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Fractional Langevin equation from damped bath dynamics
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We consider the stochastic dynamics of a system linearly coupled to a hierarchical thermal bath with two
well-separated inherent timescales: one slow, and one fast. The slow part of the bath is modeled as a set of
harmonic oscillators and taken into account explicitly, while the effects of the fast part of the bath are simulated
by dissipative and stochastic Langevin forces, uncorrelated in space and time, acting on oscillators of the slow
part of the bath. We demonstrate for this model the robust emergence of a fractional Langevin equation with a
power-law decaying memory kernel. The conditions of such an emergence and the specific value of the fractional
exponent depend only on the asymptotic low-frequency spectral properties of the slow part of the bath.
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The fractional Langevin equation (FLE) is a special, and
important, type of the generalized (non-Markovian) Langevin
equation [1] for a dynamical variable A coupled to a thermal
bath,

Ȧ(t ) = −
∫ t

0
K (t − τ ) A(τ ) dτ + F (t ), (1)

with the algebraically decaying memory kernel K (t ). We shall
focus on kernels with the decay exponent α being less than
one,

K (t ) = K0 t−α, 0 < α < 1, (2)

in which case the FLE describes subdiffusion [2,3]. The
term F (t ) in (1) is a zero-centered stationary noise, which
is related to the kernel by the fluctuation-dissipation theorem
〈F (t )F (t ′)〉 = kBT K (t − t ′) where T is temperature. If an
external force is also applied (not considered here), it is
assumed not to modify the kernel. Equation (1) with kernel
(2) is called “fractional” because if A = ȧ, then the nonlocal
term in (1) is proportional to the Caputo fractional derivative
dα

dtα a(t ) = 1
�(1−α)

∫ t
0 (t − τ )−α ȧ(τ ) dτ . Although writing the

FLE in terms of the fractional derivative may be insightful
[4], the equation can be, and often is, exploited with no tools
specific to fractional calculus.

Among other types of generalized Langevin equations,
the FLE is distinguished by the diverging integral γ =∫ ∞

0 K (t ) dt , which in other cases gives the friction constant
γ in the Markovian approximation. Therefore, there is no
Markovian approximation for the FLE. A physical conse-
quence of this mathematical property, as was noticed above,
is anomalous diffusion: If A stands for the velocity ẋ of a
Brownian object, then the FLE predicts subdiffusion, i.e.,
the mean-square displacement 〈x2(t )〉 increasing sublinearly,
namely, as tα [2,3]. Another peculiarity is that stochastic
processes governed by the FLE exhibit nontrivial ergodic
properties [5].
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As a matter of fact, the aforementioned unique features of
the FLE still hold if the power-law dependence (2) takes place
not for the entire time domain, but only asymptotically at long
times,

K (t ) ∼ t−α, 0 < α < 1, as t → ∞. (3)

One may call equations with kernels (3) asymptotically frac-
tional, but we prefer to keep to the established term FLE for
such equations as well, even though in that case the nonlocal
term in (1) may lose the meaning of a fractional derivative.

The FLE was first introduced on a phenomenological basis
to describe anomalous diffusion in geometrically disordered
and fractally organized systems like percolation clusters [6].
The existence of a dynamical theory giving rise to the FLE
is far from obvious and was explicitly doubted [7]. Later
studies, however, suggested that the origin of the FLE in many
phenomena, particularly protein conformational transitions,
may be purely dynamical [8,9]. Is there a specific feature
of inherent dynamics in complex systems characteristic of
subdiffusion and emergence of the FLE?

A standard model to formally derive a generalized
Langevin equation with a memory kernel of any assigned
form is that of a Brownian particle linearly coupled to the
bath comprised of independent harmonic oscillators [1,10].
In such a setting, the memory kernel can be expressed as
a Fourier transform of a certain function C(ω), describing
spectral properties of the bath and bath’s coupling to a system
(see below). Assuming that

C(ω) = C0 ωβ, −1 < β < 0, (4)

one recovers the fractional kernel (2) with the exponent
α = 1 + β [11]. Other approaches to derive the FLE were
considered in Refs. [10,12,13].

In this paper we show that with additional dissipative
forces acting on the bath oscillators the aforementioned stan-
dard model leads to the FLE under a much less restrictive
condition. It still has the form (4), but for a larger range of
β, namely, −1 < β < 1. For the the fractional exponent our
model predicts α = (1 + β )/2 instead of α = 1 + β for the
standard model. More importantly, the power-law dependence

2470-0045/2019/99(5)/052125(5) 052125-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052125&domain=pdf&date_stamp=2019-05-20
https://doi.org/10.1103/PhysRevE.99.052125


ALEX V. PLYUKHIN PHYSICAL REVIEW E 99, 052125 (2019)

FIG. 1. The idealized scheme of the model: A systems of interest
(the large central circle) is directly coupled to oscillators of the
slow bath (medium-size inner circles), which in turn are coupled to
particles of the fast bath (small outer circles). The latter are taken
into account implicitly à la Langevin.

of the spectral function C(ω) is required not for the entire
frequency range (as in the standard model), but only asymp-
totically in the limit ω → 0; see Eq. (30) below. We argue
that a rather relaxed character of this condition may explain
the omnipresence of fractional stochastic dynamics in a wide
range of complex systems.

We start with an observation that in many systems exhibit-
ing fractional stochastic dynamics the thermal bath involves
two groups of dynamical variables evolving on well-separated
timescales. The separation of timescales for a system of
interest on the one hand, and for the bath variables on the
other hand, is, of course, a common feature in many statistical
mechanical models. In contrast, a specific assumption of the
presented model is that the separation of timescales takes
place for the bath alone. For brevity, we shall refer to the parts
of the bath comprising slow and fast variables as the slow
and fast baths, respectively, assuming that both baths have
the same temperature. For a macromolecule in a solvent [8,9],
the slow bath refers to slowly evolving degrees of freedom
of the macromolecule itself, while the fast bath comprises
molecules of the solvent as well as fast degrees of of freedom
of the macromolecule. Schematically, the model with such a
double hierarchy of the bath is depicted in Fig. 1.

We shall assume that (1) the slow bath has no characteristic
timescale except the lower cutoff value t0 (corresponding to
the highest-frequency mode [10]) and (2) a characteristic time
t1 of the fast bath does exist and is much shorter than t0,
t1 � t0. It is not required that the two baths are independent.
On the contrary, the coupling of the slow bath variables to the
fast bath will be shown to be essential for the emergence of the
fractional dynamics. On the other hand, we shall assume that
the influence of the slow bath on dynamics of the fast one is
negligible. Under these assumptions it is natural to describe
the dynamics of slow and fast baths in different manners.
Namely, the dynamics of slow bath variables will be taken
into account explicitly, while effects of the fast bath will be
modeled implicitly by adding Markovian Langevin forces,
i.e., in the same way as in the Rouse model used in polymer
physics.

We describe the slow bath as a set of N independent
oscillators, linearly coupled to a system of interest, which we
shall call the “particle.” The Hamiltonian of the particle and

the slow bath we choose to be of the Caldeira-Leggett form
[1,10]

H = 1

2M
P2 + Hb, (5)

Hb =
N∑

i=1

{
1

2
p2

i + ω2
i

2

(
qi − γi

ω2
i

Q

)2
}

. (6)

Here (Q, P) and {qi, pi} are the coordinates and momenta
of the particle and slow bath oscillators, respectively, ω j

oscillators frequencies, γi coupling constants, M the mass of
the particle, and the masses of all oscillators are set equal to
one. A physically plausible interpretation of this Hamiltonian
suggests that the independent oscillators represent collective
normal modes of the slow bath rather than the bath’s individ-
ual constituents.

The equations of motion corresponding to the above
Hamiltonian read

Ṗ =
N∑

i=1

γi

(
qi − γi

ω2
i

Q

)
, (7)

ṗi = −ω2
i qi + γi Q. (8)

These equations are identical to those of the standard oscil-
lator bath model [1,10] and yet do not take into account the
presence of the fast bath. The effects of the latter we describe
by adding time-local Langevin forces

fi = −2λ pi + ξi, (9)

acting on ith oscillator of the slow bath. Here the white noise
forces ξi(t ) are zero-centered and related to the damping
coefficient λ (assumed to be the same for all oscillators) by
the fluctuation-dissipation relations

〈ξi(t ) ξi′ (t
′)〉 = 4λ kBT δ(t − t ′) δii′ . (10)

Here the Kronecker symbol δii′ implies that stochastic forces
ξi acting on different oscillators are uncorrelated.

With the Langevin forces added, the equations of motions
for the slow bath oscillators (8) take the form

ṗi = −ω2
i qi + γi Q − 2λ pi + ξi. (11)

Replacing momenta by velocities, pi = q̇i, one can rewrite
this as equations for qi,

q̈i + 2λ q̇i + ω2
i qi = γi Q + ξi. (12)

In our model, these are equations of motion of the slow bath
oscillators coupled to the particle and to the fast bath.

We shall assume that an equation of motion for the particle
still has the form (7), i.e., the particle is directly coupled to
the slow bath only (as depicted in Fig. 1). This assumption is
not essential: a coupling of the particle to the fast bath can be
easily taken into account as well, but it would have a trivial
effect of an additional delta-function contribution in the final
expression for the memory kernel, which does not affect the
asymptotic long-time properties of the model.

Solving Eq. (12), for instance, by the method of Laplace
transforms, one finds

qi(t ) = q0
i (t ) +

∫ t

0
bi(t − τ ) [γi Q(τ ) + ξi(τ )] dτ. (13)
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Here q0
i (t ) is a solution of the corresponding homogeneous

equation q̈i + 2λ q̇i + ω2
i qi = 0, which we write as

q0
i (t ) = ai(t ) qi(0) + bi(t ) q̇i(0), (14)

where the functions ai(t ) and bi(t ) are

ai(t ) = e−λt

(
cosh �it + λ

�i
sinh �it

)
, (15)

bi(t ) = e−λt

�i
sinh �it . (16)

In these expressions, the frequency-like parameter

�i =
√

λ2 − ω2
j (17)

is real for overdamped (ωi < λ) and imaginary for under-
damped (ωi > λ) oscillators, yet in both cases the functions
ai(t ) and bi(t ) are real-valued.

Expression (13) for qi(t ) is intended to be substituted into
the equation of motion (7) in order to bring the latter into a
Langevin form. To this end, the standard trick is to integrate
the term with Q in (13) by parts. Taking into account that an
antiderivative of bi(t ) equals

Bi(t ) =
∫ t

0
bi(τ ) dτ = 1

ω2
j

[1 − ai(t )], (18)

one brings expression (13) into the form

qi(t ) = q0
i (t ) − γi

ω2
i

∫ t

0
ai(t − τ )Q̇(τ ) dτ + γi

ω2
i

Q(t )

− γi

ω2
i

ai(t ) Q(0) +
∫ t

0
bi(t − τ ) ξi(τ ) dτ. (19)

Substitution of this expression into the particle’s equation of
motion (7) yields the generalized Langevin equation

Ṗ(t ) = −
∫ t

0
K (t − τ ) P(τ ) dτ + F (t ), (20)

with the memory kernel

K (t ) = 1

M

N∑
i=1

(
γi

ωi

)2

ai(t ) (21)

and the noise force

F (t ) =
N∑

i=1

γi

{
q0

i (t ) − γi

ω2
i

ai(t )Q(0) +
∫ t

0
bi(t − τ )ξi(τ ) dτ

}
.

If there is no fast bath, then (λ, ξi ) → 0, and the above
expressions coincide with that for the standard oscillator bath
model [1,10]. Suppose the initial state of the slow bath is
described by a canonical ensemble with the Hamiltonian Hb

given by (6), then one can show that the noise F (t ) is zero-
centered, 〈F (t )〉 = 0, and the fluctuation-dissipation relation
between F (t ) and K (t ) can be readily established.

Next, we make a usual assumption that in the limit N → ∞
the spectrum of the slow bath becomes continuous, {ωi} → ω,
and the sums over i can be replaced by integrals,

∑
i →∫ ∞

0 dω g(ω)(· · · ), where g(ω) is the density of the slow
bath states [1,10,14]. Replacing the coupling constants and

functions ai(t ) of individual oscillators by smooth functions
of frequency,

γi → γ (ω), ai(t ) → a(t, ω), (22)

the memory kernel (21) can be written in the form

K (t ) = 1

M

∫ ∞

0
dω g(ω)

γ (ω)2

ω2
a(t, ω). (23)

We rewrite this more compactly as

K (t ) =
∫ ∞

0
dωC(ω) a(t, ω) (24)

defining the function

C(ω) = 1

M
g(ω)

γ (ω)2

ω2
, (25)

which accumulates the spectral properties of the slow bath.
As follows from (15) and (24), the Laplace transform of

the kernel K̃ (s) = ∫ ∞
0 e−st K (t ) dt reads

K̃ (s) =
∫ ∞

0
dωC(ω)

s + 2λ

s2 + 2λs + ω2
. (26)

According to a Tauberian theorem [15], the long-time behav-
ior of the kernel K (t ) is determined by the behavior of its
Laplace transform K̃ (s) at small s as follows:

K̃ (s) ∼ s−γ as s → 0 ⇒ K (t ) ∼ tγ−1 as t → ∞. (27)

In order to find an asymptotic form of K̃ (s) for small s, one
can neglect s in the numerator and s2 in the denominator of
the integrand of (26). Then it can be written as

K̃ (s) = π

√
2 λ

s

∫ ∞

0
dωC(ω) L(ω,

√
2λs), (28)

where L(ω,�) is the zero-centered Lorentzian (or Cauchy)
distribution

L(ω,�) = 1

π

�

ω2 + �2
. (29)

Since L(ω,�) tends to the delta function δ(ω) as � → 0, it is
intuitively clear that, unless the function C(ω) increases too
fast, only the low-frequency behavior of C(ω) matters for the
asymptotic evaluation of integral (28) as s → 0.

Consider the spectral function of the asymptotic form

C(ω) ∼ ωβ, −1 < β < 1, as ω → 0. (30)

The only condition we impose on C(ω) at nonsmall frequen-
cies is the convergence of integral (28). For such C(ω) the in-
tegrand D(ω) = C(ω)L(ω,

√
2λs) of (28) behaves differently

for the two subintervals of β:
(a) −1 < β < 0: D(ω) has an integrable singularity at the

lower integration limit ω = 0;
(b) 0 < β < 1: D(ω) has a maximum at ωm > 0.
These two types of behavior of D(ω) actually become qual-

itatively similar for small s because for case (b) the position
of the maximum ωm approaches zero and the maximum value
diverges as s → 0; see Fig. 2.

One can show that in both cases the main contribution to
the integral (28) comes from a neighborhood of ω = 0 and has
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FIG. 2. The integrand function D(ω) = C(ω) L(ω,
√

2λs) of the
kernel (28) for C(ω) = ωβ with β = 0.7 and several values of the
Laplace variable s (arb. units).

the asymptotic form

K̃ (s) ∼ s−γ , γ = 1
2 (1 − β ) (31)

as s → 0. If the power law (30) with 0 < β < 1, case (b),
holds for the entire frequency range, than the result (31) can
be verified directly substituting C(ω) = C0 ωβ into (28).

In a far more general and interesting case when the power
dependence of C(ω) holds only asymptotically for small ω,
as condition (30) requires, the result (31) can be justified, for
both cases (a) and (b), as follows. Let us split the integral (28)
into two parts, with the integration ranges (0, ε) and (ε,∞).
For large ω the factor L(ω,

√
2λs)/

√
s in (28) depends on s

only weakly. It is therefore natural to assume that the second
part, involving integration over (ε,∞), gives a contribution
which is bounded for s → 0. Then for an arbitrary small but
fixed ε and for s → 0 the kernel K̃ (s) is determined by the
first part, diverging for small s,

K̃ (s) ≈ π

√
2λ

s

∫ ε

0
C(ω) L

(
ω,

√
2λs

)
dω

∝ 2F1

(
1,

1 + β

2
;

3 + β

2
; − ε2

2λs

)
ε1+β

(1 + β ) s
. (32)

Taking into account asymptotic properties of the Gauss hyper-
geometric function 2F1(a, b; c; z) at large z [16], one recovers
from (32) the power-law asymptotic behavior (31).

Finally, using the Tauberian theorem (27), one finds from
(31) that in the time domain the kernel has a fractional

asymptotic form,

K (t ) ∼ t−α, α = 1 − γ = 1
2 (1 + β ). (33)

Since we assume −1 < β < 1, then 0 < α < 1.
The above asymptotic arguments can be illustrated with

specific spectral functions defined for the entire frequency
range. As an example consider

C(ω) = C0

1 + τ 2 ω2
. (34)

In the standard oscillator bath model, the memory kernel is
a Fourier transform of C(ω), K (t ) = ∫ ∞

0 dωC(ω) cos(ωt ),
and for the spectral function (34) takes the exponential form
K (t ) = K0 e−|t |/τ [10]. Instead, in the present model the corre-
sponding kernel is fractional, and its dependence on τ disap-
pears: since C(ω) ∼ ω0 as ω → 0, then β = 0, and Eq. (33)
predicts K (t ) ∼ t−1/2. The exact evaluation of the kernel by
substituting C(ω) of the form (34) into (28) confirms this
result.

Another example is the spectral function C(ω) =
C0 ωβ e−τω with −1 < β < 1. Again, the direct evaluation
of the kernel using (28) confirms the asymptotic kernel’s
behavior (33).

In the above examples, the emergence of fractional kernel
(33) depends neither on τ , nor on λ (the parameters character-
izing the slow and fast baths, respectively), but only on low-
frequency spectral properties of the slow bath. This illustrates
the robustness of fractional dynamics in the presented model.

In conclusion, the presented model shows that the frac-
tional Langevin dynamics may emerge under much broader
conditions than some earlier models suggested. The condi-
tions concern the bath’s asymptotic low-frequency properties
only. Although modeling of the slow bath as a set of inde-
pendent oscillators may appear on first glance unrealistic, it
is in fact physically well motivated and relevant for systems
like lattices and networks, whose Hamiltonian can be diago-
nalized, exactly or approximately, into a sum of contributions
from independent collective normal modes. As a simple illus-
tration one may point to the familiar problem of a tagged par-
ticle, or an isotope, in an otherwise uniform one-dimensional
harmonic lattice immersed in a fluid, The problem can be
mapped into the model discussed in this paper with the chain’s
normal modes serving as independent oscillators of the slow
bath, and the fluid as a fast Langevin bath. For the linear
harmonic chain the explicit expressions for the normal mode
g(ω) and coupling γ (ω) distributions are well known [14].
Then for the spectral function (25) one finds the asymptotic
dependence C(ω) ∼ ω0 as ω → 0. Accordingly β = 0, and
for the tagged particle’s momentum our model predicts the
FLE with the fractional exponent α = (1 + β )/2 = 1/2. For
an overdamped chain this is a well-known result [12], but here
we get it for an arbitrary level of damping.
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