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Many approaches to modeling reaction-diffusion systems with anomalous transport rely on deterministic
equations which ignore fluctuations arising due to finite particle numbers. Starting from an individual-based
model we use a generating-functional approach to derive a Gaussian approximation for this intrinsic noise in
subdiffusive systems. This results in corrections to the deterministic fractional reaction-diffusion equations.
Using this analytical approach, we study the onset of noise-driven quasipatterns in reaction-subdiffusion systems.
We find that subdiffusion can be conducive to the formation of both deterministic and stochastic patterns. Our
analysis shows that the combination of subdiffusion and intrinsic stochasticity can reduce the threshold ratio of
the effective diffusion coefficients required for pattern formation to a greater degree than either effect on its own.
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I. INTRODUCTION

Reaction-diffusion schemes are a well-established tool for
modeling nonlinear pattern-forming phenomena in a wide
variety of systems, ranging from developmental biology [1–3]
to chemical reactions [4], from the self-organization of slime
mold [5] and the distribution of mussels [6] to Rayleigh-
Bénard convection in fluids [7]. Most notably, Turing showed
in his seminal work [8] that systems which have a stable fixed
point when diffusion is not present could exhibit an instabil-
ity in the presence of diffusion. He showed that diffusion,
normally considered a stabilizing, equilibrating influence,
combined with activator-inhibitor reaction dynamics, could
provide a simple mechanism for pattern formation.

A difficulty that arises in the Turing interpretation of pat-
tern formation is that the diffusion constants of the activator
and inhibitor species are often required to be quite disparate
for patterns to be found [9]. These large ratios of diffusion
constants are unphysical.

One potential solution to this is that a system may not have
to undergo a deterministic Turing instability to exhibit pattern
formation. Stochastic quasipatterns, which arise due to the in-
trinsic noise of individual-based systems, may be sufficient to
explain the spatial ordering observed in some natural systems
[10,11]. The emergence of such quasipatterns requires a lower
threshold ratio of diffusion coefficients than the emergence
of deterministic patterns [12,13]. Noise-induced quasipatterns
have been observed recently in experimental biological sys-
tems [14,15].

Another proposed solution to this problem is modeling
one or more of the components as subdiffusing [16,17];
that is, diffusing with a mean-squared displacement which
is sublinear in time. This has also been shown to reduce
the ratio of the effective diffusion coefficients required for
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pattern formation [18,19]. Furthermore, subdiffusion has been
observed in many experimental systems with low particle
numbers, such as proteins moving in the cell membrane
[20,21] and in other transport phenomena involving obstacles
or binding sites [22,23]. It has been argued that morphogens
could be subject to similar binding and trapping effects and
move subdiffusively as a result [24–26].

However, as of yet, the treatment of reaction-subdiffusion
systems has been restricted to deterministic equations which
ignore the stochastic effects due to the finite numbers of
particles involved. Examples of the deterministic treatment
include Refs. [25–27]. Stochastic effects due to demographic
noise are important particularly in biological systems, where
subdiffusion has been observed, and where the particle num-
bers involved can be sufficiently small for noise to be non-
negligible. From a more theoretical perspective, subdiffusion
is a non-Markovian phenomenon. Because of this, reaction-
diffusion systems with subdiffusing components provide a
good opportunity to study the combination of memory effects
and intrinsic noise.

In this work, we use an individual-based approach, which
explicitly takes into account intrinsic stochasticity, to study
systems with reactions and anomalous diffusion. We carry
out a path-integral (or generating-functional) analysis of the
stochastic dynamics, combining transport and reactions, and
perform an expansion in the strength of the intrinsic noise. To
lowest order, effectively neglecting fluctuations, we recover
the familiar deterministic reaction-subdiffusion equations.
Taking into account subleading orders of fluctuations, we find
additional coloured Gaussian noise terms in these equations,
encapsulating the intrinsic stochasticity of the individual-
based system. We show that the analytical expressions for this
noise can be used to characterize the emergence of stochastic
quasipatterns in reaction systems with subdiffusing compo-
nents. Specifically, we use both the Brusselator [28] and
Lengyel-Epstein [29,30] systems as examples. We conclude
that the combination of the two effects, noise-driven quasipat-
terns and subdiffusion, can lower the critical ratio of diffusion
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coefficients required for pattern formation significantly, and to
a greater degree than either effect on its own.

The remainder of this paper organized as follows: In
Sec. II, we describe the individual-based model in detail and
briefly present some background material related to subdif-
fusion and to the Brusselator and Lengyel-Epstein models.
Section III contains an outline of our analysis of the
individual-based system and the generating-functional ap-
proach to approximating the noise; further details of this
calculation can be found in the Supplemental Material [31]. In
Sec. IV, we show that this approach can be used to derive the
familiar reaction-diffusion equations with fractional diffusion,
now with additional noise terms. In Sec. V, we describe how
one can then compute the fluctuations about the deterministic
solution, using the linear-noise approximation. We verify our
approach by comparing our theory predictions to stochastic
simulations. In Sec. VI, we go on to use our theoretical
approach to find the parameter regions where stochastic pat-
terns are present and where deterministic patterns are present.
Finally, in Sec. VII we discuss our results and conclude.

II. MODEL CONSTRUCTION AND BACKGROUND

In this section we introduce our model and the general no-
tation, and we briefly summarize some background material.
We also define the Brusselator and Lengyel-Epstein reaction
schemes, which we later use to illustrate the formation of
quasipatterns in stochastic subdiffusive systems.

A. Individual-based model

We consider a general class of individual-based reaction-
diffusion models. We refer to the individuals as “particles”
from here on, but these particles may represent biological
entities or molecules of chemical reactants.

Several species of particle react with one another and hop
around on a discrete lattice. We use α to index the different
species. Each lattice site can be occupied by multiple particles
simultaneously, and we denote the number of particles of type
α at site i at time t by nα

i,t . Reactions between particles occur
locally within a given site of the lattice and result in the
annihilation and creation of particles or the conversion of one
type of particle into another. For the purposes of simplicity,
we will confine ourselves to a discrete one-dimensional lattice
with periodic boundary conditions. Most of our analysis could
be generalized to other spatial arrangements or to higher
dimensions, and indeed the continuum limit may be taken.

Particles are assigned a random waiting-time at birth (cre-
ation), drawn from an as yet unspecified waiting-time prob-
ability density function ψα (τ ). This may be different for the
different species of particle, as indicated by the superscript.
The particle then hops to a new location once it has waited for
the assigned time, assuming that it has not been eliminated
in a reaction. A new waiting-time is drawn from ψα (τ ) once
the particle has hopped and the process begins again. This
means that a particle which has been at its current site for
an amount of time τ hops with a rate hα

τ = ψα (τ )
�α (τ ) , where

�α (τ ) = 1 − ∫ τ

0 ψα (τ ′)dτ ′ is the survival probability. The
quantity hα

τ is often referred to as the hazard rate [16]; we
use subscript notation for τ for later convenience. When the

particle does hop, its new location is drawn from the hopping
kernel φi,i′ . Here φi,i′ is the probability that the particle hops
from location i′ to i, given that a hopping event occurs. For
our purposes, φi,i′ will be a function of |i′ − i| only, so as to
ensure the translational invariance of the problem. In principle
the hopping kernel could also be different for the different
species. To keep the model simple we use the same hopping
kernel for all species; it is straightforward to extend the model
to the more general case.

During the particles’ sojourn periods at a given site, they
may undergo reactions. We index the various reaction types
with r. The rate λi,r,t at which reactions of type r occur at
site i is in general dependent on the number of particles of
the various types currently at site i. We denote the number
of particles of type α that are produced or annihilated in a
reaction of type r by να

r , which can be positive or negative.
The constants να

r are the so-called stoichiometric coefficients
[32]. If a particle is annihilated in a reaction, then the hop
which was scheduled to occur for that particle no longer
occurs. As a result of this and of the fact that the reaction rates
depend on local concentrations, the hopping process and the
reactions are interdependent and cannot easily be separated
as in conventional reaction-diffusion equations (such as those
used by Turing [8]).

B. Subdiffusion

We first discuss the phenomenon of subdiffusion in the
case where particles undergo hopping events but no reac-
tions. Particles are said to undergo subdiffusion if the mean-
squared displacement for a single particle behaves as fol-
lows in the long term: 〈x(t )2〉 ∼ tγ , where 0 < γ < 1. The
behavior approaches normal diffusion as γ → 1. Subdiffu-
sive transport may be produced by choosing a long-tailed
waiting-time distribution ψ (t ) for particles which hop around
as described in the previous section (for the time being we
suppress the dependence on the particle species α). The
distribution we will use in this paper to model subdiffusion
is that of Mittag-Leffler, which produces the desired behavior
and is particularly convenient for the theoretical analysis.
That is, we choose ψ (t ) = − d

dt Eγ [−( t
t0

)γ ] where Eγ [x] is
the Mittag-Leffler function [33]. The parameter t0 sets the
overall scale of the hopping process. This distribution has
the convenient property that its Laplace transform is given
by ψ̂ (u) = 1

1+(t0u)γ . Notably, for γ = 1 the Mittag-Leffler

function reduces to an exponential such that ψ (t ) = 1
t0

e− t
t0 .

For a single species of diffusing particle, which undergoes
no reactions, one may use the Mittag-Leffler waiting-time
distribution, along with the Montroll-Weiss formula [34,35],
to recover the fractional diffusion equation [16,36,37],

∂Pi,t

∂t
=

∑
i′

(φi,i′ − δi,i′ )t
−γ

0 0D1−γ
t Pi,t , (1)

where Pi,t is the probability of finding a particular particle
at position i at time t . The Riemann-Liouville fractional
derivative 0D1−γ

t is defined as

0D1−γ
t f (t ) = 1

�(γ )

∂

∂t

∫ t

0

f (t ′)
(t − t ′)1−γ

dt ′, (2)
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where �(·) denotes the gamma function. The fractional deriva-
tive has the property

Lt
{

0D1−γ
t f (t )

}
(u) = u1−γ f̂ (u), (3)

where we use Lt to denote the Laplace transform with respect
to t . One can show from Eq. (1) that 〈i2〉 = 2

3�(1+γ ) ( t
t0

)γ , if
one uses the symmetrical hopping kernel

φi,i′ =

⎧⎪⎨
⎪⎩

1
3 , if i = i′ + 1
1
3 , if i = i′
1
3 , if i = i′ − 1

. (4)

In our system, different species of particles may hop with
different typical waiting times tα

0 and different anomalous
exponents γ α . Precisely, the waiting-time distributions for
each species are given by

ψα (t ) = − d

dt

{
Eγ α

[
−

(
t

tα
0

)γ α
]}

. (5)

C. Reaction schemes

As example systems, we will use the Brusselator [28] and
the Lengyel-Epstein [29,30] models. The Brusselator is an
activator-inhibitor model, first conceived of to describe oscil-
latory chemical reactions such as the Belousov-Zhabotinsky
reaction [38]. The reactions between the two species of parti-
cle involved, A and B, are given by

∅ aN−→ XA,

2XA + XB

1
N2−→ 3XA,

XA
b−→ XB,

XA
1−→ ∅. (6)

Without hopping the system has a homogeneous stable
deterministic fixed point at n̄(A) = aN, n̄(B) = b

a N so long as
b < 1 + a2, where n̄(α) is the number of particles of type α at
the fixed point.

The Lengyel-Epstein model was introduced primarily as a
way of modeling the ClO−

2 -I−-MA reaction, which exhibits
Turing patterns experimentally [39]. We use a simplified two-
species version of the full model, which effectively assumes
that the concentrations of the remaining components are con-
stant. The reactions are given by

∅ aN−→ XA,

XA
b−→ XB, (7)

4XA + XB
R−→ ∅,

where the rate R = 1
(n(A) )3

cN
dN2+(n(A) )2 is dependent on the

concentration of type-A particles. The Lengyel-Epstein
system has a homogeneous deterministic fixed point at n̄(A) =
aN
5b , n̄(B) = bdN

c [1 + ( n̄(A)√
dN

)
2
] so long as ca > 3

5 a2 − 25b2d .
In both models, species A is the activator and species B is

the inhibitor. The parameter N in both systems characterizes
the typical number of particles per site and will become

useful to us later when we perform a system-size expansion
to analyze noise in the these systems. The reaction rates (the
number of reactions which occur per unit time) are calculated
according to the usual mass action kinetics [40]. For exam-
ple, the rate at which the last reaction in Eq. (7) occurs is
R×(n(A) )4×n(B) = cNn(A)n(B)

dN2+(n(A) )2 .

III. APPROXIMATION OF THE FLUCTUATIONS
IN PARTICLE NUMBER USING GAUSSIAN NOISE

A. Formulation of the problem

To capture the noise-driven effects in the models described
in Sec. II A, we carry out an expansion in the inverse system-
size. The idea is similar to the principles underlying the
Kramers–Moyal expansion or the system-size expansion by
van Kampen for Markovian systems [41]. However, there are
also conceptual differences due to the non-Markovian nature
of subdiffusion.

To carry out the expansion, we use the reciprocal of the pa-
rameter N in Eqs. (6) and (7); N characterizes the typical par-
ticle number per site. More specifically, ensemble-averaged
particle numbers are of the order N at each lattice site, whereas
the fluctuations in particle numbers are of the order

√
N . Thus,

for large N , the noise is small in relative terms. The limit
N → ∞ reproduces the deterministic behavior, and when N
is large but finite the expansion can be expected to accurately
describe stochastic corrections. By performing the expansion,
we obtain a set of stochastic differential equations (SDEs)
[42] with Gaussian noise terms. These SDEs encapsulate not
only the deterministic trajectory of the system but also the
next-order stochastic noise corrections.

A complicating feature of systems where the waiting-time
distribution for the hops is nonexponential is that the hazard
rate for hopping is nonconstant, meaning that what happens at
a given point in time is dependent on the history of the system.
A sensible and common way to deconvolute the problem is to
introduce the age coordinate τ , which denotes the length of
time that a particle has resided at a particular location since
its last hop [43]. That is, we denote the number of particles
of type α which have resided at site i for a time between
τ1 and τ2 by

∫ t2
t1

nα
i,τ,t dτ . This effectively recasts the problem

as Markovian. The quantity nα
i,τ,t is a density of particles per

time τ .
To develop the formalism we discretize time into steps of

size . We assume that all reaction rates and hopping rates
remain constant during each step, similar to the τ -leaping
approach to Gillespie simulations in discrete time [44]. Even-
tually, we will take the limit  → 0 to restore continuous
time.

For our system, the quantity nα
i,τ,t may change due to two

effects in each time step: reactions and hopping. We represent
the changes due to these effects by the following quantities,
respectively: k(R)α

i,r,τ,t and k(H )α
i,i′,τ,t . That is, k(R)α

i,r,τ,t is the number of
particles of type α and age τ at position i which are annihilated
in the time step from t to t +  due to reactions of type
r. We note that newly created particles have age zero; this
will be dealt with separately below. Similarly, k(H )α

i,i′,τ,t is the
number of particles of age τ hopping away from position
i′ to i at time t . The sets of integer variables {k(R)α

i,r,τ,t } and
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{k(H )α
i,i′,τ,t } are stochastic, that is they take different values for

every realization of the system.
We then have

nα
i,τ+,t+ − nα

i,τ,t = −
∑

r

k(R)α
i,r,τ,tθ

(−να
r

)


−
∑

i′

k(H )α
i′,i,τ,t


,

(8)

where θ (·) denotes the Heaviside function. We note that,
in the discrete-time setup, the total number of particles at
site i at time t is given by nα

i,t = 
∑

m nα
i,τ=m,t ; the quantity

nα
i,τ,t therefore has dimensions of inverse time, in-line with the

expression on the right-hand side of Eq. (8).
Equation (8) only includes reactions which annihilate par-

ticles, i.e., it describes the outflux of particles from position
i. When particles are produced, or when they newly arrive at
a location after hopping, they have age τ = 0. Therefore, the
influx of particles to position i is given by

nα
i,0,t+ =

∑
r

�
(R)
i,r,tν

α
r θ

(
να

r

)


+
∑

i′

k(H )α
i,i′,τ,t


, (9)

where �
(R)
i,r,t is the number of reactions of type r firing in

the time window t to t +  at position i. We note also
that θ (−να

r )�(R)
i,r,t |να

r | = ∑
τ k(R)α

i,r,τ,t . Furthermore, particles of a
given species which are annihilated due to a reaction at a given
site are selected at random from all particles of this species at
the site, irrespective of age.

B. Generating functional approach to the system-size expansion

To approximate the stochastic fluctuations in particle
number with Gaussian noise, one would normally write
down a master equation and expand in powers of N−1

to obtain a Fokker-Planck equation; see, for example,
Refs. [13,42,45,46]. From this Fokker-Planck equation one
could read off the corresponding SDE. Since the hopping
of the particles in our system is history-dependent, there is
no straightforward way to write down a master equation,
even after the introduction of the additional age coordinate τ .
The most natural way to analyze a non-Markovian stochastic
system is with the Martin-Siggia-Rose-Janssen-De Dominicis
(MSRJD) path integral, which takes into account all possible
histories of the system [47–49]. Such an approach allows one
to perform the expansion in inverse powers of the system-size
without writing down a master equation explicitly [50,51].

To reflect the system-size dependence in our calculation we
introduce xα

i,τ,t = nα
i,τ,t

N . These quantities are of order N0. The
MSRJD generating functional then takes the form of a path
integral over all possible trajectories of the variables {xα

i,τ,t }
[52]. It can be written as

Z
[{

�α
i,τ,t

}] =
〈

exp

(
i

∑
i,α,τ,t

�α
i,τ,t x

α
i,τ,t

)〉
{xα

i,τ,t }
, (10)

where 〈. . .〉{xα
i,τ,t } denotes an average over all trajectories of

the system. The {�α
i,τ,t } are source variables. The procedure

for performing the expansion in N−1 is similar to that used

in Refs. [50,51]: We find the joint probability distribution
for the sets of variables {k(R)α

i,r,τ,t } and {k(H )α
i,i′,τ,t } and rewrite the

generating functional in term of these quantities. We then
average these random numbers against their joint distribu-
tion, to obtain the generating functional in terms of only
the coordinates {xα

i,τ,t } and the model parameters. We then
carry out an expansion in N−1 up to and including subleading
order. This approximate generating functional is recognized
as that of an effective SDE. The leading-order terms in this
SDE correspond to the deterministic dynamics; after further
rearrangement it reproduces the well-known deterministic
reaction-subdiffusion equation, as shown in Sec. IV. This
deterministic approximation is accurate in the limit N → ∞.
The next-order terms correspond to Gaussian noise correc-
tions, with a standard deviation of order N−1/2.

The details of this procedure are provided in the Supple-
mental Material (Secs. S1 and S2 [31]); here we only quote
the final result, in which we have restored continuous time. It
is given by the following stochastic equations:

∂nα
i,τ,t

∂t
+ ∂nα

i,τ,t

∂τ
= −hα

τ nα
i,τ,t − pα

i,t n
α
i,τ,t + ξα

i,τ,t ,

nα
i,0,t =

∑
i′

φi,i′

∫ t

0
hα

τ nα
i′,τ,t dτ + γ α

i,t + ξα
i,0,t .

(11)

In these expressions, pα
i,t is the per capita removal rate for

particles of species α at position i and time t ; γ α
i,t is the total

production rate for the particles of type α at i and t , that is

pα
i,t n

α
i,τ,t =

∑
r

λi,r,t

∣∣να
r

∣∣nα
i,τ,t

nα
i,t

θ
(−να

r

)
,

γ α
i,t =

∑
r

λi,r,t |να
r |θ(

να
r

)
. (12)

The quantities λi,r,t , να
r , φi,i′ , and hα

τ are defined in Sec. II A.
The fraction nα

i,τ,t/nα
i,t in the first of the relations in Eq. (12)

reflects the fact that the particles which are to be removed
are selected irrespective of their age τ . The quantities {ξα

i,τ,t }
in Eq. (11) represent white Gaussian noise of zero mean.
Eqs. (11) are approximations of the full random process given
by Eqs. (8) and (9), in which the randomness is discrete. While
the noise {ξα

i,τ,t } is white, we note that the components are
correlated across species and lattice sites. The expressions
for these correlations are somewhat lengthy; we derive and
give them in Sec. S2 of the Supplemental Material [31]. It is
also important to note that the noise is multiplicative, i.e., the
elements in the covariance matrix of the {ξα

i,τ,t } depend on the
variables {nα

i,τ,t }. This is similar to the outcome of a Kramers–
Moyal expansion of the master equation for conventional
Markovian systems [42,45].

IV. FRACTIONAL REACTION-DIFFUSION
EQUATION WITH NOISE

Using the waiting-time distributions discussed in Sec. II B
in conjunction with Eqs. (11), we are able to obtain the
fractional reaction-diffusion equation reported in the literature
(see, e.g., Refs. [18,25,26,53]) if we neglect the noise terms.
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Including these terms, we are able to capture effects driven by
the stochasticity of the original individual-based dynamics.

One proceeds from Eqs. (11) by integrating out the age
variables τ , with the aim of finding a time-evolution equation

in terms of only nα
i,t and the noise. Using the Mittag-Leffler

function from Eq. (5) as the waiting-time distribution, one
arrives at the following fractional reaction-diffusion equation
for the particle number nα

i,t :

∂nα
i,t

∂t
=

∑
i′

{(
φi,i′ − δi,i′

)(
tα
0

)−γ α

e− ∫ t
0 pα

i′ ,T ′ dT ′
0D1−γ α

t

[
nα

i′,t e
∫ t

0 pα
i′ ,T ′ dT ′]} + f α

i,t + ηα
i,t , (13)

where we have defined the total reaction rate f α
i,t = γ α

i,t − pα
i,t n

α
i,t .

In the limit of continuous space, the sum involving the hopping kernel becomes a Laplacian operator (i.e.,
∑

i′ (φi,i′ − δi,i′ ) →
σ 2∇2, with a suitable constant σ 2, related to the variance of hopping distances). Thus, the fractional reaction-diffusion equation
Eq. (13) corresponds to Eq. (3) in Ref. [18], but with the addition of a noise term. We recover the deterministic reaction-
subdiffusion equation if we take the infinite system-size limit, N → ∞, whereupon the noise becomes negligible.

One notes that the reaction and diffusion terms in Eq. (13) are coupled. This is due to the non-Markovian nature of the hopping
and the fact that particles may be annihilated in reactions and are thus unable to perform scheduled hops. The exponential factors
in Eqs. (13) correspond to the probability of particles surviving without being annihilated in a reaction.

The noise also involves such exponential factors and is given by

ηα
i,t =

∑
i′

{
(φi,i′ − δi,i′ )

[ ∫ t

0
ψα (τ )e− ∫ t

t−τ
pα

i′ ,T ′ dT ′
∫ τ

0

ξα
i′,T,T +t−τ

�α (T )e− ∫ T
0 pα

i′ ,T ′+t−τ
dT ′ dT dτ

− e
∫ t

0 pα
i′ ,T ′ dT ′(

tα
0

)−γ α

0D1−γ α

t

( ∫ t

0
�α (τ )e

∫ t−τ

0 pα
i′ ,T ′ dT ′

∫ τ

0

ξα
i′,T,T +t−τ

�α (T )e− ∫ T
0 pα

i′ ,T ′+t−τ
dT ′ dT dτ

)]}

+
∫ t

0
ξα

i,τ,t dτ + ξα
i,0,t . (14)

The derivation of Eqs. (13) and (14) from Eqs. (11) broadly follows the method in Ref. [53] or Ref. [54] but also handles the
additional noise terms. It is given in the Supplemental Material ([31] Sec. S3). The noise variables {ηα

i,t } involve integrals of
the {ξα

i,τ,t } and as a consequence they are correlated in time in addition to their correlations across components and lattice sites.
Given that the statistics of {ξα

i,τ,t } depend on the variables {nα
i,τ,t }, this noise is multiplicative as well.

Although the expression for the noise ηα
i,t in Eq. (14) appears cumbersome at first glance, a great deal of simplification can

be achieved in the regime where one considers small deviations about the homogeneous fixed point of the deterministic system.
We discuss this in the next section.

One notes that for γ → 1 we recover the normal reaction-diffusion equation where the reactions and diffusion are uncoupled:

∂nα
i,t

∂t
=

∑
i′

[
(φi,i′ − δi,i′ )

(
tα
0

)−1
nα

i′,t
] + f α

i,t + ηα
i,t . (15)

In this case, the expression for the noise also simplifies greatly
and contains no exponential factors:

ηα
i,t =

∫ t

0
ξα

i,τ,t dτ + ξα
i,0,t . (16)

This can be seen from Eq. (14) by using the fact that the
Mittag-Leffler function reduces to an exponential in the limit
γ → 1 and that the fractional derivative becomes an identity
operator. In this special case, 〈ξα

i,τ,tξ
α
i′,τ ′,t ′ 〉 ∝ δ(t − t ′), and

we then also have 〈ηα
i,τ,tη

α
i′,τ ′,t ′ 〉 ∝ δ(t − t ′). Therefore, in the

Markovian limit, we recover white noise. This is explored
further in the Supplemental Material ([31] Sec. S2).

V. LINEAR-NOISE APPROXIMATION AND COMPARISON
WITH SIMULATIONS

A. Linear-noise approximation

We now derive explicit expressions for the deviations of
the stochastic system (i.e., with a finite number of particles
per lattice site) from the solution of the deterministic reaction-
subdiffusion equation.

We write n̄α
i,t for the solution of Eq. (13) with the noise

term removed, and define the deviation from this deterministic
solution through

nα
i,t = n̄α

i,t + δα
i,t . (17)

We focus on fluctuations about the steady state, i.e., we
assume that n̄α

i,t ≡ n̄α is the homogeneous fixed point of the
deterministic system. From the results stated so far, we are
able to compute the correlation matrix of the fluctuations
〈δα

i,tδ
α′
i′,t ′ 〉, which we then compare with results from stochastic

simulations of the individual-based system.
The expansion in powers of N−1 in Sec. III was based on

the assumption that the fluctuations about the deterministic
trajectory were small in comparison to the total numbers
of particles. A more precise formulation of this assumption
allows us to make further simplifications. Since the noise term
ηα

i,t in Eq. (13) is of order N1/2, it is also reasonable that the
fluctuations would be such that δα

i,t ∼ O(N1/2). This is similar
to the assumption used by van Kampen [41] to perform the
system-size expansion now named after him. Using this, one
can expand Eq. (13) about the deterministic fixed point n̄α .
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FIG. 1. The correlator C (A)
q = 〈|δ̃(A)

q,t |2〉/N for the Brusselator model with a subdiffusing activator (a) and a subdiffusing inhibitor (b).
The markers represent simulation results and the solid lines depict results derived from the theory in the text. The model parameters are
(a) t (A)

0 = 0.6, t (B)
0 = 0.1, and (b) t (A)

0 = 1.33, t (B)
0 = 0.1, giving an effective diffusion coefficient ratio of θγ = 4.63 for both plots [see Eqs. (19)

and (20)]. The remaining model parameters are N = 4000, b = 1.8, and a = 1.1. We have γ = 0.5 for the subdiffusing component in both
figures. One observes that a range of nonzero Fourier modes q are excited to a greater extent than the q = 0 mode when the activator is
subdiffusing (a) for this parameter set. This is not the case when inhibitor subdiffuses (b). The simulations were averaged over 1000 trials with
41 discrete positions on the lattice. Data was taken at t = 20 to ensure a stationary state had been reached.

We note that the δα
i,t are small deviations about the homo-

geneous deterministic fixed point. The correlators 〈δα
i,tδ

α′
i′,t ′ 〉

therefore do not describe any deterministic pattern-forming
features of the system. Instead, they characterize stochas-
tic phenomena induced by fluctuations due to finite system
sizes N .

To leading order (i.e., sending N → ∞) we obtain the
deterministic dynamics already mentioned, and in which all
noise terms are removed. The terms to subleading order result
in a linear expression for the fluctuations δα

i,t in terms of ηα
i,t .

Within this order of approximation the quantities dependent
upon nα

i,t in the noise correlators 〈ηα
i,tη

α
i′,t ′ 〉 are evaluated at

the fixed point n̄α . The noise in the dynamics for the {δα
i,t }

is therefore now additive rather than multiplicative. The pro-
cedure is discussed further in Sec. S4 of the Supplemental
Material [31].

Once the linearized equations are found, the problem is
most naturally handled by taking Fourier and Laplace trans-
forms with respect to the spatial and temporal coordinates, re-
spectively. We use Fn{ fn}(q) = ∑

n einq fn = f̃q to denote the
discrete Fourier transform and Lt {gt }(u) = ∫ t

0 e−ut g(t )dt =
ĝu to denote the Laplace transform. We then obtain equations
of the form

ˆ̃δu,q = ˆ̃m
u,q

ˆ̃εu,q, (18)

with suitable Gaussian noise variables { ˆ̃εα
u,q}. In the time

domain this noise is colored. We use underscores to in-
dicate vectors in the space of species. The square matrix
ˆ̃m

u,q
= ( ˆ̃mu,q)αβ has dimension equal to the number of particle

species. Its precise form is given in the Supplemental Material
([31] Sec. S4), as are full expressions for the correlators
〈ε̃α

q,t ε̃
α′
q′,t ′ 〉.

It then remains to invert the Fourier and Laplace trans-
forms. Expressions for the resulting correlators 〈δα

i,tδ
α′
i′,t ′ 〉 are

given in the Supplemental Material ([31] Sec. S5). In practice,

the evaluation of the correlators 〈δα
i,tδ

α′
i′,t ′ 〉 is performed using

numerical inverse Laplace transform methods (such as that
of Zakian [55]) and fast Fourier transform routines. This
is because analytical expressions for the inverse transforms
of the elements of ˆ̃m

u,q
are in general difficult to find.

That being said, the equal-time equal-wave-number correla-
tor, 〈δ̃(α)

q,t δ̃
(α′ )�
q,t 〉, can indeed be found without the use of a

numerical inverse Laplace transform technique (see Sec. S5
of the Supplemental Material [31]).

B. Comparison of theory to simulation results

The theory hitherto presented can be expected to be accu-
rate when fluctuations about the deterministic homogeneous
fixed point are small enough so that the linear approximation
is valid. The examples in Figs. 1 and 2 show that one obtains
good agreement with individual-based simulations of the full
system with typical particle numbers per lattice site as low as
N ≈ 4000.

Figure 1 demonstrates the accuracy of the theory for the
steady-state power-spectrum of fluctuations 〈|δ̃(A)

q,t |2〉 for the
case of the Brusselator model. We compare the results of
simulations to our theory for the cases where the activator
subdiffuses and the inhibitor diffuses normally, and vice versa.
Figure 2 again compares the theory predictions to Monte
Carlo simulations but this time in the case of the Lengyel-
Epstein model with a subdiffusing activator and a subdiffusing
inhibitor. The autocorrelators 〈δ(A)

i,t δ
(A)
i′,t ′ 〉 and 〈δ(B)

i,t δ
(B)
i′,t ′ 〉 and the

crosscorrelator 〈δ(A)
i,t δ

(B)
i′,t ′ 〉 are shown for different temporal

separations t − t ′ and spatial separations i − i′. The agree-
ment in both Figs. 1 and 2 is good apart from some minor
deviations. These arise from a combination of the stochastic
nature of the simulations and the limits to the accuracy of
the numerical inverse Laplace transform. The discrepancy
reduces as the number of trials, over which the average is
taken, is increased.
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FIG. 2. The correlators Ci,i′;t,t ′ = 〈δα
i,t δ

α′
i′,t ′ 〉

N for various spatial and temporal separations for the Lengyel-Epstein model with both species
subdiffusing. Monte Carlo simulation results are shown as hollow markers and the lines from the theory are solid black. The species A
autocorrelator results are red diamonds, the species B autocorrelator results are magenta squares, and the cross-correlator results are green
triangles. The model parameters are a = 5, b = 0.7, c = 1, d = 1, t (1)

0 = 2.0, t (2)
0 = 0.05, γ (1) = 0.5, and γ (2) = 0.75. The system-size is

N = 10 000 and the number of trials over which the simulations were averaged is 8000. The simulations were performed on a discrete lattice
with 7 sites and periodic boundary conditions. The spatial separations are (a) i − i′ = 0; (b) i − i′ = 1; (c) i − i′ = 2; (d) i − i′ = 3.

To carry out the simulations, it was necessary to modify
the Gillespie algorithm [56] in a similar way to Ref. [57].
This was due to the non-Markovian nature of the hopping
processes. Broadly, the simulations involve keeping a list of
the scheduled hopping times of particles, carrying these out at
appropriate times and in the right sequence, while performing
reactions in the intermediate times. The full procedure is given
in the Appendix. To the best of our knowledge, individual-
based simulations of reaction-diffusion systems with subdiffu-
sive transport have not been performed in this way previously.

The full expressions for the correlators 〈δα
i,tδ

α′
i′,t ′ 〉, from

which the theory lines in Figs. 1 and 2 are derived, can
be found in Sec. S5 of the Supplemental Material [31]. In
the Supplemental Material we also explain how the equal-
time correlators in Fig. 1 can be found without the use of a
numerical inverse Laplace transform.

VI. ONSET OF STOCHASTIC AND DETERMINISTIC
TURING PATTERNS

A. Description of the phenomena

In a deterministic system which exhibits a Turing insta-
bility, a finite range of Fourier modes with nonzero wave
numbers is unstable. That is to say, if the system is per-
turbed from its uniform fixed point, then the amplitudes of
these modes will grow with time. A criterion for the Turing

instability in systems with one subdiffusing component and
one normally diffusing component is given in Refs. [18,19].
In practice, particle numbers do not deviate infinitely far from
the fixed point. Instead, the growth of the unstable modes
is curtailed by the nonlinearity of the reaction equations. If
one simulates systems with such an instability and looks at
the Fourier transform of deviations from the uniform state,
then one finds the dominant peak at a nonzero wave number.
It is this wave number which characterizes the periodicity
of the observed Turing patterns. It is important to note that
noise is not required to sustain these patterns once the initial
perturbation about the uniform state has been applied. In
particular, the amplitude of these deterministic patterns is set
by the nonlinearities of the reaction-(sub)diffusion system and
not by any source of stochasticity.

However, one may also observe patterns in systems with
finite particle number (i.e., systems with intrinsic noise), even
when the parameters are such that the purely deterministic
system would not show any patterns [10,11]. These patterns
are noise-driven, and their amplitude is set by the strength
of the noise; in individual-based systems the variance of the
intrinsic noise in turn is determined by the inverse typical
particle number N−1. We refer to patterns formed in this
way as quasipatterns or stochastic Turing patterns. They can
be detected in the Fourier spectra of fluctuations about the
uniform deterministic fixed point; these spectra show a peak at
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FIG. 3. Comparison of the spatial patterns produced in the
Lengyel-Epstein model. (a) Parameters are in the phase where deter-
ministic pattern formation occurs (t (A)

0 = 0.2, t (B)
0 = 0.1). (b) Noise-

induced patterns but no deterministic patterns (t (A)
0 = 0.11, t (B)

0 =
0.1). (c) No patterns are found at all (t (A)

0 = 0.1, t (B)
0 = 0.2). In these

simulations, N = 1000, the activator subdiffuses with γ = 0.5, the
inhibitor diffuses normally. Reaction rates are given in the caption
of Fig. 4. The parameter sets used in the three panels correspond to
those marked by the three blue dots in Fig. 4.

a characteristic nonzero wave number. In contrast to determin-
istic Turing patterns, this peak is not observed in the absence
of noise. Such patterns have been analyzed in systems with
regular diffusion; see, e.g., Refs. [10,11,13,14].

In Fig. 3 we show examples of Turing patterns in the
Lenyel-Epstein system with subdiffusion. The data in the up-
per panel is from individual-based simulations in the param-
eter regime in which the deterministic model shows Turing
patterns. The pattern is seen in the individual-based simula-
tion as well, but it is important to stress that this is not a
noise-driven pattern. The stochasticity in the individual-based
model modulates the deterministic pattern, but the amplitude
of the structure is independent of the noise, i.e., increasing the
number of particles, N , per site does not change the relative
magnitude of the pattern. In the central panel we show an

example of a quasipattern. This data is taken in the regime
in which the deterministic Lengyel-Epstein system does not
have any instability; the pattern is purely noise-driven and
its amplitude decreases with increasing particle number per
lattice site. One further main difference between stochastic
and deterministic patterns is that the stochastic patterns are
not stationary. Instead, regions of high concentration for one
chemical species continually assemble, shift, and dissipate in
such a manner that a typical level of periodicity is maintained.
Deterministic patterns on the other hand are stationary in time.
In the lower panel of Fig. 3, finally, the parameters are such
that neither deterministic nor stochastic Turing patterns are
seen. The system fluctuates about the deterministic uniform
fixed point, but no particular spatial structure emerges in these
fluctuations. That being said, the fluctuations do appear to be
quite large in magnitude, given the system size. Similarly,
the magnitude of the noise-induced pattern in Fig. 3(b) is
comparable to that of the pattern in Fig. 3(a). This is not
an unusual observation and is due to a phenomenon known
as “stochastic amplification,” which has been reported in
the context of noise-driven cycles and patterns in normally
diffusing systems (see, e.g., Refs. [10,11,13,46,58]).

B. Phase diagrams

The theory we developed in the earlier sections allows us to
find the equal-time correlator in Fourier space (i.e., the struc-
ture factor 〈δ̃(α)

q,t δ̃
(α′ )�
q,t 〉) of fluctuations without having to carry

out time-consuming simulations. We can use these expres-
sions to search parameter space and to identify the regimes
in which stochastic patterns emerge, and the parameter ranges
where they do not. This gives a more complete picture of
the effect of subdiffusion on stochastic pattern formation. Our
results are summarized in the phase diagrams in Figs. 4 and
5, which we discuss in more detail below. While the expres-
sions from the theory have to be evaluated numerically, we
note that determining the phase behavior from the analytical
expressions is very efficient; accurately establishing the phase
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FIG. 4. Phase diagrams showing the parameter regions where deterministic Turing patterns (dark gray shading) and stochastic (noise-
driven) patterns (light gray) occur for the Lengyel-Epstein model. Panels (a) and (b) show the behavior when the activator and the inhibitor
subdiffuse, respectively. The other component diffuses normally. As γ decreases, and the diffusion becomes more anomalous, the critical
values of θγ at which deterministic and stochastic patterns emerge decrease for the subdiffusing activator (a) and increase for the subdiffusing
inhibitor (b). When γ = 1, the diffusion is normal and the critical values of θγ in both plots are the same. The remaining model parameters are
a = 2, b = 0.13, c = d = 1.
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FIG. 5. Phase diagrams showing the parameter regions where deterministic Turing patterns (dark gray shading) and stochastic (noise-
driven) patterns (light gray) occur for the Brusselator model. Panels (a) and (b) show the behavior when the activator and the inhibitor
subdiffuse, respectively. The other component diffuses normally. Due to the constant death-rate of the activator, the critical value of θγ for
the onset of both stochastic and deterministic patterns does not vary with γ when the activator subdiffuses (a). When the inhibitor (with
concentration-dependent death rate) subdiffuses (b), the behavior is qualitatively similar to that seen in the Lengyel-Epstein model in Fig. 4.
When γ = 1, the diffusion is normal and the critical values of θγ in both plots are the same. The remaining model parameters are a = 1.1,
b = 1.8.

diagrams from individual-based simulations, however, would
require unrealistic computing time.

It is well-known that the emergence of deterministic Turing
patterns relies on the slow diffusion of the activator and the
comparatively fast diffusion of the inhibitor. In previous work
[19] we showed that it is possible to define effective diffusion
coefficients for systems in which one reactant undergoes sub-
diffusion and the other normal diffusion; see also Ref. [18].
To characterize the degree to which the rates of (sub)diffusion
of the two particle species differ, we define the ratio of these
effective diffusion constants, θγ ; see again Refs. [18,19] for
details. The detailed definition depends on which one of the
components (activator or inhibitor) is subdiffusing. We have

θ act
γ =

(
t (act)
0

)γ

t (inh)
0

(
p̄(act)

)1−γ
, (19)

when the activator subdiffuses, and

θ inh
γ = t (act)

0

(
p̄(inh)

)1−γ(
t (inh)
0

)γ , (20)

when the inhibitor subdiffuses. The quantity p̄ in these ex-
pressions denotes the per capita removal rate of the relevant
substance at the uniform deterministic fixed point.

Figures 4 and 5 show the critical ratios of the effective
diffusion constants of the activator and the inhibitor for the
onset of stochastic and deterministic Turing patterns in the
Lengyel-Epstein and Brusselator models, respectively. For
any fixed value of the anomalous exponent γ the following
behavior is observed in Figs. 4 and 5. For low values of
θγ , neither deterministic nor stochastic patterns emerge. As
the ratio of effective diffusion coefficients is increased and
crosses a first critical threshold, θ s

γ , a phase is entered in which
stochastic patterns are found, but where the deterministic
system shows no patterns. As θγ is increased further, the
system undergoes a full deterministic Turing instability at θd

γ .
Additionally, we find that, in general, if the subdiffusion

of a particular reactant is conducive to the formation of

deterministic patterns, then it is also conducive to the for-
mation of stochastic patterns. Similarly, if subdiffusion of a
reactant makes deterministic pattern formation more difficult,
then it also reduces the parameter range in which noise-driven
patterns are found. In other words, if the critical value θd

γ for
the onset deterministic patterns increases (decreases) with γ ,
then θ s

γ also increases (decreases) with γ .
One notes that due to the concentration-independent decay

rate of the activator in the Brusselator model, both θd
γ and θ s

γ

do not vary with the anomalous exponent γ when the activator
is subdiffusing (left-hand panel in Fig. 5). However, if the
death rate of the subdiffusing component is not constant, then
one finds that, in our examples, as γ decreases, so do both
θd
γ and θ s

γ if the activator is subdiffusing (left-hand panel
of Fig. 4). Conversely, if the inhibitor is subdiffusing and
the inhibitor death rate is concentration-dependent, a reduced
value of γ makes it more difficult it is for Turing patterns to
form (right-hand panels of Figs. 4 and 5).

One caveat to the approach we have presented is that
analytical results are only valid for large system sizes N . That
being said, the qualitative conclusions we have reached (that
the combination of stochasticity and subdiffusion lowers the
threshold for pattern formation) can be extended to the regime
of moderate N , where the theory is not as accurate. We have
verified this in simulations, and discuss this point briefly in
Sec. 6 of the Supplemental Material [31].

VII. SUMMARY AND CONCLUSIONS

We have successfully extended the description of reaction-
diffusion systems with anomalous transport to include the
intrinsic noise which comes about when the number of par-
ticles in the system is finite. To do this, we carried out
a Gaussian approximation of the individual-based system,
using a generating-functional approach. We also provided
a prescription for finding the fluctuations about the stable
homogeneous fixed point of reaction-diffusion systems with
anomalous diffusion. This was done in the example cases
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of the Brusselator and Lengyel-Epstein systems, and our
theoretical predictions were successfully tested against com-
puter simulations. Finally, we used this theory to determine
the parameter regimes where one could expect to observe
stochastic Turing patterns. We found examples for which a
subdiffusing activator encouraged both stochastic and deter-
ministic pattern formation, whereas a subdiffusing inhibitor
hindered both stochastic and deterministic pattern formation.
This is exemplified in Figs. 1, 4, and 5.

The theory developed in this paper is entirely general and
would be equally applicable to any reaction scheme with
anomalously diffusing reactants; the two examples discussed
here were mainly chosen for illustration. Systems such as
the Lotka-Volterra [59] dynamics, the Oregonator [60–62], or
the Schnakenberg model [63] with subdiffusion would have
been equally valid candidates for the study of noise-driven
patterns. We could also have studied systems with different
waiting-time distributions or hopping kernels.

A well-known problem with using Turing’s mechanism as
an explanation for pattern formation in nature is the often
unphysically large ratio of the diffusion constants required
for the instability to occur. Both subdiffusion and stochastic
pattern formation have been proposed separately as potential
remedies for this problem. In this paper, we have shown that
a combination of the two can lower the threshold for pattern
formation to a greater degree than either mechanism on its
own. This is demonstrated by the fact that the critical ratio of
the diffusion constants is always lower in Figs. 4 and 5 for the
onset of stochastic patterns than it is for deterministic patterns,
and by the fact that this critical ratio can reduce as the activator
becomes more subdiffusive.

Recently, the existence of noise-induced Turing patterns
in bacterial cultures has been examined [14]. However, these
experiments were concerned with a mechanism for pattern
formation for which the diffusion was presumed to be Marko-
vian. A possibility for further experiment would be to analyze
stochastic pattern formation in a system in which the diffusion
of the reactants was known to be subdiffusive. Our approach
makes predictions for the way in which noise-driven pattern
formation is affected by subdiffusion.

Another question for future study would be to ask how
other stochastic phenomena in reaction-diffusion systems,
such as waves [64], would be affected by anomalous diffusion.
Conversely, one might also wonder about how such phenom-
ena are affected by superdiffusion. The theoretical approach
we have developed is sufficiently general, and can be applied
to the study of such systems.
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APPENDIX: INDIVIDUAL-BASED SIMULATIONS

The non-Markovian nature of subdiffusive hopping re-
quires us to modify the traditional Gillespie algorithm [56],
in a similar way to Ref. [57]. The statistics of the processes
laid out in Sec. II A are preserved by using the following
algorithm:

(1) Set t = 0 and initialize the system. (In our simulations,
we start from n(1)

i = n̄(1) and n(2)
i = n̄(2).) For each particle

draw a waiting time until its next hop from the appropriate
distribution, and create a list of all scheduled hopping events.

(2) Take note of the earliest hopping time and the position
of the particle associated with this time; we label the time at
which the next hop occurs τ (H ).

(3) Based on the numbers of particles at each position,
calculate the reaction rates for each type of reaction and each
point on the lattice, λi,r,t . Calculate the sum of the reaction
rates λt = ∑

r,i λi,r,t and draw the time at which the next
reaction is due to occur: τ (R) = t − 1

λt
ln (s), where s is an

independent random number from the uniform distribution
over (0,1]. This reaction can occur at any position on the
lattice.

(4) (a) If τ (R) < τ (H ), then perform one single reaction.
Choose this to be a reaction of type r at site i with probability
λi,r,t/λt . If particles are removed during this reaction, then
delete the scheduled hopping events for these particles from
the list. If particles are created, then draw hopping times
from the appropriate distribution, and add these to the list of
scheduled hops. Set t = τ (R). Go to 2.
(b) If τ (R) > τ (H ), then perform the hop associated with τ (H )

in step 2, and discard the reaction event from step 3. To do
this draw a random hopping distance from the hopping kernel
φi,i′ , and relocate the particle. Draw a new waiting time until
the next hop of this particle, and add this time to the list. Set
t = τ (H ). Go to 2.

To draw waiting times from the Mittag-Leffler distribu-
tion in Eq. (5), one can use the following formula t =
−tα

0 ln (u)( sin (γ απ )
tan (γ απv) − cos (γ απ ))

1
γ α

[65,66], where u and v

are independent random numbers from a uniform distribution
on (0,1].
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