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Exact results for first-passage-time statistics in biased quenched trap models
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We provide exact results for the mean and variance of first-passage times (FPTs) of making a directed
revolution in the presence of a bias in heterogeneous quenched environments where the disorder is expressed
by random traps on a ring with period L. FPT statistics are crucially affected by the disorder realization. In
the large-L limit, we obtain exact formulas for the FPT statistics, which are described by the sample mean
and variance for waiting times of periodically arranged traps. Furthermore, we find that these formulas are still
useful for nonperiodic heterogeneous environments; i.e., the results are valid for almost all disorder realizations.
Our findings are fundamentally important for the application of FPT to estimate diffusivity of a heterogeneous

environment under a bias.
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I. INTRODUCTION

Encountering a reactive molecule or finding a reactive site
by a molecule is the first step in chemical reactions. Therefore,
finding a specific target in stochastic processes is a fundamen-
tal problem in the context of chemical as well as biological
reactions [1]. In particular, this target-search problem attracts
significant interest in biomolecular reactions in cells such as
transcription factors searching for a specific DNA sequence
[2-4]. Many stochastic models have been utilized to unravel
how biomolecules can efficiently reach the targets in cells
[5-8], where a combination of three-dimensional (3D) free
diffusion and one-dimensional (1D) sliding motion on DNA
plays a vital role in reducing the first-passage time (FPT) to
the target.

The 1D sliding motion is crucially affected by interac-
tions between a searching molecule and DNA sequences [9].
DNA sequences exhibit anomalous fluctuations, such as long
correlations and 1/f fluctuations [10]. Thus, a 1D sliding
motion on DNA is described according to the diffusion in
a quenched heterogeneous environment. In experiments, the
diffusion coefficients of a repressor protein diffusing on DNA
are obtained by single-particle-tracking measurements and
show large trajectory-to-trajectory fluctuations [11,12]. These
fluctuations are evidence of the heterogeneity of the environ-
ment. In fact, intrinsic fluctuations of the diffusion coefficients
are observed in diffusion on heterogeneous environments
such as the quenched trap model (QTM), which represents
a random walk (RW) on a random energy landscape, and an
annealed model of the QTM, which presents continuous-time
RW (CTRW) [13,14].

The FPT statistics in heterogeneous environments are key
quantities in target-search problems [15,16] and play an im-
portant role in estimating the diffusion coefficient [17]. In
higher dimensions, the CTRW provides a good description
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of diffusion in quenched heterogeneous environments, and
hence the FPT statistics with the CTRW have been inten-
sively studied [18-21]. However, in 1D systems, the diffu-
sion in quenched potentials cannot be approximated with the
CTRW, and the FPT statistics is not well understood. It is
known that 1D quenched systems exhibit distinct behaviors of
diffusion [14,22].

Hence, filling the lacuna on the FPT statistics in 1D
systems is critical to update fundamental understanding of
diffusion in the quenched potential.

In this paper, we clarify several properties of the FPT
statistics inherent to the quenched potential by looking at
the 1D biased QTM. We first consider a periodic random
potential and derive exact FPT statistics. We next show that
the formulas are available to understand the nonperiodic
potential also. Although the periodic potential landscape is
employed to simplify the setup in this paper, stochastic dy-
namics in the periodic potential have been intensively studied
analytically [23,24] and experimentally [25-28]. Moreover,
a bias in diffusion processes induces surprising phenomena
such as giant acceleration of diffusivity in periodic potentials
[23,25], field-induced superdiffusion [29-32], and distinct
initial ensemble dependence of diffusivity in disordered media
such as the CTRW [33,34]. Our analysis also unravels several
indications of the effects caused by quenched disorder on
these phenomena.

II. MODEL AND MAIN RESULTS

We consider effects of bias on the FPT statistics in a
quenched heterogeneous environment. In particular, we use
a biased RW on a 1D quenched random energy landscape,
which is periodically arranged, i.e., a biased QTM with a
periodic landscape [see Fig. 1(a)] [22]. The target is lo-
cated only at site L while the energy landscape is periodic.
Probabilities of the right and left jumps are given by p and
q = 1 — p, respectively. A biased RW implies p # 1/2, and
here we consider p > 1/2. We assume that the tops of the
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(a) QTM with periodic landscape (b) QTM with nonperiodic landscape
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FIG. 1. Schematic representation of a biased QTM, where we
represent a random energy landscape as a 1D energy landscape
(a) with period L (L = 8) and (b) without periodicity. When a particle
escapes from a valley of a random potential, it jumps to the right
valley with probability p. A particle starts at the origin, and the target
is located at site L. Note that there is no target on the left-hand side
(no target at 0, —L, —2L, ...). In other words, we consider a time
when a particle makes a directed (clockwise or counterclockwise)
revolution on a ring.

potentials are flat; i.e., the tops are the same height, implying
that probability p does not affect the shape of the random
energy landscape. This physical situation is relevant to a
biased diffusion in heterogeneous comblike structures [35],
e.g., porous media [31] and neuronal dendrites [36,37], in
which the bias is considered to be a flow in the backbone.

We assume that the lattice constant is set to unity and
number L of lattice sites with different energies is finite
(L < 00). At each site, depth E (> 0) of the energy trap is
randomly assigned. In particular, the depths are independent
and identically distributed (IID) random variables with an
exponential distribution, p(E) = T, ' exp(—E /Ty), where T,
is called the glass temperature. A particle can escape from a
trap and jump to one of the nearest neighbors. A waiting time
when a particle escapes from the ith trap is a random variable,
and the distribution follows the exponential distribution with
mean 7;: ¥ (1) = 7, 'e”"/% [38]. Mean waiting time 7; fol-
lows the Arrhenius law, t; oc exp(E;/T ), where E; is the depth
of the energy at the ith trap and T denotes the temperature.
Through the Arrhenius law and the energy distribution p(E),
the probability density function of t; follows a power law,
Yo(r) X T witha = T /T, [39]. When the temperature is
below T, o < 1, the mean of 7; diverges, inducing anomalous
features such as anomalous diffusion and aging [14,22,40].
Note that sample mean waiting time

1 L—-1
=-Y 5 (1)
L i=0

for a fixed disorder in the QTM with a periodic landscape
never diverges when L < oo.

We consider the FPT, i.e., a time when a particle starting
from the origin reaches the target (site L) for the first time. As
the main results of this study, we show the mean FPT (MFPT)
and the variance of the FPT (VFPT) for a given quenched
periodic landscape for large L:

L
(T, ~ p ﬁLq = TwvFpT, 2
L 2 _ + 2
<8T2)L ~ {GL ((pp _qq))3 ML} = TVFPT, (3)

where T =T — (T), and O'L2 is the sample variance:

L-1
1
of:zzrf—ui. 4
i=0

Sample variance o} quantifies the degree of heterogeneity.
The VFPT for o < 1 becomes (8T?), ~ L(o} + u?)/(p —
q)* because ,uL = 0(0 ) for large L. In this paper, we discuss
the physics behind the exact results and provide a brief sketch
of the derivation. We note that the MFPT diverges when
p = g because the mean return time to the origin diverges.
Therefore, the results include the case p = g. When the bias
is small, p — g can be expressed as p — g = F /T, where F
is an external field. In this situation, the leading orders for
small F dependencies of the FPT statistics are represented as
(T) o< 1/F and (8T?); o 1/F3.

A crucial aspect of the FPT statistics is that they are
expressed by the statistics of the waiting times in the quenched
heterogeneous environment. Note that the results do not ex-
plicitly include parameter «. Instead, they depend on w; and
o, which are finite and depend on each realization of the dis-
order. In addition, the VFPT are connected to the diffusivity
in the biased QTM on a ring [23]. Therefore, the results play
a significant role in estimating diffusivity, as discussed later.

The comparison of properties of FPTs in the QTM with
those in the CTRW is intriguing. In the CTRW the waiting-
time distribution is identical for all sites. Although the FPT
distribution in CTRW has already been studied [20], the ex-
plicit forms of the FPT statistics have never been obtained so
far. Importantly, our results also lead to the exact expressions
of the biased CTRW (see the Appendices), which are given by

L
(Tam)1 ~ p—_"q ®)
Lo (p— ) + 4pgi?)

where 1 and o2 are the mean and the variance of the waiting-
time distribution. The MFPT and VFPT diverge for ¢ < 1 and
o < 2, respectively, while the QTM results are finite for all
regimes of «. The VFPT of the biased-CTRW is not given by
a straightforward extension obtained from that of the biased
QTM. This is unexpected because the CTRW is believed to
be a good approximation of the QTM when a bias is added.

III. SAMPLE-TO-SAMPLE FLUCTUATIONS

We present numerical verifications of exact results (2)
and (3) to see how these formulas work for each disorder
realization. Figure 2 shows the MFPT and VFPT for 100
disorder realizations, where the numerical values are plotted
as a function of the theoretical values. All the results are
collapsed on the y = x line, which shows a perfect agree-
ment between the theory and numerical results. Note that
the numerical results are provided for parameter o = 0.5,
where the disorder realizations show large sample-to-sample
fluctuations. The MFPT and VFPT also exhibit strong sample-
to-sample fluctuations because the disorder strongly affects
. and aLz. Nevertheless, the theoretical values for different
realizations are remarkably correct.
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FIG. 2. Correlation plot for the MFPT and VFPT in the QTMs
with periodic landscapes (¢ = 0.5 and L = 10*). Symbols repre-
sent results of numerical simulations for 100 different disorder
realizations.

Next, we discuss sample-to-sample fluctuations by consid-
ering a disorder average. In general, when the heterogeneity
of a disorder realization is sufficiently weak, physical observ-
ables comprise self-averaging (SA) properties [22]. Here we
quantify sample-to-sample fluctuations by the SA parameters
defined as

{(O) ] )gis — OML)Gis
({O)L)Gis

where (-)q4is indicates the disorder average and observable O is
T or 8T?. The vanishing of these quantities implies a perfect
realization of SA, and hence these parameters systematically
quantify a degree of the SA property. This definition is
analogous to that of the diffusivity in the QTM discussed in
Ref. [41].

As pp is a random variable, the SA parameter for the
MFPT, O = T, can be rewritten as

SA(L; (O)) = ; (7

(T ais — (1)

<u%)dis - <I’LL>(2115 _
L<T)§is

SA(L: (1)) = =H4
dis

For o < 2, the SA parameter is infinite because (t2)gis di-
verges, while for o > 2, it vanishes in the large-L limit,
implying that the SA is satisfied for ¢ > 2, while it is violated
for o < 2. Hence, the transition between SA and non-SA
occurs at o, = 2 for quantity (7),. Similarly, the transition
from SA to non-SA for quantity (872); can be discussed
through Eq. (7). From a similar calculation, the critical value
can be easily obtained as o, = 4; that is, the VFPT has an SA
property for « > 4, while it is broken for ¢ < 4.

IV. NUMERICAL ARGUMENT OF THE BIASED QTM
WITH NONPERIODIC LANDSCAPE

We discuss the FPT statistics in the biased QTM in which
the potentials are arranged randomly in the infinite line
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FIG. 3. (a)Ratio 1, . as a function of L/Ng, (Ngs = 103, & = 0.5,
and p = 0.8) for nonperiodic landscapes. Symbols represent results
of numerical simulations. We used 10* thermal paths to calculate the
MFPT or VFPT for a fixed disorder realization. (b) Correlation plot
for the MFPT and VFPT in the infinite 1D systems with nonperiodic
landscapes (¢ = 0.5 and L = 10%). Numerical simulations of the
MFPT and VFPT for 10* disorder realizations are presented by
symbols.

[Fig. 1(b)]. For a finite bias and large L, a particle will ex-
perience deep potentials mainly in the positive regime i > O.
Therefore, the FPT might be dominated by waiting times for
regime i > 0. If this is true, the exact results for the periodic
QTM may still be useful to understand the FPT statistics in
the infinite 1D systems. To discuss the validity of this theory,
we define the following two quantities:

2
Mg 7= BT

v = 7
MFPT

) (®)

/
TVFPT

where Tyyppr and Typpr are the same expressions as in Eqs. (2)
and (3), respectively. We should note that 1, and crLz in these
expressions are calculated from 7; for i =0,...,L — 1 (in
other words, we do not use the information of potentials for
i < 0). In addition, to quantify how our prediction works well,
we introduce the following ratio:

I 1 Nais
= I TY), v=MV, ©
nvqs(Ndis> Nas ; [1 £,1+s]( v ) )

where TV(’ ) is a numerical value of T, for the jth realization
of disorder and I4(x) is an indicator function, i.e., I[4(x) =1
if x € A and I4(x) = 0 otherwise. This quantifies a ratio that
T\ is within the corresponding theory with a e-dependent
accuracy. As shown in Fig. 3(a), the ratio approaches 1 with
increasing L.

To understand more details at the level of each disorder
realization, we next consider each 7, In Fig. 3(b) we present
numerical data of 7, as a function of Ty OF Typpr de-
pending on v = M or V, respectively. Figure 3(b) shows that
Typpr and Typpr are very good approximations of (T'); and
(8T?), for almost all realizations, except for a small number
of realizations with extremely large deviations. In such rare
samples, significantly large waiting times are assigned for
i < 0 and small |7] (see the Appendices). Except for such rare
samples, the biased-QTM results with a periodic landscape
are surprisingly useful in nonperiodic landscapes.
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V. DERIVATION OF MAIN RESULTS

We now briefly describe the derivation of our results. We
divide our explanation into two steps: step 1 explains the
FPT in the standard biased RW (without random traps), and
step 2 explains the FPT in the biased QTMs with periodic
landscapes.

A. Step 1: Statistics of the numbers of visits

In the first step, we outline our main strategy to derive the
main results for the QTM, which gives us another derivation
for known results of the FPT statistics in the classical RW.
The main strategy is to use statistics of the number of visits
at each site. A similar quantity has also been employed to
study diffusion of nonbiased motions [22,42]. A biased RW
was studied in the context of the classical ruin problems [43].
In the ruin problems, a gambler with a capital wins or loses
a dollar with probabilities p or g, respectively. The FPT from
the origin to L site in the RW, i.e., T;y, correspond to a duration
of the game in the ruin problems, in which the game is over
when one of the two players is ruined. Here we consider that
one of the players has infinite capital and his win probability is
p > 1/2. The generating function for the FPT in the classical
ruin problems was derived in Ref. [43], and the MFPT and
VEFPT are, respectively, obtained as

4pgL
(r—q»*

While these results are exact for any L, we will consider the
large-L limit to derive the biased-QTM results. Note that (7}, )
is a special case of Eq. (2), while (§T2), is not a special
case of Eq. (3) [see Eq. (18) for the general result, which
reproduces (§T2).].

The FPT from the origin to L site can be represented by the
sum of the numbers of visits at each site,

(Trw>L =
pP—dq

and (87.3), = (10)

Tw=) ki (1)

where k; is the number of visits to the ith site until the particle
reaches site L. Note that k; includes the number of the visits
at sites +i —nlL (n = 1,2, ...). To obtain the moments and
correlation function of k;, we consider the large-L limit. In this
limit, the probability that a particle reaches site —L becomes
zero; i.e., a particle never visits the site —L. In the large-L
limit, one can obtain the generating function of k; until the
particle reaches site L (see Appendix A):

pP—q

Z(\ ,
()_)e**—Zq

(12)

which yields the following:
(ki) ~1/(p—q) and (k7) = (ki)* ~2¢/(p—q)* (13)

for L — oo. Moreover, correlation (k;k;) can be obtained
exactly as follows:

gl

C = (kikin)) — (k)2 > ————
1 = (kikiyi) ()—>(p_q)2

(L — 00), (14)

where ¢ = q/p, (k) = 1/(p — q), and [ = |i — j|. This corre-
lation is derived in Appendix B. Note that C; does not depend
on i, and [ is an arbitrary integer satisfying / < L — i.

The MFPT and second moment of the FPT can be, respec-
tively, represented as

(o) ~ L(k) and (T3), ~ LUSK?) + (k) + Y (kik)),
i#]
where (8k?) = 2q/(p — q)*. Thus, the VFPT becomes
L—1
(8Tr%), = L(8K*) +2 Z(L —1)C; ~ L({8K?*) +2C), (15)
=1
where C = Y"1~ C;. Note that Y1~/ IC; converges to a con-
stant for L — oo because C; decays exponentially to zero. In
the large-L limit, we have
-7
(p—q)y
This leads to the desired results of the MFPT and VFPT. Note

that the RW results of the FPT statistics are exact for any
L [43].

(16)

B. Step 2: Derivation of the QTM results

By using the same technique used in step 1, the biased-
QTM results can be derived. Note that the FPT in the QTM
can be obtained by

L—1 ki
T=Y T wih =)t (17)
i=0 =1

where 7 is the waiting time for the mth visit to site i and T; is
the occupation time at site i. The mean of 7; can be calculated
as (T;) = (t{’ + -+ 1) = (k)7;. Thus, the MFPT in the
large-L limit is given by (T'), ~ (k) ZiL;Ol T ~Lur/(p—q),
i.e., Eq. (2). This is a simple extension of the MFPT for
a biased RW and is easily obtained by multiplying (T.y)r
by pr.

Using (Tf), we also have the VFPT in the biased QTM
(the details are given in Appendix C). In the large-L limit, the
VFPT for o > 1 becomes

6T%).  2q(of +uz) | 6t |, 2qu}
~ , (18)
L (p—q)? r—q (p—q)°
where
1 L—-1 - -
6 =7 2 (@) - {=")] 19)

Il
=}

i

For @ <1, u? can be ignored because u7 = o(o}). In
the QTM, (81’2) L= oLz + M%, which gives our main claim,
Eq. (3). Note that Eq. (18) is a more general expression of the
VFPT than Eq. (3), which includes the VFPT in the classical
RW, (8T2).. Moreover, it is straightforward to derive exact
results for the biased CTRW. In the CTRW, the waiting-time
distribution is identical for all sites. Thus, sample variance JL2
in CTRWs is zero. Replacing p; and (872); with u and o>
gives the exact expressions (5) and (6).
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VI. DISCUSSION

We derived the MFPT and VFPT in the QTM with a
random periodic potential in the presence of bias. In the large-
L limit, our formulas provide the exact expressions of the FPT
statistics in the biased CTRW. Unexpectedly, the VFPT values
of the biased CTRW and QTM are distinctive. Furthermore,
the results for the biased QTMs with periodic landscapes are
still surprisingly useful even when the energy landscape is not
periodically arranged in the 1D line.

Finally, we briefly discuss the diffusion coefficient in the
biased QTM on a ring. Here we apply our formulas to
diffusion in the system with period L. Let n, be the number
of events in which a particle makes a directed revolution
(biased direction). As the time intervals between the events
are IID random variables, the process of n, is described as a
renewal process. By renewal theory [44], the mean of n, is
given by (n,) =¢/(T),. Displacement §x; is represented by
éx; = Ln, + Cr, where Cy is a random variable, and the mean
has the order of L, (C;) = O(L). Thus, (éx,) becomes

(p—qx
1298

(6x;) ~ L(n;) = (t — 00). (20)

Moreover, using the variance of n, [44], we have

. 2 2
<8x?>—<8xz>2~[(p Q)EZL+“L)+%}- e
L
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APPENDIX A: DETAILS FOR A BIASED RANDOM WALK

A biased RW was studied in the context of the classical
ruin problems [43] in which a gambler with a finite or infinite
capital wins or loses a dollar with probabilities p and g,
respectively. Let us consider the probability of his ruin when
the initial capital is z and the other player’s capital is L — z.
In the language of the RW, this probability corresponds to
the probability that a particle starting from site z (0 < z < L)
reaches site 0 without visiting site L. This probability denoted
by ¢~ is known as [43]
gl — &7

—_ Al
] (AL)

g =
where ¢ = g/p. Moreover, the probability of his win is given
by pt = 1 — g% because the game will end in the future with
probability 1.

Here we assume p > 1/2 and the random walker starts at
the origin. The FPT from the origin to L site can be repre-
sented by the sum of the numbers of the visits at each site,

(A2)

where k; is the number of visits to the ith site until the particle
reaches the site L. We note that k; includes the number of the
visits at sites +i —nL (n =1, 2, ...).

To obtain the moments and the correlation function of %;,
we consider the large-L limit. In this limit, the probability that
a particle starting at site —1 reaches site —L is zero: g ;| — 0
for L — oo. Thus, a particle never visits site —L. This follows
that the probability that a random walker visits site i (n + 1)th
times is given by

n

Sy ~ ph_; > uCelpat™) (aph_))" " prt™

k=0
= pi_i(pai™" +api_y) PPt (A3)
for i < L because qi‘_i — Ofori < L, and
n—1
k —i n—k—1
S ~qi; Y (pat +api 1) pPi(pai™ +api_y)
k=0
< ppt + pi_i(pat ™ + api ) prt (A4)
for i ~ L. In the large-L limit,
S(n) — (p—q)2q)" (L — 00), (AS)

for both cases i < L and i ~ L. Therefore, the generating
function of the number of visits at site i until the particle
reaches site L is given by

o0 —
Zs(n)e)»(n+1) — 11 q

Z(\) = -
s e —2q

(A6)

in the large-L limit. The generating function does not com-
prise i-dependence; that is, the distribution of k; is the same
for all i. Thus, the moments of k; do not depend on the site. In
particular, the mean and variance of k; are given by

AZ (M) 1
ky=—2-| =—— A7
e M o P—¢q (A7)
and
3%2InZ(1) 2g
2\ N2 _
(ki) (ki)™ = i - = —(p 7 (A8)

respectively. Because the moments do not depend on site i,
we use the following notations: (k) = 1/(p — ¢) and (§k?) =

2q/(p — @)%

APPENDIX B: CORRELATION FUNCTION (kok;)

To obtain correlation function (kyk;), we consider the gen-
erating function defined by

Z(ho, k) = ) plng, m)e' "™, (BI)
no,n;

where p(ng, n;) is the joint probability of ky = ny and k; = n;.
Counting ko and k; for [ > 1, we have

o0

o0 I’lo—l
k— 1
Zooi = 3" <q+pqa o 3 PO )
k=1

no=1

o0
% e)»onoppll Z{P(Z)}re)»l(ﬁfl)ppll‘*l’ (BZ)
r=0
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where P) is the probability that a random walker starting L, P) = pgt~' 4 gp! . In the large-L limit, the generating
from the site / will return to site / without visiting sites 0 and function becomes

J

YDV
2o, M) = (1= POl _e(q +p5qlzl(§]exo]qi pagl_ pleoti’ (B3)
which satisfies the normalization, Z(0, 0) = 1.
The correlation function is given by
hoky) = S (B4)
dAoh ho=A=0 Pr—q9? (@—9)?

where ¢ = q/p < 1. Thus, the correlation function decays exponentially. We note that this expression is valid for [ = 1 because
gy, =p; = land pj = 0.

Next, we consider (k;k;;;). Because the probability that a random walker starting from the origin visits site —L + i + [ for
i + [ < L becomes zero in the large-L limit, for i + / < L the generating function Z(};, A;4;) is given by

) [ ni—1 00
Z(hiy higt) = Z (q + pqll +pp Z P(l) kkiwqqél) ek;nfppll Z {Pi(l)}reki+z(r+l)pplf—i—l’ (BS)
=1 k=1
where P = pgl="~! 4 gpl_,, which is equivalent to P?) in the large-L limit. Moreover, p5~~' = pt~! in the large-L limit.

Therefore, Z(A;, Aiy;) is the same as Z(Ag, A;) in the large-L limit. It follows that correlation function (k;k;;) does not depend
on i and is the same as (kok;).

For i ~ L, a random walker will visit site —L + i 4+ [ with probability qf:f;l, which is nonzero even in the large-L limit.
Thus, the generating function becomes

0 %) nip—1
Z()\i, )‘H—l) = qII::zlfl Z (pq{‘l + C]Pé_l + 61615_1 Z{P—L+i}klek'\ippll> e)hi+l”i+1

nip=1 k=1

00 ni—1 [

k=1 ] r —i—

x ppy lz<q+pq1+ppﬁz (P} “’“qqﬁl> Hippl Y (PP r D pph=i=l
r=0

ni=1 k=1
00 00 ni—1 00
_ k-1 1 i
+pih (q +pdh + ot Y (P} k)wrqufl) Jipph Y PPV T DpphTil (B6)
ni=1 k=1 r=0
where P_;1; = g + pq} and P(l) = pqL =l qpﬁfl. By a straightforward calculation, we have
ki) = —2 L, ®7)
iKivy) = = .
T kit im0 P @ (P—q)
(
Therefore, the correlation function does not depend on i. where
L-1
1 . :
APPENDIX C: DERIVATION OF THE VFPT IN THE 0=~ Y [((&)) = ()] (C2)
BIASED QTM L i=0

The second moment of 7; can be calculated as  The third term is given by > ., .( £ kk NATES 225‘;11
i i i i 2 —1—
(T2) = (4 -+ 7)) = @UE + RAED) = G wtw + 02 X, o =22 G Y

(7)), where (k%) = (3k2) + ()%, and (")) =212 T+ KPIOCS) w7 = Yy o). where we set G =
when the waiting-time distribution is the exponential  (Kiki+1) — (k)™ because (kikii;) does not depend on i
distribution. Therefore, the second moment of the FpT  Lherefore, the second moment of the FPT becomes

in the QTM can be represented as L-1 -1 L-1-l
1 o (T?) = (8k) Y 17 + (k) (87°)LL + 22@ Z TiTigl
(T =Y (T2 + D (LT = ()Y 77 + (k)(67%).L i=0
i=0 i#] i=0 L2
+—5. (C3)
+ Z kik;)TiT;, (C1) Pr—q
it The combination of Egs. (A7), (A8), and (E6) gives Eq. (18).
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APPENDIX D: SOME DISTRIBUTION FUNCTIONS

Here we define the probability density functions (PDFs)
of 77,41 and riz, where 7; and t;1; are independent and
identically distributed random variables with a power-law
distribution of ¥, () = at~!=% (z > 1). First, the probability
that 77 is smaller than x is given by

Pr(t? <x) =Pr(r < /x)=1—x"%"2. (D1)

Therefore, the PDF of tiz is given by v,/ (x). Next, the
probability that 7;7;; is smaller than x is given by

Pr(titiy) < x) = f Yo () Pr(z < x/y)dy  (D2)
1
=1—ax*—ax *Inx. (D3)
Thus, the PDF ..., (x) of ;7,41 becomes
Vg, () ccx ™ " Inx  (x — o00). (D4)

APPENDIX E: ASYMPTOTES

Here we consider the asymptotic behavior of
IL:_ll G ZiL:_Ol_l 7;T;4,. First, we show that a(L)=
S iy satisfies @) ~ a,, for m < L in the large-L
limit. In the large-L limit,
L—m—1

ai(L) = an(L) ~ Y TATim, (E1)
i=0

where At;,, = Tiy1 — Tiym. Because t; and Art; ), are inde-

pendent and ZiLz_Om_l At /L — 0 for L — oo, the order

of a;(L) — a,(L) is at most that of "5 7;: O(LY**!). It
follows that a;(L) — a,,(L) = ola;(L)] because the PDF of
7;7; follows

Yx) xx Inx  (x = o0), (E2)

where 1; and 1; are independent. Therefore, we have a; ~ a,,
for m <« L in the large-L limit.
Because C; decays exponentially to zero and a; ~ a; for

I KL, Z,L:II Cja;(L) can be approximated by

L—1 m
Y GaL)~ Y CayL) ~ Cai(L), (E3)
=1

=1

where m is small and does not depend on L and C = thll C.
Next, we show u? ~ a;/L for @ > 1 in the large-L limit.
Because the sum of p; — 7;4; is a small order of L,

L-2

D (L = i) ~ 10,

i=0
we have

L2
a(L) 1
no— Z;n(m — Ti1). (E4)
Fora > 1, u% — aj(L)/L becomes small (and is a small order
of u2) because Y| 7741 /L = p? for large L. Because juy, is
a small order of a; /L, we have /1,% —a;(L)/L = o(a;(L)/L),

ay ~ Ly} (L — 00). (E5)

Foroa > 1,

L—1
> GaL) ~ Lyj. (E6)

I=1
For @ < 1, the generalized central limit theorem states that
L
Zizl TiTit1
L1/

where = implies the convergence in distribution and Y, is a
random variable with a stable distribution with index « and

L
D i fiz

L2/«

=Y, (ET)

= Yyp. (E8)
Thus, al(L)/aL2 — 0 for L — oo. Therefore, both /,L% and
a;(L) are small orders of JLZ. Thus, these terms in Eq. (C1)
can be ignored.

APPENDIX F: DISORDER AVERAGE AND CORRELATION
PLOT FOR THE MFPT AND VFPT IN THE INFINITE 1D
SYSTEMS WITH NONPERIODIC LANDSCAPES

To quantify the degree of the disorder average, we intro-
duce a sample-number-dependent variance:

2

Nais (T(j))2 Nais Tv(j)
, v=M,V, (Fl)

0} Na) =) =
dis

P =7 Nais
where 7,”) is a numerical value of 7, for the Jjth realization
of disorder. This quantifies sample-to-sample fluctuations of
T,,(j ) as a function of Ngis- With increasing Ny;s, the average
approaches the exact disorder average. From the indication
of the CTRW results (5) and (6), the exact disorder averages
of FPT statistics will diverge for small «. In Fig. 4 we show
the Ngis dependence of avz (Ngis)- The figure clearly shows that
0 (Nais) and 03 (Ngis) become divergent behaviors for o < 1
and o < 2, respectively, as increasing Ngis.

Figure 5 presents numerical data of (T); and (§T2);.
Numerical results on the y = x line imply that 7} and
T\ gpr are very good approximations of the MFPT and VFPT,
respectively. However, a few realizations deviate from the
y = x line. This figure explicitly explains a mechanism of

108— T ‘

63 (@=05) B o (a=05)m l
[0} (@=15)® op(a=15) @

[0 (a=25) A 0[2, (@ =2.5) A -
’?é Lok (@=3.0) v o2 (@=30)V ®

\% 100 | | | | °
(\le . ]
] 2 * * *
° 'y ° ° ®
10*6 * * * * *

10 102 105 10* 10° 106
Ndis

FIG. 4. Variances of Ty and Ty as a function of Ng, (L = 103
and p = 0.8). Symbols represent results of numerical simulations.
We used 10° thermal paths to calculate the MFPT or VFPT for a
fixed disorder realization.
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18 26
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FIG. 5. Correlation plot for the MFPT and VFPT in the infinite
1D systems with nonperiodic landscapes (a = 0.5) for (a) L = 10?
and (b) L = 10°. Numerical simulations of the MFPT and VFPT
for 100 disorder realizations are presented by symbols. Some points
deviate from the line, indicating the theories do not work well in
these disorder realizations.

the divergence according to the disorder average; i.e., the
divergence is caused by a small proportion of samples with
extremely large deviations. In such rare samples, significantly
large waiting times are assigned for i < 0 and small |i|. Except
for such rare samples, the biased-QTM results with a periodic
landscape are surprisingly useful in nonperiodic landscapes.

APPENDIX G: DERIVATION OF THE CTRW RESULTS

We derive the MFPT and VFPT in the CTRW following
Ref. [20] and use the same notations as in Ref. [20] to present

the MFPT as follows:
(T = / tm(tydr =y Q) f tYu(t)dr. (Gl
0 = 0

"l:he Laplace transform of ,(¢) can be given by lﬁn(s) =
Y (s)". It follows that

/ 1Y, (t)dt = —nfr(0)" '/ (0) =nu.  (G2)
0

Based on the classical RW result, we obtain

. L
(Taw)L = 1 ZnQ(n) el (G3)
n=1 pP—4
Similarly, we have
<T;:%rw)L = ZQ(H)/ 12y, (t) dt (G4)
n=1 0
=D 0o’ +np’) (GS)
n=1
2| _4pqL L? } oL
= + . G6
[(p—qP pP—9?*] p—gq (G6)

Thus, the VFPT of the biased CTRW becomes Eq. (5).
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