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Biologically motivated asymmetric exclusion process: Interplay of congestion in RNA polymerase
traffic and slippage of nascent transcript
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We develop a theoretical framework, based on an exclusion process, that is motivated by a biological
phenomenon called transcript slippage (TS). In this model a discrete lattice represents a DNA strand while
each of the particles that hop on it unidirectionally, from site to site, represents a RNA polymerase (RNAP).
While walking like a molecular motor along a DNA track in a step-by-step manner, a RNAP simultaneously
synthesizes an RNA chain; in each forward step it elongates the nascent RNA molecule by one unit, using the
DNA track also as the template. At some special “slippery” position on the DNA, which we represent as a defect
on the lattice, a RNAP can lose its grip on the nascent RNA and the latter’s consequent slippage results in a
final product that is either longer or shorter than the corresponding DNA template. We develop an exclusion
model for RNAP traffic where the kinetics of the system at the defect site captures key features of TS events. We
demonstrate the interplay of the crowding of RNAPs and TS. A RNAP has to wait at the defect site for a longer
period in more congested RNAP traffic, thereby increasing the likelihood of its suffering a larger number of TS
events. The qualitative trends of some of our results for a simple special case of our model are consistent with
experimental observations. The general theoretical framework presented here will be useful for guiding future
experimental queries and for analysis of the experimental data with more detailed versions of the same model.

DOI: 10.1103/PhysRevE.99.052122

I. INTRODUCTION

Each single DNA strand is a heteropolymer whose
monomeric subunits are called nucleotides. By convention,
the letters “A,” “T,” “C,” and “G,” represent the four nu-
cleotide bases of a DNA. The specific sequence in which
these four letters appear in a DNA strand is a chemically
encoded genetic message (genetic information). Transcription
of the genetic message is carried out by a molecular machine
called RNA polymerase (RNAP) [1]. A RNAP synthesizes a
RNA molecule (the transcript) whose sequence of monomeric
subunits is complementary to that of a specific segment of its
DNA that encodes the corresponding genetic message. The
four letters of the alphabet that store genetic messages in the
RNA transcript are “A,” “U,” “C,” and “G.” Each RNAP can
also be regarded as a molecular motor [2–4] for which the
DNA template also serves as the track for its unidirectional,
albeit noisy, movement during transcription [1]. In each step
forward, by one unit, along its DNA track, the RNAP elon-
gates the nascent RNA transcript by one unit where the unit is
measured in terms of a nucleotide.

Experiments revealed the existence of specific stretches of
DNA sequence where the nascent RNA may slip, backward
or forward, with respect to the RNAP although the RNAP
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motor itself does not slip simultaneously on its DNA track [5].
In fact, at any given slippage-prone site, multiple successive
events of backward and/or forward slippage may occur before
the correct transcription can resume. Thus, transcript slippage
(TS) results in length heterogeneity of the final products of
transcription because of the incorporation of more or fewer
nucleotides, respectively, as compared to the length of the
transcript encoded in the DNA. While this phenomenon has
received much attention over the past few decades [5,6], the
detailed mechanism of TS, its causes and consequences are
still unclear. In this paper we focus on the consequences,
rather than the causes, of TS.

Often the same segment of DNA (here loosely defined as
the “gene”) is simultaneously transcribed by several RNAPs,
each synthesizing a distinct copy of the same RNA. The
collective movement of multiple RNAPs simultaneously on a
DNA track resembles, at least superficially, vehicular traffic
on highways [7,8]. Wide varieties of collective trafficlike
phenomena in nonliving as well as in living systems have
been modeled by various appropriate extensions of the totally
asymmetric simple exclusion process (TASEP) [7–11]. In the
past, RNAP traffic has been modeled theoretically [12–18]
by extending the TASEP [7,19–21]. A RNAP is expected to
dwell longer at the slippery site in congested traffic because
of the hindrance caused by the leading vehicle. The longer
a RNAP dwells at the slippery site, the larger the number of
TS events it is likely to suffer. Thus, traffic congestion can
influence the extent of TS. Here we develop a TASEP-based
model to investigate the interplay of TS and RNAP traffic.
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The TASEP can never be in thermodynamic
equilibrium, but can attain nonequilibrium steady states
(NESS) [19,22,23]. One of the key properties of the NESS is
the nonvanishing particle flux which is defined as the number
of particles passing through a site per unit time. The effects
of different types of defects and inhomogeneities on the flux
and the density profile of the particles have been investigated
extensively over the last three decades [24–38]. We treat the
“slippage-prone site,” where TS occurs, as a special type of
“defect” in a TASEP-based model of RNAP traffic.

In traffic engineering it is essential to first characterize
the driving behaviors of individual drivers before embarking
on a study of vehicular traffic on highways. In the same
spirit, here we study the statistical characteristic of a single
RNAP that undergoes TS at a specific location on the DNA
track, before studying of RNAP traffic on the same track.
Thus, in this paper, we consider two different situations. In
the first, a single RNAP is assumed to be moving alone on
the DNA track, whereas in the second, many RNAPs move
simultaneously in the same direction on a single DNA track.
More specifically, we study three aspects of TS: (a) how is
the rate of transcription by a single RNAP affected by TS? (b)
how is the error due to TS affected by the traffic congestion
during the collective movement of RNAPs? and (c) how, in
turn, is the collective trafficlike movement of RNAP affected
by TS statistics?

To study the effect of a transcript slippage on the movement
of each individual RNAP on the DNA track and, equivalently,
the rate of transcription, we use the technique of calculating
first passage time (FPT) [39–41]. With this objective, we
first construct a stochastic kinetic theory that incorporates the
effect of arbitrary numbers of backward and forward slippage.
Then, as a concrete example, we consider a special case
of the model that can be treated analytically without much
mathematical difficulty. For this concrete case, we compute
the time taken by the RNAP motor to traverse a slippery site
for the first time. This time is intrinsically stochastic and is
termed here as the first-passage time. We interpret the results
physically to explain how the movement of a RNAP on the
DNA template (track) is affected by TS.

To study the interplay of RNAP traffic and TS, using mean-
field approximation (MFA), we again compute the mean time
needed to traverse a slippage site in a traffic of RNAPs on the
same DNA track. We also carry out Monte Carlo simulations
of the model and compare the Monte Carlo simulation data
with the corresponding mean-field theoretic predictions to test
the level of accuracy of the MFA. Finally, we also compare the
theoretically predicted probability distribution of the longer
and shorter transcripts with the experimental data [42,43]
obtained through advanced sequencing technologies [44].

The paper is organized in the following manner. In Sec. II,
we begin by sketching a brief introduction to the phenomenon
of TS, followed by the description of our stochastic kinetic
model of TS. In Sec. III, we study the effect of TS on a
single RNAP. More specifically, we derive an exact analytical
expression for the mean time taken by a single RNAP, in the
absence of steric hindrance from any other RNAP, to traverse
the site where TS is likely to occur. In Sec. IV, we investigate
the effect of RNAP traffic congestion on TS. Our results
establish that, because of traffic congestion, on average, each

RNAP dwells for a longer time at the defect site and hence
suffers a larger number of TS events. In Sec. V, we analyze
the effect of TS on RNAP traffic flow; the average density
profile exhibits features that are typical characteristics of the
TASEP with point defects. Finally, in Sec. VI, we present a
summary of the results and draw conclusions.

II. MODEL AND BIOLOGICAL MOTIVATION

We begin this section with a brief overview of the TS
process, as depicted schematically in Fig. 1, in Sec. II A.
Then, motivated by this biological phenomenon, in Sec. II B
we develop our theoretical model. The distinct kinetic states
are displayed, and the interstate transitions are indicated, in
Fig. 2.

(a)

(b) (c)

FIG. 1. A pictorial depiction of (a) normal transcription, without
slippage, by an RNAP, (b) transcription with backward slippage of
nascent RNA, and (c) transcription with forward slippage of nascent
RNA. The white circle represents the active site of an RNAP and
the blue letter “U” depicts the incorporation of a nucleotide in the
active site. The array of nucleotides “A” represents slippery sequence
in the DNA strand and the slanted black solid line represents nascent
RNA. Backward and forward slippages of the nascent RNA transcript
are indicated by red and green arrows, respectively. In (a), after
incorporation of a nucleotide “U,” RNAP can move one step forward
with respect to the DNA template. In (b), after incorporation of
a nucleotide “U,” nascent RNA slips backward with respect to
RNAP as well as the DNA template, by keeping RNAP fixed in its
position. This results in the addition of an extra nucleotide “U” to the
transcript. In (c), before the incorporation of a “U,” nascent RNA can
slip forward with respect to RNAP as well as the DNA template, by
keeping RNAP fixed in its position, resulting in a shortening of the
transcript by one nucleotide.
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FIG. 2. A kinetic model for the transcription slippage at site
J on the DNA template. The conformational states of RNAP dur-
ing transcription with first backward slippage of nascent mRNA
transcript, transcription with second backward slippage of nascent
mRNA transcript, transcription with forward slippage of nascent
mRNA transcript, and normal transcription are represented by +1,
+2, −1, and 0, respectively. b1, b2, and f1 are the first backward
slippage rate (dashed arrow), second backward slippage rate (dashed
arrow), and first forward slippage rate (dotted arrow), respectively.
q, q0, q+1, q−1, and q+2 are the normal transcription rates (simple
arrows).

A. TS phenomenon

During normal transcription [see Fig. 1(a)], incorporation
of every nucleotide, as directed by the template DNA, is
followed by the motorlike forward movement of the RNAP
by one nucleotide along the DNA that also serves as its
track. Thus, in normal transcription, each event of elongation
of the nascent RNA transcript by one nucleotide is tightly
coupled to the translocation of RNAP by one nucleotide on the
template DNA. A common slippery sequence on the DNA is a
sequence of A’s [5] (recall “A” is one of the four different types
of subunits of DNA). Figure 1(b) describes a transcription
process where a single backward slippage of the nascent RNA
transcript occurs. Due to the backward slippage, the active
site of the RNAP turns empty for the second time during
its sojourn at the slippery site, and it transcribes the same
nucleotide for a second time, resulting in the insertion of
an extra nucleotide on the transcript. Figure 1(c) describes a
single forward slippage of the nascent RNA transcript without
forward movement of RNAP; this forward slippage of the
nascent transcript results in the active site of the RNAP getting
occupied with the previously added nucleotide in the tran-
script thereby preventing incorporation of a fresh nucleotide
even though the RNAP moves forward by one nucleotide on
the DNA template.

It is worth emphasizing that the slippage phenomena de-
scribed above do not imply any movement of the RNAP
with respect to its DNA track. Instead, in this paper we are

concerned with the slippage of nascent RNA with respect to
the RNAP as well as the DNA template. In both Figs. 1(b)
and 1(c), the transcript slips without the concomitant move-
ment of RNAP and the polymerization of the transcript is not
coupled with the translocation of RNAP. Typically, either of
these mechanisms can be repeated thereby causing multiple
rounds of backward or forward slippage of the transcript at
these slippery sites.

B. Kinetic model motivated by TS

In our model, we represent the DNA template as a one-
dimensional lattice of length L. We label the sites of the
lattice by the integer index j (1 � j � L). Each lattice site
corresponds to a nucleotide on the DNA template. The instan-
taneous position of a RNAP is denoted by the integer index
j; in each round of successful error-free elongation of the
nascent RNA by one unit, the RNAP takes a forward step
from j to j + 1. The special site where TS can take place has
been labeled by the integer J (i.e., j = J). Since our study
is primarily on TS, and since TS is known [5] to occur at a
special slippery site, we focus in this section exclusively on
the triplet of sites J − 1, J , and J + 1.

For a completely normal error-free transcription of the
full-length template DNA, the RNAP takes L steps on the
track synthesizing a RNA transcript of length L, i.e., exactly
equal to the length of the DNA template. However, in the
case of transcription with n successive rounds of backward
slippage at a specially designated slippery site, insertion of
n number of nucleotides leads to the synthesis of a longer
transcript of total length L + n. Similarly, for n successive
rounds of forward slippage at the slippery site, missing the
transcription of n nucleotides on the template (i.e., effectively,
deletion of n nucleotides) produces a shorter transcript of total
length L − n. Backward slippages have been found to occur
more often than the forward slippage.

The extra length of the nascent RNA caused by the slip-
page is labeled by an integer index μ that can, in principle,
be positive, negative, or zero. According to our convention
μ is positive (negative) in the case of backward (forward)
slippage; in contrast, μ = 0 if the nascent transcript suffers
no slippage or it suffers equal numbers of forward and back-
ward slippages at the slippery site J . In other words, μ denotes
the slippage-induced length change of the product transcript
as compared to that of the template. Throughout this paper we
use the term “slippage state” to denote the magnitude of μ.

The theoretical framework that we have formulated is very
general and can treat any arbitrary number Nb of backward
or Nf number of forward slippage of the transcript while the
RNAP is occupying the specific lattice site J . However, for the
purpose of presentation of concrete results here through an
explicit analytical calculation, we have allowed a maximum
of two backward slippage events (Nb = 2, corresponding to
μ = +1,+2), and a maximum of a single forward slippage
(Nf = 1 that would correspond to μ = −1). Since backward
slippages have been found to occur more often than the reverse
process, in the example shown in Fig. 2, possibilities of two
successive backward slippages are shown against the possi-
bility of a single forward slippage. For the same reason, we
exclude the possibility of a backward slippage followed by a
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forward slippage which could result in a RNA of normal size.
Moreover, allowing a larger number of slippage (i.e., larger
value of |μ|) would create a jam in RNAP traffic because
at the slippery site each RNAP would have to wait much
longer because of the larger number of slippages of its nascent
mRNA due to the higher allowed value of |μ|.

The allowed transitions are indicated by the arrows and
the corresponding rates are also shown next to the respective
arrows in Fig. 2. The special case shown in Fig. 2 is, indeed,
simple enough to be treated analytically. However, analyt-
ical calculations become more and more difficult with the
increasing number of backward (or forward) slippage events
(i.e., with the increase in the allowed values of Nb and Nf ).
Nevertheless, in principle, the strategy of modeling followed
here can be implemented numerically also for any arbitrary
values of Nb and Nf if calculations become too difficult to
carry out analytically.

Normal transcription, without any slippage, at the special
site J would correspond to the transition (J, 0) → (J + 1, 0).
In contrast, a backward TS at the site J results in the transition
(J, 0) → (J,+1). Therefore, a single backward TS followed
by a normal transcription together result in the composite
transition (J, 0) → (J + 1,+1). Since no TS are allowed to
occur at any site before or after the special site J , the value
of μ attained finally at J is carried throughout the subsequent
transit of the RNAP until the termination of transcription at
the site i = L.

Thus, for the special case of the model shown in Fig. 2,
the state of the RNAP motor at a particular instant is indicated
by the pair ( j, μ), where j is its position on the DNA tem-
plate, i.e., j = 1 to L and μ (μ = 0,+1,+2,−1) is the “extra
length” of the associated nascent transcript. Figure 2 clearly
shows that, in this special case, a RNAP can follow four differ-
ent pathways when it encounters a slippery site: (1) the transi-
tions (J − 1, 0) → (J, 0) → (J + 1, 0) correspond to the nor-
mal transcription at the slippery site, (2) the transitions (J −
1, 0) → (J, 0) → (J,+1) → (J + 1,+1) correspond to the
single backward slippage of transcript at the slippery site, (3)
the transitions (J − 1, 0) → (J, 0) → (J,+1) → (J,+2) →
(J + 1,+2) correspond to the double backward slippage
of transcript at the slippery site, and (4) the transitions
(J − 1, 0) → (J, 0) → (J,−1) → (J + 1,−1) correspond to

the single forward slippage of transcript at the slippery
site.

III. PASSAGE OF RNAP ACROSS SLIPPERY SITE
SUFFERING TRANSCRIPT SLIPPAGE

A. First-passage times across slippery site
and transient behavior

We define the time τ taken by the RNAP motor to reach,
for the first time, the position J + 1, starting from the po-
sition J − 1 as the first-passage time. Since the kinetics of
transcription, including TS, is probabilistic, τ varies from one
RNAP to another. In this section we calculate the probability
distribution (more precisely, the probability density function)
f (τ ) of τ . The mean first-passage time can be obtained from

〈τ 〉 =
∫ ∞

0
τ f (τ )dτ (1)

if f (τ ) is known.
We define Pμ(J, t ) as the probability of finding the RNAP

in the “slippage state” μ at site J on the DNA track at time t .
The master equations governing the time evolution of Pμ(J, t )
corresponding to the general N-state kinetic model, written
using the matrix notation, is

dP(t )

dt
= AP(t ), (2)

where the vector P(t ) is an N-component column vector,
the components of which are P0(J − 1, t ), P0(J + 1, t ), and
Pμ(J, t ) (μ = 0,+1,+2,−1), and the elements of the matrix
A are the rates of transitions (more appropriately, the transition
probabilities per unit time) between these states. For example,
in the special case of the six-state kinetic model shown in
Fig. 2, defining

P(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

P0(J − 1, t )
P0(J, t )

P0(J + 1, t )

P+1(J, t )

P−1(J, t )
P+2(J, t )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(3)

we have

A =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−q 0 0 0 0 0
q −(q0 + b1 + f1) 0 0 0 0

0 q0 0 q+1 q−1 q+2

0 b1 0 −(q+1 + b2) 0 0

0 f1 0 0 −q−1 0

0 0 0 b2 0 −q+2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

. (4)

Sometimes the computation of the distribution of FPT turns
out to be easier in terms of Laplace transforms. Carrying out
Laplace transform of both sides of Eq. (2),

L
[

dP(t )

dt

]
= ALP(t ), (5)

we get

sP̃(s) − P(0) = AP̃(s) (6)

and hence

P̃(s) = (sI − A)−1P(0), (7)
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where I is the identity matrix, L indicates the Laplace trans-
form operator, and P̃(s) is the Laplace transform of P(t ). In
principle, after taking the inverse Laplace transform of P̃(s),
one would get the distribution of FPT:

P(t ) = L−1[P̃(s)]. (8)

Often the set of kinetic equations is so complicated that the
operation of inverse Laplace transform (8) cannot be com-
pleted analytically to get a closed-form analytical expression
for Pμ(J, t ). In such situations, the mean first-passage time can
still be obtained by taking appropriate derivatives of P̃μ(J, s)
if the latter can be calculated in the s space (Laplace space):∫ ∞

0
tPμ(J, t )dt = − d

ds
P̃μ(J, s)

∣∣∣
s=0

(9)

along with the normalization condition

P0(J − 1, t ) +
∑

μ

Pμ(J, t ) + P0(J + 1, t ) = 1. (10)

For the calculation of the first-passage time, we impose the
initial conditions:

P(0) =

⎛
⎜⎜⎜⎜⎜⎝

1
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎠

. (11)

The probability density of first-passage times to reach the
target site J + 1 between time t and t + dt is

f (t ) = q0P0(J, t ) + q+1P+1(J, t ) + q−1P−1(J, t )

+ q+2P+2(J, t ). (12)

The transition matrix A (4) can be simply diagonalized as
follows:

A|λn〉 = λn|λn〉, (13)

where the eigenvalues λn are given by

λ1 = 0, λ2 = −q, λ3 = −b1 − f1 − q0,

λ4 = −q−1, λ5 = −b2 − q+1, λ6 = −q+2. (14)

The time dependence of the eigenvectors is simply written as

|λn(t )〉 = eλnt |λn〉. (15)

Now we expand the initial state |P(0)〉, given by (11), in terms
of the eigenvectors of A as

|P(0)〉 =
6∑

n=1

cn|λn〉, (16)

where

c1 = 1, c2 = b1b2q

x1x2x3
, c3 = b1b2q

x1x21x13
,

c4 = f1q

x4x41
, c5 = b1b2q

x2x12x23
, (17)

c6 = b1b2q

x3x13x32

and
x1 = b1 + f1 + q0 − q, x2 = b2 + q+1 − q,

x3 = q+2 − q, x4 = q−1 − q, (18)

x jk = x j − xk,

from which we have

|P(t )〉 =
6∑

n=1

cneλnt |λn〉. (19)

Explicitly, each component can be written as

P0(J − 1, t ) = e−qt ,

P0(J, t ) = qe−qt

(
1 − e−x1t

x1

)
,

P+1(J, t ) = b1qe−qt

x12

(
1 − e−x2t

x2
− 1 − e−x1t

x1

)
,

P−1(J, t ) = f1qe−qt

x14

(
1 − e−x4t

x4
− 1 − e−x1t

x1

)
,

P+2(J, t ) = b1b2qe−qt

x12x23x13

×
(

x12
1 − e−x3t

x3
+ x23

1 − e−x1t

x1

− x13
1 − e−x2t

x2

)
. (20)

Finally, the expression for the remaining probability P0(J +
1, t ) can be obtained simply using the normalization condi-
tion (10), i.e.,

P0(J + 1, t ) = 1 − {P0(J − 1, t ) + P0(J, t ) + P+1(J, t )

+ P−1(J, t ) + P+2(J, t )}. (21)

The exact expressions (20) and (21) for the six proba-
bilities P0(J − 1, t ), P0(J, t ), P0(J + 1, t ), P+1(J, t ), P−1(J, t )
and P+2(J, t ) are drawn graphically for two sets of the rate
constants in Figs. 3(a) and 3(b). On the same graph we
also plot the corresponding numerical data obtained from our
Monte Carlo simulations of the model with the same set of
values of the rate constants. The excellent agreement between
the theory and simulation establishes the high accuracy of the
simulation data because the analytical expressions (20) are ex-
act. The variation of the probabilities with time are consistent
with the intuitive expectation based on the initial conditions.
The only difference between Fig. 3(a) and Fig. 3(b) is that
P+2(J, t ) saturates to a constant value in the latter, whereas
it decays to zero in the former. This qualitative difference
arises from the choice of parameter value q+2 = 0 in Fig. 3(b)
because of which probability P+2(J, t ) cannot decay to zero as
t → ∞. If q+2 = 0, transcription pauses after two backward
slippages. It means that there is no leakage of probability
after the second backward slippage, so the corresponding
probability cannot decay to zero as t → ∞.

The exact expression of the distribution of first-passage
times can now be obtained by substituting (20) and (21)
into the relation (12). Figure 4 shows the distribution of the
first-passage time (τ ) for four different values of b1 keeping
all the other parameter values fixed.
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P0 J 1,t
P0 J,t
P0 J 1,t

P 1 J,t
P 1 J,t
P 2 J,t

P0 J 1,t
P0 J,t
P0 J 1,t

P 1 J,t
P 1 J,t
P 2 J,t

(a)

(b)

FIG. 3. Distribution of probabilities P(t ) against time t ; for
(a) q+2 = 10 s−1, b2 = 1 s−1 and (b) q+2 = 0 s−1, b2 = 10 s−1. All
the other parameters are kept fixed at values q = q0 = 30 s−1, q+1 =
q−1 = 20 s−1, b1 = 4 s−1, and f1 = 2 s−1. Lines correspond to ana-
lytical results and discrete data points were obtained from simula-
tion. Inset plot shows how the probabilities of slippage states vary
with time.

b1 0.1 b1 10
b1 50 b1 100

s

FIG. 4. Distribution of probability density of first-passage time
f (t ) as a function of time (t); for different values of b1. All the other
parameters are kept fixed at values q = q0 = 30 s−1, q+1 = q−1 =
q+2 = 1 s−1, and b2 = f1 = 10 s−1. Lines correspond to analytical
results and discrete data points are obtained from simulation.

b2 0 b2 4
b2 10 b2 100

f1 0 f1 4
f1 10 f1 100

(a)

(b)

FIG. 5. Variation of 〈τ 〉 with respect to variation of first back-
ward slippage rate b1; for (a) fixed f1 = 1 s−1 and (b) fixed b2 =
1 s−1. All other parameters are kept fixed at values q = q0 = 30 s−1,
q+1 = q−1 = 20 s−1, and q+2 = 10 s−1. Lines correspond to ana-
lytical results and points represent the simulation data. The only
exception is that the green line (simulation data) corresponds to
q = q0 = q+1 = q−1 = q+2 = 30 s−1.

The variation of the mean first-passage time 〈τ 〉 with b1

is shown for four different values of b2 in Fig. 5(a) and for
four different values of f1 in Fig. 5(b). The higher the rate
of slippage the longer it takes for the RNAP to pass the
defect site.

B. Steady state: Fractions of slipped transcripts

Since no TS is assumed to occur at the L − 1 sites labeled
by j �= J , the lengths of the transcripts synthesized by the
RNAPs in the six-state model can have only the lengths L,
L − 1, L + 1, and L + 2. For the steady state of the system,
we can define the corresponding probabilities by the relations

PL = P0(J + 1)

P(J + 1)
= q0

b1 + f1 + q0
,

PL+1 = P+1(J + 1)

P(J + 1)
= b1q+1

(b1 + f1 + q0)(b2 + q+1)
,

PL−1 = P−1(J + 1)

P(J + 1)
= f1

b1 + f1 + q0
,

PL+2 = P+2(J + 1)

P(J + 1)
= b1b2

(b1 + f1 + q0)(b2 + q+1)
, (22)
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FIG. 6. Histogram of probability of types of nascent mRNA
are plotted with different values of first backward slippage rate b1.
Parameter values are b2 = 1 s−1 and f1 = 2 s−1. All other parame-
ters are kept fixed at values q = q0 = 30 s−1, q+1 = q−1 = 20 s−1,
and q+2 = 10 s−1. Lines correspond to exact expressions (22),
where solid, dashed, dotted, dotdashed lines correspond to PL ,
PL+1, PL+2, and PL−1, respectively. Bar plots are obtained from
simulation data.

where

P(J + 1) = P0(J + 1) + P+1(J + 1) + P+2(J + 1)

+ P−1(J + 1). (23)

Thus, PL, PL+1, PL−1, PL+2 can be interpreted as the fractions
of the respective species of the transcripts synthesized. The
expressions (22) for the probabilities depend only on the
position, not on time t , because these correspond to the NESS
which is attained in the limit t → ∞.

Figure 6 shows the histogram for probability of transcript
lengths (Ptl ) plotted against single backward slippage rate,
b1. For low values of b1, PL is higher than PL+1, PL+2, and
PL−1, as the chances of backward slippage are lower than that
of forward slippage. For high values of b1, the possibility of
backward slippage gets enhanced and hence PL+1 is higher
than PL+2, PL−1, and PL. Our analytical results show that

FIG. 7. Schematic diagram of RNAP traffic on the DNA track
of length L in the presence of slippage at site J . Triangles represent
(single walking) RNAPs. RNAPs can enter the DNA track only at
site i = 1 with rate α if the entry site is empty and RNAPs can leave
the DNA track after it reaches the termination site i = L with rate
β. In between, RNAPs can hop forward, if the target site is empty,
with the normal transcription rate q except at site J , where it can hop
with rates qμ (μ = 0, ±1, +2), depending on the slippage state (refer
to Fig. 2).

the probability of PL+1 and PL+2 increases as b1 increases
and PL and PL−1 decreases as b1 increases. The trend in the
histogram plot qualitatively matches with recent experimental
findings [42,43].

IV. EFFECT OF RNAP TRAFFIC CONGESTION
ON THE TRANSCRIPT SLIPPAGE PHENOMENON

Figure 7 shows a schematic diagram of the model for
RNAP traffic on the DNA track in the presence of a slippery
site at J . A RNAP can enter the DNA track, with rate α, if
the entry site i = 1 is empty. If the RNAP is located at any
other position i �= J , it can move forward, with rate q if, and
only if, the target site is empty. On the other hand, while
located at the special site J a RNAP can hop forward with rates
qμ (μ = 0,±1,+2), depending on the slippage state (refer to
Fig. 2). A RNAP can detach from the track at the exit site
i = L with rate β. At the slippery site J , the nascent RNA can
slip backward with rates b1, b2, etc., and forward with the rate
f1. Since TS does not involve any movement of the RNAP
with respect to its DNA track, forward slippage (of the RNA
transcript) can happen even when the next site in front of the
RNAP is covered by another RNAP.

Let Pμ(i, t ) denote the probability of finding RNAP in slippage state μ at site i on the DNA track at time t . So, the
probability that the site i is occupied by a RNAP at time t , irrespective of its slippage state, is P(i, t ) = ∑

μ Pμ(i, t ), where
μ = 0,+1,+2,−1. We can refer to this model as a biologically motivated extension of the TASEP with a special kind of defect
located at the specific site i = J = L/2. Under mean-field approximation, the master equation for the probabilities Pμ(i, t ) are
given by

dP(1, t )

dt
= α[1 − P(1, t )] − qP(1, t )[1 − P(2, t )],

dP(i, t )

dt
= q{P(i − 1, t )[1 − P(i, t )] − P(i, t )[1 − P(i + 1, t )]} for 1 < i < L (i �= L/2, L/2 + 1),

dP0(L/2, t )

dt
= qP(L/2 − 1, t )[1 − P(L/2, t )] − q0P0(L/2, t )[1 − P(L/2 + 1, t )] − (b1 + f1)P0(L/2, t ),

dP+1(L/2, t )

dt
= b1P0(L/2, t ) − q+1P+1(L/2, t )[1 − P(L/2 + 1, t )] − b2P+1(L/2, t ),

dP+2(L/2, t )

dt
= b2P+1(L/2, t ) − q+2P+2(L/2, t )[1 − P(L/2 + 1, t )],

dP−1(L/2, t )

dt
= f1P0(L/2, t ) − q−1P−1(L/2, t )[1 − P(L/2 + 1, t )],
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dP(L/2 + 1, t )

dt
= [q0P0(L/2, t ) + q+1P+1(L/2, t ) + q+2P+2(L/2, t ) + q−1P−1(L/2, t )][1 − P(L/2 + 1, t )]

− qP(L/2 + 1, t )[1 − P(L/2 + 2, t )],
dP(L, t )

dt
= qP(L − 1, t )[1 − P(L, t )] − βP(L, t ). (24)

In the steady state the left-hand sides of all these equa-
tions vanish and the corresponding solutions of the equa-
tions are obtained iteratively by checking whether the dif-
ference of the numerical values of two successive itera-
tions is less than ε where ε ≈ 10−8 is a preassigned small
number.

In our Monte Carlo simulation of the model, starting from
an initial condition, the flux was monitored in each run to
ensure that the system reaches a steady state where the flux
becomes independent of time. Then, starting from an even
longer instant of time tsteady (≡nsteady dt) the numerical data
from the simulation were recorded for the computation of
the steady-state properties; the collection of the data was
continued until a time tmax (≡nmax dt) where the simulation
run was terminated. The symbols nsteady and nmax refer to
the corresponding number of Monte Carlo steps and each
Monte Carlo step corresponds to the infinitesimal real time
interval dt . The choice of the precise value of dt is based on
the fastest rate in the model as the corresponding probability
of occurrence of the event must always be less than 1. In
our Monte Carlo simulations we chose the numerical value
dt = 5 × 10−4 s.

For the correspondence between the results obtained
for arbitrary rates α and β (with dimensions of inverse
time) and the well-known standard results for the TASEP
in terms of dimensionless probabilities, where the hop-
ping probability is taken to be unity, requires dividing the
rates α and β by the rate q. In other words, the cor-
respondence requires α → α′ = α/q and β → β ′ = β/q.
In low density (LD) phase, density is determined by α′
(ρ = α′) and hence α′ < 1/2 < β ′. In high density (HD)
phase, density is determined by β ′ (ρ = 1 − β ′) and hence
α′ > 1/2 > β ′. In maximal current (MC) phase, ρ = 1/2 and
hence α′ = β ′ > 1/2.

Effects of traffic congestion on extent of TS

In this section, we compute the mean time taken by each
RNAP to transcribe a DNA template of length L, on which the
defect (i.e., the slippery site) is located at J , in the steady state
of the RNAP traffic. The simplest way to account for the traffic
congestion is to replace the hopping rates of RNAPs, from
one site to the next, by effective rates obtained by multiplying
the actual rate with the factor (1 − ρ), where ρ is the number
density of the RNAPs.

Figure 8 shows the variation in probability distributions of
first backward slippage state plotted against time for different
values of ρ. The trend observed in the graph is due to
crowding, i.e, the RNAPs have to face hindrance to move
forward.

The denser the traffic congestion, the longer the dwell
time of an arbitrary RNAP at the slippery site and the larger
the expected number of TS events that can occur during the

duration of that dwell. This intuitive expectation is, indeed,
supported by the data shown in Fig. 9 where P+2(J ) and
P+2(J + 1) have been plotted as functions of the number
density ρ.

For plotting this figure we have chosen b1 = f1 = q+2 =
0.3 s−1 and q = q0 = q1 = q−1 = b2 = 30 s−1. Because of
the small values of b1 and f1, the likelihood of the first TS
event, irrespective of forward or backward, is normally quite
low. However, as the value of ρ increases, the dwell times of
the RNAPs increase at all sites, including that located at the
slippery site. Consequently, during that longer period of stay
at the slippery site, the RNAP suffers multiple rounds of TS;
this is reflected in the increase in the magnitude of P+2(J )
in Fig. 9.

The probabilities P+2(J ) and P+2(J + 1) are plotted as
functions of α (for fixed β) in Fig. 10(a) and as a function
of β (for fixed α) in Fig. 10(b). As α increases both P+2(J )
and P+2(J + 1) increase but the rate of increase decreases
gradually and, probabilities eventually saturate because the
RNAP traffic makes a transition from the LD phase to the
MC phase where the flux of RNAPs saturates. Similarly, for
a fixed α, as β increases the transition from the HD phase
to MC reduces the effective dwell time of each RNAP at the
defect site which, in turn, reduces the probabilities of multiple
TS events at that site. Moreover, the transition to the MC
phase also leads to the saturations of the values of P+2(J ) and
P+2(J + 1) with increasing β.

Figure 11 shows the histogram for slippage statistics plot-
ted against ρ. In the MC phase (ρ = 0.5) and even in the LD
phase (ρ < 0.5), PL+1 and PL−1 have significantly low values

0

0.2

0.4

0.5

0.6

0.7

0.8

FIG. 8. Distributions of probability of first backward slippage
state, P+1(J, t ) with time t , for different values of ρ. Parameter values
for slippage rates: b1 = 4 s−1, b2 = 1 s−1, and f1 = 2 s−1. All other
parameters were kept fixed at values q = q0 = 30 s−1, q+1 = q−1 =
20 s−1, and q+2 = 10 s−1. Lines correspond to analytical results and
discrete data points were obtained from simulation.
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and remain unaffected by the change in ρ. In the HD phase
(ρ > 0.5), PL decreases and PL+1, PL+2, and PL−1 increase due
to the crowding effect. Because of hindrance, RNAPs have
to wait a longer time at the slippage site and it enhances the
chance of slippages.

V. EFFECT OF TRANSCRIPT SLIPPAGE ON RNAP
TRAFFIC FLOW

The time taken by a RNAP, on average, in the steady state
of the RNAP traffic to transcribe can be written as the inverse
of the exit rate β multiplied by P0(L) + P+1(L) + P+2(L) +
P−1(L). So,

Tss = 1

βP(L)

= 1

β[P0(L) + P+1(L) + P+2(L) + P−1(L)]
. (25)

We obtained the mean-field theoretic estimate of Tss by
substituting the mean-field values of the probabilities in the
denominator of (25).

For the computation of Tss in our Monte Carlo simulation,
we use the formula

Tss = (nmax − nsteady)dt

N
, (26)

where N is the total number of departing RNAPs counted
at i = L over the (update) step numbers nmax − nsteady of the
simulation and dt is the duration of each time step of the
simulation. We have taken α = β = 30 s−1 (maximal current
phase) and dt = 5 × 10−4 s = time step for Monte Carlo
simulation and MF approximation. We have taken the length
of the DNA track (L) to be of 1000 lattice sites.

In Fig. 12, we have plotted steady-state mean time (Tss) as
a function of b1, for several different values of b2. The trend
of variations of the curves are very similar to those in Fig. 5(a)
except for the magnitude of the average times which in Fig. 12
is much longer because of the traffic congestion. The deviation
of the theoretical predictions from the numerical simulations

FIG. 9. The steady-state probabilities P+2(J ) and P+2(J + 1) are
plotted in the main figure and inset, respectively, as functions of
the number density ρ. The parameter values chosen for this fig-
ure are b1 = f1 = q+2 = 0.3 s−1 and q = q0 = q+1 = q−1 = b2 =
30 s−1. Lines correspond to MF results and bar plots were obtained
from simulation data.

(a)

(b)

FIG. 10. The steady-state probabilities P+2(J ) and P+2(J + 1)
are plotted in the main figure and inset, respectively, as functions
of entry rate α of RNAP [in (a)] and exit rate β of RNAP [in
(b)]. For both the figures the parameter values chosen are b1 = f1 =
q+2 = 0.3 s−1 and q = q0 = q+1 = q−1 = b2 = 30 s−1; β = 30 s−1

in (a) and α = 30 s−1 in (b). Lines correspond to MF results and bar
plots were obtained from simulation data.
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FIG. 11. Histogram of slippage statistics is plotted with different
values of RNAP density (ρ). Parameter values for slippage rates:
b1 = 4 s−1, b2 = 1 s−1, and f1 = 2 s−1. All other parameters are
kept fixed at values q = q0 = 30 s−1, q+1 = q−1 = 20 s−1 and q+2 =
10 s−1. Lines correspond to the MF result, where solid, dashed,
dotted, dotdashed lines correspond to PL , PL+1, PL+2, and PL−1,
respectively. Bar plots were obtained from simulation data.
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FIG. 12. Variation of the mean transcription time in steady state
(Tss) with b1 keeping all the other parameters fixed at values q =
q0 = 30 s−1, q+1 = q−1 = 20 s−1, q+2 = 10 s−1, and f1 = 1 s−1;
α = β = 30 s−1 (maximal current phase) and dt = 5 × 10−4 s =
time step for Monte Carlo simulation and MF approximation. Lines
correspond to MF theory and points have been obtained from Monte
Carlo simulations. The only exception is that the results shown
in magenta correspond to parameter values q = q0 = q+1 = q−1 =
q+2 = 30 s−1.

data in Fig. 12 is mainly because of traffic congestion. In
MC phase, mean-field (MF) results are known to deviate
significantly from simulation results.

Steady-state density profiles of the RNAP traffic in differ-
ent phases are shown in Fig. 13. We have taken the slippage
site to be located at the midpoint of the track (i = L/2). This
site can be regarded as a defect site on the homogeneous
lattice. From the density profile plots, it is clear that the
system behaves like a combination of two lattices (or two
TASEPs). The TASEP 1 starts at site i = 1, where particles
can attach with attachment rate α, and ends at site i = L/2
from where particles can detach with detachment rate βeff; in
between i = 1 and i = L/2, particles can hop forward with
rate q. Similarly, the TASEP 2 starts at site i = L/2 + 1, where
particles can attach with attachment rate αeff, and ends at site
i = L from where particles can detach with detachment rate
β; in between the particles can hop forward with rate q.

The LD and HD phases of the TASEP are further divided
into the respective subphases LD I, LD II and HD I, HD II
which are characterized by the nature of the decay of the
density profiles in the boundary layers. In the LD I phase of
the TASEP the density profile at the right boundary has pos-
itive curvature, whereas in the LD II phase of the TASEP the
density profile at the right boundary has negative curvature.
Similarly, in the HD I phase of the TASEP the density profile
at the left boundary has negative curvature, whereas in the HD
II phase of the TASEP the density profile at the left boundary
has positive curvature.

For the TASEP without slippage site, the LD phase ex-
ists between α < q/2 < β. With slippage site, the TASEP
1 reaches the LD I phase for α < q/2, βeff < q/2 (as the
relation between the α and βeff does not matter) and the
TASEP 2 reaches the LD II phase for αeff < q/2 < β [see in
Fig. 13(a)]. Similarly for the TASEP without slippage site, the
HD phase exists between α > q/2 > β. With slippage site,

LD phase

With slippage
Without slippage Ρ

LD I

LD II

Ρ

HD phase

With slippage
Without slippage

Ρ

HD I

HD II
Ρ

MC phase

With slippage
Without slippage

HD II
LD II

Ρ

Ρ

(a)

(b)

(c)

FIG. 13. Steady-state density profile of RNAP traffic for (a) LD
phase, (b) HD phase, and (c) MC phase. For LD: α = 9 s−1, β =
30 s−1; HD: α = 30 s−1, β = 9 s−1; and MC: α = 30 s−1, β =
30 s−1. All other parameters remain fixed at values q = q0 = 30 s−1,
q+1 = q−1 = 20 s−1, q+2 = 10 s−1, b1 = 1000 s−1, b2 = 10 s−1, and
f1 = 1 s−1. Lines correspond to MF theory and points have been
obtained from Monte Carlo simulations.

the TASEP 1 reaches the HD II phase for α > q/2 > βeff and
the TASEP 2 reaches the HD I phase for αeff < q/2, β < q/2
(as the relation between the αeff and β does not matter) [see
in Fig. 13(b)]. Similarly, for the TASEP without slippage site,
the MC phase exists between α > q/2, β > q/2. With slip-
page site, the MC phase disappears and the TASEP 1 reaches
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the HD II phase for α > q/2 > βeff and the TASEP 2 reaches
the LD II phase for αeff < q/2 < β [see in Fig. 13(c)].

VI. SUMMARY AND CONCLUSION

Motivated by the biological phenomenon of TS [5] in
RNAP traffic, we have developed a stochastic kinetic model
based on the TASEP where a special lattice site is treated as an
unusual “defect.” The state of each particle, which represents
a RNAP, is denoted by two integer indices. The first index
denotes its position on the lattice while the second expresses
the extra length of the associated RNA transcript because
of TS.

In the first part of this paper, we have derived an exact
analytical expression for the mean time taken by a single
RNAP to traverse the defect site, in the absence of steric
hindrance from any other RNAP. This mean time is extracted
from the corresponding probability density distribution that
we have derived here using the formalisms of first-passage
time. The exact analytical expressions that we report reflect
important statistical properties that characterize the passage
of a single RNAP across the defect site while motoring along
its DNA track.

In the second part of this paper, we have investigated the in-
terplay of TS at the defect site and RNAP traffic on the lattice
where the RNAP traffic has been modeled as a TASEP. We
have presented multiple evidences to establish an increase in
the number of TS events suffered by a RNAP while dwelling
at the defect site for longer duration because of the traffic
congestion. We have also indicated how the TS process affects
the flux of the RNAP traffic. We have found good agreement
between our theoretical predictions, based on an approximate
analysis of the TASEP model and the corresponding data
obtained by carrying out Monte Carlo simulations of the same
model.

Our model is very general. However, our analytical treat-
ment of the model is based on the assumption of homogeneity
of the DNA sequence. In the realistic case, the transcription
rate for every DNA nucleotide will vary depending on the
identity of the nucleotide on the template and the concen-

tration of the corresponding free monomers available in the
surrounding medium. For quantitative predictions, that can be
compared with experimental data, inhomogeneous sequences
have to be considered. But, in those cases the analysis can
be carried out only numerically because analytical treatment
would be very difficult (if not impossible).

In spite of the simplicity of the special case of the model
and the approximations made in its analytical treatment, the
theoretically predicted probability distribution of the longer
and shorter transcripts qualitatively matches the experimental
data [42,43] obtained through advanced sequencing tech-
nologies [44]. However, for detailed quantitative predictions
for specific systems, numerical values of the slippage rates
would be required; but, at present, estimates of these rates are
not available in the literature. We hope that our theoretical
predictions will encourage more experimental studies.

The work reported here is of interdisciplinary nature. It has
been motivated by a biological phenomenon, namely, TS. The
model proposed for studying this phenomenon is an extension
of one of the simplest mathematical models of a system of in-
teracting self-driven particles, namely, the TASEP. The model
has been analyzed from the perspective of nonequilibrium
statistical physics. A single RNAP operates as a “tape-copying
Turing machine” [45–47]; a Turing machine [48] is an ideal-
ized device conceptualized for abstract “computation” [49].
Therefore, the general theoretical framework developed here
may be of interest also in the theory of computation.
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