermodynamic equilibrium, inducing a continuous generation of entropy. The systems evolve in time according
to a Fokker-Planck or a Fokker-Planck-Kramers equation. Solutions of these equations, for the case of harmonic
forces, are found exactly, from which the heat flux, the production of entropy, and the dynamic heat capacity are
obtained as functions of the frequency of the temperature modulation. These last two quantities are shown to be
related to the real and imaginary parts of the complex heat capacity.
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I. INTRODUCTION

The investigation of systems under time-dependent fields
of various types is very common in experimental physics. Less
common is the investigation of systems under time-dependent
temperature. Nevertheless, temperature oscillations are the
basis of modulation calorimetry [1–18], which allows the
experimental determination of the heat capacity. The method
consists in heating a sample by a periodic heating power with
an angular frequency ω and measuring the temperature oscil-
lations. This procedure induces a flow of heat from which the
dynamic heat capacity C can be obtained as the ratio between
the heat flux �q and the time variation of the temperature

C = −�q

dT/dt
. (1)

The heat flux and the heat capacity oscillate in time with
the same frequency ω of the temperature oscillations, but with
a phase shift. During a cycle the net heat flux vanishes, but not
the dynamic heat capacity. Denoting by a bar the time average
of a quantity, which is its integral over a cycle divided by the
period of the cycle, then �q = 0 and C is nonzero and shows a
dispersion, that is, a dependence on ω. The conventional heat
capacity C0, or static heat capacity, is obtained in the limiting
value of C when ω → 0.

Under a time-oscillating temperature, the system is perma-
nently out of equilibrium, causing a continuous production of
entropy as well as a continuous flux of entropy. The entropy
S of the system also varies in time, the time variation being
equal to the rate of entropy production � minus the entropy
flux �,

dS

dt
= � − �. (2)

According to the second law of thermodynamics, the rate of
entropy production is never negative � � 0, but the flux of
entropy �, given by

� = �q

T
, (3)

may have either sign. Although �q = 0, this is not the case of
�. In fact, considering that the entropy S is periodic, the left-
hand side of (2) vanishes in a cycle and the net flux becomes
equal to the entropy produced during a cycle, that is, � =
� � 0.

Our main purpose here is the calculation of the entropy
production and the dynamic heat capacity for systems subject
to a temperature modulation of the type

T = T0 + T1 cos ωt, (4)

where T1 is the amplitude of modulation and T0 is the mean
temperature. Our calculation is based on stochastic thermody-
namics of systems with continuous space of states [19–29].
We restrict ourselves to the case of systems of particles
interacting through harmonic forces, in which case the evo-
lution equation can be solved exactly. From its solution we
determine the rate of entropy production and dynamic heat
capacity as a function of the frequency ω. We also show that
the dynamic heat capacity and the entropy production are
related to the real and imaginary parts of the complex heat
capacity, respectively.

II. FOKKER-PLANCK EQUATION

A. General formulation

We consider a system of interacting particles that is de-
scribed by a probability distribution P(x, t ) of state x at time
t , where x denotes the collection of particle positions xi. We
assume that the time evolution of the probability distribution
is governed by the Fokker-Planck (FP) equation [19,29]

∂P

∂t
= −

∑
i

∂Ji

∂xi
, (5)

where

Ji = 1

α

(
fiP − kBT

∂P

∂xi

)
, (6)

with fi = −∂V/∂xi the force acting on particle i, V being the
potential energy, α a constant, and kB the Boltzmann constant.
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The FP equation describes the contact of the system with
a heat reservoir at temperature T and corresponds to a de-
scription in the overdamped limit [19,30]. Indeed, it is easily
shown by replacement into the FP equation that the Gibbs
distribution

P0 = 1

Z
e−V/kBT (7)

is the stationary solution when T is kept constant and in fact
the equilibrium solution.

The time variation of the energy U = 〈V 〉 of the system
can be obtained from the FP equation and is

dU

dt
= −�q, (8)

where �q is the heat flux from the system to outside and is
expressed by [19]

�q = 1

α

∑
i

(〈
f 2
i

〉 + kBT 〈 fii〉
)
, (9)

where fii = ∂ fi/∂xi. Once the heat flux is known, the dynamic
heat capacity is determined by (1), if T is time dependent.
From the FP equation we can also determine the time variation
of the entropy

S = −kB

∫
P ln P dx, (10)

which can be split in two terms, as shown by Eq. (2), where
�, the rate of entropy production, has the form [19]

� = α

T

∑
i

∫
J2

i

P
dx, (11)

and �, the entropy flux from the system to the environment,
is given by (3).

B. Harmonic forces

When the forces are harmonic it is possible to exactly
solve the FP equation even for the case of a time-dependent
temperature. Here we consider a collection of independent
harmonic oscillators in which case it suffices to treat just one
oscillator. The potential energy of the oscillator is V = kx2/2,
which yields a force f = −kx and the FP equations to be
solved is

∂P

∂t
= −∂J

∂x
, (12)

where

J = − k

α
xP − kBT

α

∂P

∂x
. (13)

The solution of the FP equation for a time-dependent
temperature is a Gaussian distribution

P = 1

ζ
exp

{
−1

2
bx2

}
, (14)

where the coefficients b is time dependent. That P is a solution
can be checked by replacing it into the FP equation (12).
Instead of seeking the coefficients b, we choose to find the av-
erages B = 〈x2〉. Once B is found we may get b, if necessary,
from the relation b = 1/B.

From the FP equation, we find the equation for B,

α
d

dt
B = −2kB + 2kBT . (15)

For T depending on time like (4), the solution of Eq. (15) is
found to be

B = kBT0

k
+ 2kBT1

2k cos ωt + αω sin ωt

α2ω2 + 4k2
. (16)

C. Entropy production and heat capacity

From Eq. (9) it follows that the heat flux is determined by

�q = k

α
(kB − kBT ), (17)

or in an explicit form as

�q = kBT1ωk
2k sin ωt − αω cos ωt

α2ω2 + 4k2
. (18)

The entropy flux � and the dynamic heat capacity C are
determined from �q by the use of Eqs. (3) and (1).

We proceed now to determine the time averages of � and
C. The time average of the heat flux vanishes �q = 0 as
expected, but not � and C. Carrying out the integration of
� and C over a cycle, and considering that � = �, we find

� = kBλ
αω2k

α2ω2 + 4k2
, (19)

where

λ = T0√
T 2

0 − T 2
1

− 1, (20)

and the dynamic heat capacity is found to be

C = kB
2k2

α2ω2 + 4k2
. (21)

D. Harmonic oscillator

The approach we have used above, by employing the FP
equation (5) or (12), is appropriate to describe overdamped
systems. In this approach the positions were taken into ac-
count but not the velocities. However, the oscillations of tem-
perature affect not only the positions, but also the velocities
of particles. The treatment of the response of the system
concerning the velocities is carried out by setting up the FP
equation that gives the evolution of the probability distribution
of velocities,

∂P

∂t
= −∂J

∂v
, (22)

where

J = −γ vP − γ kBT

m

∂P

∂v
, (23)

which describes a free particle in contact with a reservoir at a
temperature T .

Equation (22) is formally identical to Eq. (12) and we may
proceed in a similar way to determine the entropy production
and the heat capacities. The result for the heat flux is

�q = kBT1ωγ
2γ sin ωt − ω cos ωt

ω2 + 4γ 2
(24)
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FIG. 1. (a) Real and (b) imaginary parts of the complex heat capacity (32) for the overdamped case as a function of frequency for the
following values of κ/γ 2: 0 (dotted line), 0.1, 0.2, 0.5, 1, and 2 (from left to right).

and the time average of the rate of entropy is

� = kBλ
γω2

ω2 + 4γ 2
, (25)

where λ is given by (20), and the dynamic heat capacity is

C = kB
2γ 2

ω2 + 4γ 2
. (26)

To find the entropy production of a harmonic oscillator we
should add the entropy production concerning the positions,
given by (19), with the entropy production concerning the
velocities, given by (25). The result is

� = kBλ
γω2κ

γ 2ω2 + 4κ2
+ kBλ

γω2

ω2 + 4γ 2
. (27)

Similarly, the dynamic heat capacity is the sum of
(21) and (26),

C = kB
2κ2

γ 2ω2 + 4κ2
+ kB

2γ 2

ω2 + 4γ 2
. (28)

The quantities α and γ are related to α = mγ , and k is related
to κ by k = mκ .

E. Complex heat capacity

The dispersion of the dynamic heat capacity on frequen-
cies, induced by a time-varying temperature, is analogous
to the dispersion of susceptibility on frequencies induced
by a time-varying field. In the latter case, the response to
the field oscillation is described by a complex susceptibility.
Analogously, it is also possible to define a complex heat
capacity to conveniently describe the response to temperature
oscillations. In fact, the complex heat capacity has been the
subject of investigation in relation to temperature modulation
[5–18]

Suppose that we replace T in Eq. (15) by the complex time-
dependent temperature

Tc = T0 + T1e−iωt . (29)

Then, instead of Eqs. (18) and (24), we would get the expres-
sion for the heat flux of the harmonic oscillator

�c
q = kBT1

(
iκω

2κ − iωγ
+ iγω

2γ − iω

)
e−iωt . (30)

By analogy with (1), a complex heat capacity Cc can be
defined by

Cc = −�c
q

dTc/dt
, (31)

from which we find

Cc = kB

(
κ

2κ − iωγ
+ γ

2γ − iω

)
, (32)

which is time independent. Comparing with expressions (27)
and (28), we see that

C = Re(Cc), � = λωIm(Cc). (33)

These results show that the real part of the complex heat
capacity is identified with the dynamic heat capacity and
the imaginary part is proportional to the rate of entropy
production.

The real and imaginary parts of the complex heat capacity
Cc are shown in Fig. 1 as functions of the frequency ω for
several values of κ . The real part, which is the dynamic heat
capacity C, becomes the static heat capacity when ω → 0,
which is C0 = kB/2 if κ = 0 and C0 = kB if κ �= 0. In the
opposite limit ω → ∞, it vanishes as 1/ω2. The imaginary
part vanishes when ω → 0 and so does the rate of entropy
production �. In the limit ω → ∞, the imaginary part van-
ishes as 1/ω but the rate of entropy production reaches a
finite value, which is � = kBλ(γ + κ/γ ). In Fig. 2 we have
plotted Im(Cc) versus Re(Cc) and we see that the curves are
symmetric.

It is worth determining the real and imaginary part of the
complex capacity when the constant κ is small. In this case
it is possible to write explicitly an expression that relates
these two quantities. Let us define the quantities X and Y by
Re(Cc) = kBX and Im(Cc) = kBY . For small values of κ one
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FIG. 2. Imaginary versus real part of the complex heat capacity
(32) for the overdamped case for κ → 0 (dotted line) and the follow-
ing values of κ/γ 2: 0.02, 0.05, 0.1, 0.2, 0.5, and 1 (from bottom to
top). The thermodynamic equilibrium ω = 0 is indicated by a closed
circle.

finds

Y =
⎧⎨
⎩

√
(1 − X )

(
X − 1

2

)
, X > 1

2√
X

(
1
2 − X

)
, X < 1

2 ,
(34)

which are the semicircles shown in Fig. 2.

III. FOKKER-PLANCK-KRAMERS EQUATION

A. General formulation

We consider again a system consisting of several interact-
ing particles in contact with a temperature reservoir at tem-
perature T , with which it exchanges heat. The time evolution
of the probability distribution P(x, v, t ), where x denotes the
collection of the positions xi and v the collection of velocities
vi of the particle, is governed by the Fokker-Planck-Kramers
(FPK) equation [20,28,29]

∂P

∂t
= −

∑
i

(
vi

∂P

∂xi
+ 1

m
fi

∂P

∂vi
+ ∂Ji

∂vi

)
, (35)

where

Ji = −γ viP − γ kBT

m

∂P

∂vi
. (36)

Here m is the mass of each particle, γ is the dissipation
constant, and fi is the force acting on the particle i, given by
fi = −∂V/∂xi.

If the temperature T is kept constant, then for large times
the probability distribution approaches the Gibbs equilibrium
distribution

Pe(x, v) = 1

Z
e−E/kBT , (37)

where E = mv2/2 + V is the energy of the system. This result
shows that the FPK equation (35) indeed describes the contact
of a system with a heat reservoir at a temperature T .

The time variation of the energy U = 〈E〉 is obtained from
the FPK equation and is

dU

dt
= −�q, (38)

where the heat flux �q from the system to outside is expressed
as [20,28]

�q =
∑

i

(
γ m

〈
v2

i

〉 − γ kBT
)
, (39)

where the first and second terms are understood as the heating
power and the power of heat losses, respectively, with γ kB

being the heat transfer coefficient [2]. The entropy S of the
system is determined from the Gibbs expression

S = −kB

∫
P ln P dx dv. (40)

Using the FPK equation, one finds that its time derivative can
again be split into two terms, as shown by Eq. (2), where the
rate of entropy production � can be written as [20,28]

� = m

γ T

∑
i

∫
J2

i

P
dx dv (41)

and the flux of entropy � can be written in the form (3), where
�q is the heat flux given by (39). If T is time dependent then
the dynamic heat capacity is obtained from (1).

B. Harmonic oscillator

We consider here the case of just one harmonic oscillator.
When the temperature or the external force is time dependent,
the probability distribution (37) is no longer the solution of the
Fokker-Planck equation for long times and we should seek a
solution. When the force is harmonic, which we write as f =
−mκx, the FPK equation can be solved exactly. The solution
is a Gaussian distribution in x and v of the type

P(x, v) = 1

ζ
exp

{
−1

2
(av2 + bx2 + 2cxv)

}
, (42)

where the parameters a, b, and c depend on time. That
this Gaussian distribution is a solution can be checked by
substituting it into the FPK equation. The solution is reduced
to the determination of the time dependence of the parameters.

From the Gaussian distribution (42) we see that the param-
eters a, b, and c are related to the averages A = 〈v2〉, B = 〈x2〉,
and C = 〈xv〉 as

a = B

AB − C2
, b = A

AB − C2
, c = C

AB − C2
. (43)

The method we use here rests on setting up equations for A, B,
and C, from whose solutions we can find the coefficients a, b,
and c of the Gaussian distribution as functions of temperature,
if needed.

From the FPK equations the following set of equations is
found for A, B, and C:

dA

dt
= −2κC − 2γ A + 2γ kBT

m
, (44)

dB

dt
= 2C, (45)

dC

dt
= A − κB − γC. (46)
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FIG. 3. (a) Real and (b) imaginary parts of the complex heat capacity (57) as a function of frequency for the following values of κ/γ 2: 0
(dotted line), 0.1, 0.2, 0.5, 1, 2, and 5 (from left to right).

Equations (44)–(46) are coupled linear differential equations
whose solution can also be found for a temperature modu-
lation of the type (4). The solution of the set of equations
(44)–(46) gives the result for A,

A = kBT0

m
+ kBT1

m
(A1 cos ωt + A2 sin ωt ), (47)

where

A1 = 4γ 2(ω4 − 3κω2 + 4κ2 + γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
, (48)

A2 = 2γω(ω4 − 6κω2 + 8κ2 + γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
. (49)

C. Entropy production and heat capacity

Using the result (47) for A, we can write the heat flux

�q = γ (mA − kBT ) (50)

in the explicit form

�q = kBT1γ [(A1 − 1) cos ωt + A2 sin ωt]. (51)

The entropy flux � and the dynamic heat capacity C are
obtained from this expression for �q and by the use of Eqs. (3)
and (1). To get the time averages of � and C we should
integrate them over one cycle. Carrying out the integration and
taking into account that � = �, we find

� = kBλγ (1 − A1), (52)

or in a explicit form

� = kBλ
γω2(ω4 − 8κω2 + 16κ2 + 4κγ 2 + γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
, (53)

where λ is given by Eq. (20), and

C = kB
γ

ω
A2, (54)

or in a explicit form

C = kB
2γ 2(ω4 − 6κω2 + 8κ2 + γ 2ω2)

(ω2 + γ 2)[(ω2 − 4κ )2 + 4γ 2ω2]
. (55)

The results above were obtained for the case of a harmonic
oscillator. It is possible to find the results for a free particle by
formally setting κ = 0. Using this procedure, we recover the
results (25) and (26) for a free particle.

D. Complex heat capacity

Again we may set up a complex heat capacity. If Eqs. (44)–
(46) are solved by replacing the temperature T by the complex
temperature (29), then instead of expression (51) we would get

�c
q = kBT1γ (A1 − 1 + iA2)e−iωt (56)

and the complex heat capacity

Cc = kB
γ

iω
(A1 − 1 + iA2), (57)

which is time independent. The real and imaginary parts of Cc

are

Re(Cc) = kB
γ

ω
A2, Im(Cc) = kB

γ

ω
(1 − A1), (58)

and using relations (52) and (54) we find

Re(Cc) = C, Im(Cc) = �/λω. (59)

Again, these results show that the real part of the complex heat
capacity is the dynamic heat capacity and the imaginary part
is proportional to the rate of entropy production.

The real and imaginary parts of the complex heat capacity
Cc are shown in Fig. 3 as functions of the frequency ω for
several values of κ . The real part, which is the dynamic heat
capacity C, becomes the static heat capacity when ω → 0,
which is C0 = kB/2 if κ = 0 and C0 = kB if κ �= 0. In the
opposite limit ω → ∞, it vanishes as 1/ω2. The imaginary
part vanishes when ω → 0 and so does the rate of entropy
production �. In the limit ω → ∞, the imaginary part van-
ishes as 1/ω but the rate of entropy production reaches a finite
value, which is � = kBλγ . In Fig. 4 we have plotted Im(Cc)
versus Re(Cc).

When the constant κ is small, the plot of the imaginary
versus the real part of the complex heat capacity approaches
the function given by (34) and thus coincides with the result
for the overdamped case, as shown by the two semicircles in
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FIG. 4. Imaginary versus real part of the complex heat capacity
(57) for κ → 0 (dotted line) and the following values of κ/γ 2: 0.02,
0.05, 0.1, 0.2, 0.5, 1, 2, and 5 (from right to left). The thermodynamic
equilibrium ω = 0 is indicated by a closed circle.

Fig. 4. The semicircle behavior of the imaginary and real parts
of the complex heat capacity is found in many experimental
results of temperature-modulated systems [31,32].

IV. COMPLEX HEAT CAPACITY

During a small interval of time �t , the heat introduced
equals −�q�t , which divided by the increment �T in tem-
perature gives �q�t/�T . The heat capacity is obtained by
taking the limit �t → 0,

C = −�q

dT/dt
, (60)

which is the expression of the dynamic heat capacity that we
have used. Other definitions of nonequilibrium heat capacity
have been advanced [33,34], but (60) seems to be a natural
extension of the equilibrium heat capacity if we consider the
significance of this quantity as being the ratio of the heat
introduced and the variation in temperature. In the absence
of external work, which is the case of the present analysis,
−�q = dU/dt and the heat capacity is related to the energy
by C = (dU/dt )/(dT/dt ). Notice that the expression (60) is
not T (dS/dt )/(dT/dt ) because T dS/dt is not equal to �q on
account of the production of entropy.

The dynamic heat capacity does not share with the static
heat capacity C0 the property C0 � 0. Generically, the heat
flux is not in phase with the variation of temperature. A flux
of heat to the outside could happen while the temperature is
increasing, or a flux toward the system could happen while
the temperature is decreasing. In both cases the dynamic heat
capacity has a negative sign. This peculiar but not illegitimate
behavior is shown in Fig. 3(a) for a small interval of frequen-
cies for one of the curves and is shown by other definitions of
nonequilibrium heat capacity [33]. Notice, on the other hand,
that the rate of entropy production is always non-negative, as
illustrated in Fig. 3(b).

Let us assume that in general the heat flux �q behaves as

�q = �1 cos ωt + �2 sin ωt . (61)

As we have seen above, this is correct for harmonic forces
as shown by Eqs. (18), (24), and (51). For any type of force
this is also expected if T1/T0 is small, a condition that we
assume here. In fact, this condition is fulfilled in experiments
on temperature modulation. Replacing �q in the definition (1)
of the dynamic heat capacity and calculating C, we find

C = �2

T1ω
. (62)

Analogously, replacing �q in the definition (3) of the entropy
flux � = �q/T and calculating � which equals �, we find

� = −�1λ

T1
, (63)

where λ is given by (20).
The complex heat capacity Cc is defined by (31), where

�c
q = (�1 + i�2)e−iωt (64)

is the complex heat flux, and Tc is given by (29), from which
we get

Cc = 1

iT1ω
(�1 + i�2). (65)

Comparing this expression with Eqs. (62) and (63), we find
the results

Re(Cc) = C, (66)

Im(Cc) = 1

λω
� (67)

and may conclude that the imaginary part of the complex heat
capacity is proportional to the rate of entropy production.

When ω → 0, the denominator of (62) vanishes and at
first sight C seems to become singular. However, in this
limit �q also vanishes because in the absence of temperature
modulation there is no heat flux. Considering that in this limit
the dynamic heat capacity should approach the static heat
capacity C0, it follows, in view of (62), that �2 should behave
as �2 = ωT1C0. Indeed, this is confirmed by the results of C
for the harmonic oscillator, if we recall that C0 = kB.

The dynamic heat capacity C defined above by Eq. (60) can
be understood, within the linear response theory [9,12,16,35],
as a response function. Defining h = −dT/dt , we write
Eq. (60) as �q = Ch and it becomes clear that h plays the
role of the input and �q of the output and C is the response
function to the time-varying temperature. Considering that
h = ωT1 sin ωt , it follows that the Fourier transforms �̂q and
Ĉ are related by

�̂q = iωT1Ĉ. (68)

Comparing this relation with (65), we may conclude that the
complex heat capacity Cc is in fact the Fourier transform
Ĉ of the dynamic heat capacity C. In addition, the Fourier
transform of the heat flux is �̂q = �1 + i�2. The connection
of the present problem with the linear response theory makes
the results obtained here easier to understand and may give
insights into a possible extension to nonlinear models.
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V. CONCLUSION

We have determined the entropy production and the dy-
namic heat capacity of systems under time-varying temper-
ature by the use of stochastic thermodynamics. The systems
that we have analyzed evolve in time according to the Fokker-
Planck equation, for the overdamped case, or to the Fokker-
Planck-Kramers equation. Exact solutions were possible to
find for the cases of harmonic forces and temperature mod-
ulation of the sinusoidal type. The heat flux also varies sinu-
soidally, but with a phase shift with respect to temperature.
From the heat flux, the rate of entropy production � and the
dynamic heat capacity C could be determined as functions
of the frequency ω of the temperature modulation. In the

limit of small frequencies, C approaches the equilibrium heat
capacity, which is non-negative, and vanishes for large fre-
quencies. The dynamic heat capacity may not be a monotonic
decreasing function of ω and might even be negative. The rate
of entropy production is always non-negative, vanishing for
zero frequency, when the system is in equilibrium. For large
values of ω it approaches a nonzero value. Finally, C and �

were shown to be related to the real an imaginary parts of the
complex heat capacity.
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