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α-relaxation, shear viscosity, and elastic moduli of hard-particle fluids from a mode-coupling theory
with a retarded vertex
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The recently proposed modification of the mode-coupling theory (MCT) in which the static structure used in
the vertex is computed at a lower density than the actual one is tested on several dynamics-related properties.
The predictions from this modified version of MCT calibrated on the one-component hard-sphere fluid are found
in very good agreement with simulation data for one-component and binary hard-sphere fluids. They are also
relevant for the stress moduli for models with attractive tails beyond the hard core. The clear improvement
observed on several properties should give a new impetus to the use of MCT as a quantitative tool.
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I. INTRODUCTION

Mode-coupling theory (MCT) is one of the few first-
principles approaches of classical time-dependent correlation
functions, especially in condensed matter systems with slow
dynamics [1–3]. As it incorporates the interactions between
particles through the static structure, one may go beyond
packing or topological frustration considerations that usually
suffice [4–7] to describe jammed or arrested states due to
steric forces. Specific aspects such as low-density arrested
states in colloids [8–16] or metallic glasses (see, for example,
Ref. [17]) can thus be studied within MCT. Decades of
work have shown [1,2] that it provides at least a qualita-
tive account of several aspects of the slowing down, such
as the different relaxation regimes and the scaling behavior
of the density time-correlation functions [18]. Its prediction
of the nonergodicity parameter in the hard-sphere glass is even
quantitatively accurate. The glass transition lines can also be
determined by MCT, but it generally overestimates the extent
of the nonergodicity domain. Together with some questions
about the interpretation of the ideal glass transition [19,20] or
the possibility to predict the dynamics from the static structure
only [21], these inaccuracies cast doubt on the use of MCT
as a quantitative tool, though it is still often used for a first
estimation of several properties, beyond the arrest itself.

To improve its predictions, the source of its insufficien-
cies should be identified. The present consensus (see, for
example. Refs. [22] and [23]) attributes them to exaggerated
correlations, a consequence of the factorization ansatz, which
replaces in the memory function four-point contributions by
products of pair terms [1,3,24]. To correct this from first
principles one should start from the exact time evolution
equation from which MCT is derived. This requires one to
close the equations at a higher order as first shown by Szamel
[25]; see also Ref. [26] for an alternative approach. Though
this is the route from which well-controlled improvements
might arise, these fundamental developments are technically
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complex and remain to be fully tested (see Refs. [27] and
[28] for a recent overview). The effort for developing simpler
ad-hoc corrections that preserve the experience accumulated
with the standard MCT equations thus remains valuable. That
this is still a timely question is further justified by the difficulty
of investigating slow dynamics by computer simulation. In
this pragmatic point of view, Nauroth and Kob [22] pro-
posed two simple corrections for the Lennard-Jones mixture,
a cutoff in the q-integrals or using an effective temperature,
while Flenner and Szamel [23] suggested that comparison
between MCT and simulation should be best made at the
same reduced temperature. In Ref. [29], Voigtmann et al.
adjusted the packing fractions and the wave number at the
peak of S(q) to make MCT agree with simulation. Alterna-
tively, a time-convolutionless mode-coupling approach has
been formulated [30]. Concerning the transport properties,
and following previous work by Götze et al. [1], Banchio
et al. [31] found that rescaling the density dependence of the
long-time self-diffusion coefficient was necessary to make the
MCT shear viscosity of hard spheres agree with experiment. A
similar scaling was performed in Ref. [32] for comparing the
MCT arrest lines for the square-well fluid to simulation data.

In a similar spirit, we recently [33] implemented the idea of
reducing correlations by using in the vertex a static structure
computed at a lower density than the actual one. By cali-
brating the correction on the experimental critical density of
colloidal hard spheres, we have shown in Ref. [33] that this
idea works well in the long-time limit (see Ref. [34] for a
preliminary report), as well as for some aspects of the time-
correlation functions, even for models with attractive contri-
butions to the interaction potential. By providing evidence
that this modification is efficient well beyond the properties
considered in Ref. [33], the purpose of this work is to highlight
the possibility to resort to MCT for quantitative studies.

II. THEORY

MCT is well documented, and the reader may refer to
the work of Nagele et al. [35] for a detailed presentation
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for colloidal systems. We briefly recall here the equations
required for the modification. We start with the MCT time

evolution of the matrix S(q; t ) of coherent intermediate scat-
tering functions with elements Sαβ (q; t ):

∂

∂t
S(q; t ) + q2H(q)S−1(q)S(q; t ) +

∫ t

0
dt ′M(q; t − t ′)H−1(q)

∂

∂t ′ S(q; t ′) = 0, (1)

where the matrix elements of the irreducible collective memory function are [35]

Mμν (q, t ) = D0
μD0

ν

16π3(ρμρν )(1/2)

∑
γ γ ′δδ′

∫
dkVμ;γ δ (q, k)Vν;γ ′δ′ (q, k)Sγ γ ′ (‖q − k‖; t )Sδδ′ (k; t ) (2)

with the vertex amplitude

Vμ;γ δ (q, k) = 1

q
[q · kδμδCμγ (k) + q · (q − k)δμγCμδ (‖q − k‖) + q2x1/2

μ C(3)
μγ δ (k, q − k)]. (3)

ρμ is the density of species μ and Cμν = (ρμρν )1/2cμν ,
with cμν the Fourier transform of the two-body static direct
correlation functions (and similarly with C(3)). Neglecting
hydrodynamic interactions, the matrix H of partial hydro-
dynamic functions is Hαβ = D0

αδαβ [35] with D0
α the Stoke-

Einstein diffusion coefficient of species α.
The modification is based on the view that the source of

the excessive tendency to dynamical arrest is the progressive
buildup of too strong correlations in the memory term. It thus
consists in using effective (lower) densities ρeff

α in the vertex.
The actual densities are retained in Mμν in the factor before the
integral, and to remain consistent with the short-time limit, the
true static structure S(q) is used in the second term of Eq. (1).
This version was labeled as V 2 in Ref. [33]. As a result, the
MCT equation is solved for the actual densities but with a
static structure in the vertex computed for ρeff

α (similarly, an
effective temperature T eff can be introduced when tempera-
ture is a relevant variable). Since the vertex corresponds to a
less correlated system, the dynamical slowing down should be
deferred to higher density. It is, however, difficult to predict
the precise impact of this modification, given the intricacy
of Mμν (q, t ) and Vμ;γ δ (q, k). In a related way, the idea of
rescaling the MCT vertex by a multiplicative factor in the
memory function was introduced by Fabbian et al. [36] in their
study of linear molecules.

It is stressed that this differs from the procedure by which
the results from the original MCT are represented a posteriori
using scaled variables. Rather, it amounts to solving the MCT
equation with a “density-retarded” vertex preserving thus its
predictive status, independently of the considered specific
property.

Technically, the solution of the modified Eq. (1) is the same
as for the original theory, except for the necessity to compute
the input static structure at the actual and the corrected density.
For this, we mostly used the reference hypernetted chain
(RHNC) closure with bridges functions obtained from Rosen-
feld’s hard-sphere functional [37] (see Ref. [33] for details).
As usual, the calculation starts with the short-time limit,
without the memory term in Eq. (1), in which case S(q, t )
can be computed analytically from S(q). S(q, t ) at all times is
then computed following the algorithm of Fuchs et al. [38], as
detailed in Ref. [23] in matrix form for mixtures. Standard
discretization was used for the time intervals, which span

several orders of magnitude, the diffusion time τ = D1
2

D0
being

used as the unit timescale (the hard-sphere (HS) diameter D1

is taken as the unit length). For the q-integrals, nq = 500 mesh
points and dq = 0.183/D1 was found sufficient.

The one-component hard-sphere fluid with packing frac-
tion φ = π

6 ρσ 3 is used to calibrate the correction, starting
from the difference �φ = φex

g − φMCT
g between the “exact”

critical glass packing fraction and the MCT one. We then
solve the MCT equation at the packing fraction φ, using in the
vertex C = ρeff c(q; φeff ) computed for an effective packing
fraction

φeff = φ − �φ. (4)

The experimental critical density for colloidal hard spheres
[39], φex

g = 0.58, is often taken as the reference for the hard-
sphere glass (hereafter, “ex” will refer to computer simulation
when no experimental data are available, and the results
from the modified MCT are labeled with a tilde). For MCT,
the value depends on the input static structure, giving, for
instance, φMCT

g = 0.516, with S(q) from the Percus Yevik
(PY) closure and 0.525, with the Verlet-Weiss correction [40].
In Ref. [41] we also obtained the same value from the RHNC
integral equation. Unless specified the results shown here
have been computed with �φ = 0.055, making the correction
independent of simulation [the form of Eq. (4) appropriate for
mixtures is given by Eq. (8) in Ref. [33]]. Note that Foffi et al.
[42] used S(q) from simulation and found φMCT

g = 0.546.
Together with φex

g = 0.58, this gives �φ = 0.034 (see the
discussion of Figs. 6 and 7 below).

III. RESULTS

Most of the material presented in Ref. [33] concerned the
impact of the modification on the critical density. For the
HS-binary mixture studied in Ref. [42], using �φ = 0.055
we found φ̃MCT

g = 0.6113 for system A: δ = 0.6, x1 = 0.2,
with δ = D1/D2 the small-to-big sphere diameter ratio and
x1 = φ1/(φ1 + φ2) the relative packing fraction of the small
spheres. This value, in a definitive improvement over the
original MCT, is barely distinguishable from the simulation
one, φex

g = 0.605, estimated in Ref. [42] from the α-relaxation
data. The latter value is found with �φ = 0.050 used for a
similar plot in Ref. [33] (Fig. 5). Figure 1 shows the approach
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FIG. 1. Density autocorrelation function f22(q = 4.909
D2

, t
τD

) of the
big spheres versus reduced time (log10 scale) in system A (computed
with �φ = 0.055). The packing fractions indicated from top to
bottom in the inset correspond to the figures from left to right.

of the dynamical arrest on the density correlators fαβ (q; t ) =
Sαβ (q; t )/Sαβ (q) of the big spheres and Figs. 2 and 3 the
timescale determined by fitting their α-relaxation part by the
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FIG. 2. α-relaxation timescale of the density autocorrelation
function of the big spheres in system A. Solid lines: empty circles:
corrected MCT, filled circles: simulation extracted from fig. 15 in
Ref. [42]. Dashed lines: MCT with Si j from simulation; empty
circles: MCT with Si j from the RHNC equations. The lines are guides
for the eye.
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FIG. 3. Same as Fig. 2 for the small spheres (MCT and RHNC
data not shown).

Kohlrausch stretched exponential:

fi j (q; t ) = Ai j exp{−[t/τi j (q)]βi j (q)}. (5)

The corrected MCT is definitely in better agreement with
simulation than the original MCT, when both use the RHNC
static structure. On the whole, it is also better than when the
“exact” static structure is used in the unmodified version. This
is especially true for the timescale τ11 for the small spheres;
see, for example, the maximum near qD2 = 7.5, absent in
the data from the unmodified version. The comparison was
not pushed further due to the sensitivity of the fit to several
factors such as the time interval [42]. The related uncertainty
in the fit increases at large wave vector, due to the fact
that the α-relaxation becomes less well defined, as shown in
Fig. 4. The error bar shown for qD2 = 4.909 used to convert
the simulation time into MCT time for the same value of
the correlator gives an idea of this sensitivity. Nevertheless,
the results for τ22 and τ11 confirm that in addition to predicting
a critical density that is nearly the simulation value, the
modification does preserve the scaling properties of the MCT
dynamical properties up to providing a nearly quantitative
account of the relaxation timescales.

We now present the assessment of the proposed modifi-
cation on a rheological property of the hard-sphere fluid, the
zero-shear limiting viscosity η. We refer to the work of Ban-
chio et al. [31] for the derivation of the necessary equations.
The zero frequency viscosity is given by the relation

η = η′
∞ +

∫ ∞

0
dt�η(t ), (6)

where η′
∞ is the high-frequency limiting viscosity, taken as in

Ref. [31] from the Einstein form η′
∞

η0
= 1 + 2.5φ, with η0 the

solvent viscosity. �η(t ) is the shear stress relaxation function
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given in the framework of MCT by [31] by

�η(t ) = kBT

60π2

∫ ∞

0
dqq4

[
1

S(q)

dS(q)

dq

]2[S(q; t )

S(q)

]2

. (7)

The prediction for the viscosity η is a stringent test of the the-
ory since both the time and the q dependence of the correlators
are involved in Eqs. (6) and (7). Figure 5 shows the MCT
predictions together with Brownian dynamics simulation data
for colloidal hard spheres [43]. The agreement between both
is excellent. A similar comparison is made in Fig. 3 in
Ref. [31], by plotting the MCT data versus a rescaled density
φ̃ = φ

φg

0.525 . With φg = 0.62 determined such that the MCT
result for the long-time self-diffusion coefficient agrees with
the Brownian dynamics (BD) results at high concentration,
the agreement is fair. When using φg = 0.6 it is as good as the
one found with our modification. The latter value is somewhat
closer to the experimental glass transition density φg = 0.58
albeit not fully consistent with the observed divergence of
the viscosity at φg = 0.62. The latter scaling is, however,
made a posteriori, as an ad-hoc representation of the actual
MCT η(φ) curve, as this often occurs when comparing MCT
and simulation data [32]. While these scalings share with
our method the idea that for many properties the variation
with the state variables predicted by MCT is correct, albeit
at quantitatively incorrect values, they have a clearly distinct
status as already stated.

As a final illustration of the effect of the modification we
consider mechanical properties which now involve only the
long-time limit of MCT. The first one is the longitudinal
stress modulus m0 whose expression in the hydrodynamic
approximation obtained by taking the t → ∞ and q → 0
limits of the memory kernel (for a one-component system)
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η/
η 0

φ

FIG. 5. Shear viscosity versus volume fraction of the hard-sphere
fluid. Filled circles: BD simulation; diamonds: modified MCT with
�φ = 0.055; crosses: same with �φ = 0.043. Dashes: original
MCT, this work. Dotted line: viscosity versus rescaled volume
fraction from Ref. [31] with φg = 0.6. Thick solid line: same with
φg = 0.62.

is [44]

m0 =
∫ ∞

0
dq f 2(q)ρS(0)

[
qS(q)

2π

]2
{

c2(q) + 2

3

[
q

dc(q)

dq

]

+ 1

5

[
q

dc(q)

dq

]2
}

. (8)

The second one is the shear stress modulus G′ whose
expression is

G′ = kBT

60π2

∫ ∞

0
dqq4

{
f (q)

dlnS(q)

dq

}2

. (9)

We first tested the correction on the short-range square-
well fluid of relative width ε = 0.03 investigated in Ref. [44].
Temperature is then relevant, but as shown in Ref. [33], a
significant impact of the transition lines in the (T, ρ) plane
is observed even when the correction is independent of tem-
perature. Since this model does not correspond to an actual
physical system and in the absence of simulation data, the
effect of the correction was investigated only at the qualitative
level with a temperature-independent correction, with the
PY static structure and �φ = 0.034 for which the effect of
the modification is less pronounced. The variations of the
longitudinal stress modules m0 and of the shear stress modulus
G′ along the the fluid-glass line are shown in Figs. 6 and
7. The corrected curve in Fig. 6 is qualitatively similar to
the original one but shifted: the same rigidity is found at a
higher density since, at fixed temperature, the glass occurs at
a higher density than with the original theory. Equivalently,
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FIG. 6. Longitudinal stress modulus along the fluid-attractive
glass line. Filled circles: original MCT with Percus-Yevick static
structure as in Fig. 7 in Ref. [44]. Open circles: modified MCT.
The lines are guides for the eye. The inset shows the corresponding
transition lines.

a given density corresponds to a lower transition temperature
and hence a stiffer “bonded” glass. A similar effect is observed
in Fig. 7. Our numerical values differ from those of Ref. [44],
but the value of G′ depends on the precise density at which it
is computed on the glass side of the line. The data are thus
shown in arbitrary units, to focus on the relative variation
with respect to the original MCT. The first observation is
the significant increase in relative magnitude of G′ (recall the
lower transition temperature with the modification). Next, the
maximum stiffness with respect to shear [44] should be found
at a higher density. We found a similar behavior with the
Yukawa potential of width ε and inverse range b investigated
in Ref. [8]. For example, for kBT/ε = 0.12 and b = 20σ we
find G′ � 34 and G′ � 61 (in the units of Fig. 5 in Ref. [8])
without and with correction, respectively. These observations
are consistent with the main effect of the modification in
the long-time limit: the critical density is higher. Studying
in more detail the complex behavior with temperature, the
difference between the shear and longitudinal stress moduli
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FIG. 7. Shear stress modulus along the fluid-attractive glass line
(arbitrary units). Lower curve: original MCT as in Fig. 7 in Ref. [44].
Upper curve: modified MCT. Both use the Percus-Yevick static
structure.

[44], including the repulsive glass, would, however, require
a temperature-dependent correction. All these points need
further clarification eventually by simulation, possibly on
more specific models.

To conclude, this study confirms that the idea of tempering
the buildup of correlations that are too strong in the MCT
memory kernel by computing the vertex at a lower density
leads to an overall improvement of the prediction of MCT
both in the long-time limit and in the relaxation dynamics,
up to providing a very good account of some rheological
and mechanical properties. This clear gain in accuracy with
very little cost and no ad-hoc scaling of the state variables
is certainly useful from the applications point of view. On
the other hand, while it brings no further insight on the
fundamental mechanisms involved in the dynamical slowing
down, it should be beneficial to the theory since it stresses
again the importance of a proper treatment of the memory
kernel. Its assessment on other models and properties should
stimulate further theoretical and simulation work.
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