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A Lévy noise is an efficient description of out-of-equilibrium systems. The presence of Lévy flights results
in a plenitude of noise-induced phenomena. Among others, Lévy flights can produce stationary states with
more than one modal value in single-well potentials. Here we explore stationary states in special double-well
potentials demonstrating that a sufficiently high potential barrier separating potential wells can produce bimodal
stationary states in each potential well. Furthermore, we explore how the decrease in the barrier height affects
the multimodality of stationary states. Finally, we explore the role of multimodality of stationary states on
noise-induced escape over the static potential barrier.
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I. INTRODUCTION

Noise is one of the fundamental concepts in the theory
of stochastic systems [1]. It is used to effectively approx-
imate complex interactions of an observed particle with its
environment. After a long-lasting dominance of the Gaussian
paradigm, it has been documented and accepted that many
situations significantly departs from the Gaussian approxi-
mation. In the nonequilibrium regime, noise can be of the
α-stable type [2], resulting in unexpected properties of noise-
driven systems.

Since the late 1990s, significant progress in the devel-
opment of the theory of systems driven by Lévy noise has
been achieved [3–10]. Lévy flights have been studied in var-
ious situations [11]. Their applications cover, among others,
economy and finance [12], superdiffusion of micellar systems
[13], studies of turbulence [14], description of photons in
hot atomic vapors [15], laser cooling [16,17], and therapeutic
aspects [18]. These studies cover experimental [19,20] and
various theoretical aspects [21–24] of Lévy flights.

In the context of current research, the problem of sta-
tionary states in systems driven by Lévy noises is especially
important. Stationary states in a single-well potential can be
bimodal, which is well known and documented [7,25–28].
Moreover, conditions for the steepness of single-well poten-
tials that can bound Lévy flights have been developed [29].
Furthermore, in Ref. [30] we have presented sample, carefully
selected, single-well potentials resulting in stationary states
with an arbitrary number of modal values. In Ref. [30] and
Refs. [25,27] the number of modal values has been attributed
to the number of maxima of the potential curvature.

The multimodality of stationary states can be also dynam-
ically induced [31,32]. For example, in single-well potentials
perturbed by Gaussian white noise and Markovian dichoto-
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mous noise the stationary state can be bimodal. For such a
system the maxima of stationary densities are placed in the
vicinity of minima of the altered potential [31] indicating
differences between mechanisms producing multimodal sta-
tionary states by solely action of the Lévy noise and the com-
bined action of the Gaussian white noise and the Markovian
dichotomous noise.

Within the current manuscript we further inspect the prob-
lem of multimodal stationary states in systems driven by the
Lévy noises; however, we focus on double-well potentials.
Therefore, we explore a situation when the number of modal
values in the stationary state is larger than the number of
minima of the potential. We demonstrate that if the potential
minima are deep enough, then they are sufficient to produce
multiple maxima of a stationary state in any of potential wells.

The studied model is presented in the next section (Sec. II).
The main results are included in Secs. II B–II C and Sec. III,
while Sec. II A plays an introductory role. The paper is closed
with Summary and Conclusions (Sec. IV) and supplemented
with Appendices A–C presenting relevant technicalities.

II. MODEL AND RESULTS

We start with the basic information regarding overdamped
stochastic dynamics in single-well potentials (Sec. II A). Af-
terward, in Sec. II B, using this information, we study various
types of double-well potentials which are able to produce
stationary states characterized by a larger number of modal
values than the number of minima of the potential. Finally, in
Sec. II C, we investigate a model with a varying barrier height
which allows us to increase understanding of the role played
by the potential barrier separating minima of double-well
potentials.

The overdamped motion in an external potential V (x) is
described by the following Langevin equation:

dx

dt
= −V ′(x) + σζα (t ), (1)
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where ζ (t ) is the symmetric α-stable Lévy type noise, i.e.,
the formal time derivative of the symmetric α-stable motion
[33]. The parameter σ , in Eq. (1), might be interpreted as
a noise strength. Equation (1) is supplemented with the ini-
tial condition x(0) = x0. Accordingly, the stochastic process
{X (t ), t � 0} governed by Eq. (1) has increments

�x = x(t + �t ) − x(t ) (2)

= −V ′(x(t ))�t + �t1/ασζt .

In Eq. (2) ζt represents independent, identically distributed
random variables [34–36] following the symmetric α-stable
density [37,38] with the unity scale parameter and the charac-
teristic function φ(k),

φ(k) = exp[−|k|α]. (3)

Within simulations we use σ = 1; nevertheless, due to various
types of considered potentials, the comparison with analytical
results requires reintroduction of the scale parameter σ , see
Appendices A and B. The nonunity scale parameter is rein-
troduced by the multiplication of ζt by σ . Such a multiplied
(rescaled) random variable has the characteristic function

φ(k) = exp[−σα|k|α], (4)

which is the typical form of the characteristic function of
symmetric α-stable densities. The stability index α (0 <

α � 2) describes an asymptotic power-law decay of α-stable
densities, which for α < 2 is of a |x|−(α+1) type. The scale
parameter σ controls the distribution width. For α < 2, the
variance of an α-stable density is infinite, and thus the dis-
tribution width can be defined by the interquantile width or
fractional moments. For α = 2, the characteristic function (4)
reduces to the characteristic function of the normal (Gaussian)
distribution with the probability density

f2(x) = 1√
4πσ 2

exp

[
− x2

4σ 2

]
. (5)

The case of α = 1 corresponds to the Cauchy distribution

f1(x) = σ

π (x2 + σ 2)
, (6)

which is extensively used here. For clarity and practical
reasons, the scale parameter is extracted from the noise, see
Eq. (1). From Appendices A and B it can be deducted how the
scale parameter can be reintroduced.

The evolution of the probability density generated by
Eq. (1) is described by the fractional Smoluchowski-Fokker-
Planck equation [9,39,40],

∂ p(x, t )

∂t
= − ∂

∂x
V ′(x, t )p(x, t ) + σα ∂α p(x, t )

∂|x|α . (7)

The operator ∂α/∂|x|α is the fractional Riesz-Weil deriva-
tive [40,41] which can be defined via the Fourier transform
Fk[ ∂α f (x)

∂|x|α ] = −|k|αFk[ f (x)].
Results included in the following subsections have been

constructed numerically by methods of stochastic dynamics.
Equation (1) was integrated by the Euler-Maryuama method
with the time step of integration �t = 10−5 and 106–108

repetitions. More details can be found in Appendix C.

A. Single-well potentials

First, we study the motion of a particle driven by Lévy
noise in single-well potentials of

V (x) = nxn (8)

type, where n is even and greater than 0. Stationary states
for potentials given by Eq. (8) exist for the sufficiently large
steepness (exponent) of the potential n [29], i.e.,

n > 2 − α. (9)

The steepness of the potential, which is sufficient to produce
stationary states, depends on the stability index α characteriz-
ing asymptotics of random pulses. Therefore, the existence of
a stationary state does not depend solely on the potential, but
it is also sensitive to the stability index α characterizing the
noise. Furthermore, if a stationary state exists, then it is not of
the Boltzmann-Gibbs type [21].

In Appendices A and B, starting from known formulas
[7,25–28], it is demonstrated that for n = 4 with α = 1 the
stationary solution of Eq. (1) is

pα=1(x) = 4

π (4σ )1/3

1[
4x

(4σ )1/3

]4 − [
4x

(4σ )1/3

]2 + 1
. (10)

The stationary density (10) depends on the scale parameter
σ . Please note that for a finite n, the stationary density is
sensitive to the scale parameter σ characterizing strength of
noise pulses, see Ref. [42] and Appendix B.

The infinite rectangular potential well is recovered in the
n → ∞ limit of Eq. (8), see Ref. [43]. For the infinite rectan-
gular potential well the stationary state is [44]

p∞(x) = 	(α)(2L)1−α (L2 − x2)α/2−1

	2(α/2)
. (11)

In contrast to the finite n, the stationary density (11) does not
depend on the scale parameter σ .

In order to verify the correctness of implemented numerical
methods, see Appendix C, we have performed a computer
simulation for V (x) = 4x4. Figure 1 demonstrates the perfect
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FIG. 1. The stationary state for a single-well potential with n = 4
and α = 1. The dashed line presents the theoretical density given
by Eq. (10), and the solid line represents the quartic V (x) = 4x4

potential. Points depict results of stochastic simulations.
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FIG. 2. Stationary states for single-well potentials V (x) = nxn

for the increasing exponent n with α = 1. Dashed lines depict theo-
retical densities, see Ref. [42]. The solid line presents the theoretical
n → ∞ density given by Eq. (11).

agreement between results of a stochastic simulation (points)
and the exact formula (dashed line) given by Eq. (10).

Further numerical studies are devoted to the investigation
of changes in the stationary densities in single-well poten-
tials of V (x) = nxn type induced by the increasing exponent
(steepness) n. Analytical results for such class of potentials
can be obtained by a transformation of Ref. [42, Eqs. (38) and
(39)], see Appendix B. In Fig. 2 these formulas are depicted
by dashed lines and compared with results of stochastic sim-
ulations marked by points. Finally, the solid line presents the
stationary density for the infinite rectangular potential well,
see Eq. (11). From Fig. 2 it is clearly visible that results of
stochastic simulations perfectly agree with analytical formu-
las. Moreover, analogously like in Ref. [43], it is demonstrated
that the stationary density approaches the stationary state for
the infinite rectangular potential well in the limit of n → ∞,
see Eq. (11) and Ref. [44]. Due to symmetry of the potential
(8) stationary states are also symmetric. With the increasing
n, modal values of the stationary density are shifted toward
x = ±1. Finally, in the limit of n → ∞, modal values are
located at impenetrable boundaries. This test is crucial for
the considerations performed in Sec. II B, where double-well
potentials based on Eq. (8) are considered.

Multimodal stationary states are produced because of the
interplay between the deterministic and random forces. The
deterministic force −V ′(x) always acts toward the minimum
of the potential V (x). The random force is the only factor
which causes excursions toward large |x|. Therefore, the
emerging stationary density is the distribution that balances
random excursions and deterministic sliding, which is inter-
rupted by long jumps. For the large exponent n, the potential
V (x) given by Eq. (8) is very close to the infinite rectangular
potential well. A random jump to the right or to the left moves
the particle to the point where the restoring force is very large.
Consequently, the particle immediately slides to |x| ≈ 1 and
waits there for the next random pulse. With the decreasing
exponent n the point where particle can slide down moves
toward x = 0. At the same time, for n � 2, the time needed
to reach the origin by a deterministic sliding is infinite. The
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FIG. 3. Double-well potentials, see Eq. (12), with the increasing
exponent n (n ∈ {4, 8, 32, 512}).

impossibility of reaching x = 0 in a deterministic way in a
finite time makes the stationary state bimodal.

B. Double-well potentials

As is well known, and also demonstrated in Sec. II A, it
is possible to create a bimodal stationary state in a single-
well potential [7,25–28]. As the next step, it is intriguing
to verify conditions necessary to produce stationary states
with higher modality than the number of potential minima.
Moreover, it is interesting to inspect how the shape of the
stationary state depends on the height of the potential barrier
separating minima of a double-well potential. In order to
explore these issues, a special potential needs to be selected.
First, it has to behave like a single-well potential with n � 2 in
the vicinity of its minima. Moreover, potential wells must be
wide enough to avoid interference of structures (e.g., peaks)
emerging in different potential wells. In addition, the potential
barrier needs to be steep enough in order to produce internal
minima of the stationary probability density. Finally, in the
limit of n → ∞, the height of the potential barrier should be
infinite. The simplest choice fulfilling all required properties
is a double-well potential based on the single-well potential
given by Eq. (8). Therefore, we use the following double-well
potential:

V (x) = n(|x| − 1)n =
{

n(x + 1)n for x < 0

n(x − 1)n for x � 0
, (12)

where n is even and positive. Sample double-well potentials
given by Eq. (12) with various n are depicted in Fig. 3. With
the increasing exponent n the potential V (x) = n(|x| − 1)n

approaches the sum of two infinite rectangular potential wells.
The height of the potential barrier is equal to n, i.e., V (0) = n
for every n. Importantly, for a finite n, minima of the potential
(12) are located at ±1 regardless of the steepness exponent n.

Figure 4 shows results of a stochastic simulation for
the double-well potential (12) with n = 4. The dashed line
presents

p(x) =
{

pα=1(x + 1)/2 for x < 0

pα=1(x − 1)/2 for x > 0
, (13)
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FIG. 4. The stationary density for the double-well potential (12)
with n = 4 and α = 1. The dashed line depicts the probability density
given by Eq. (13).

where pα=1(x) is given by Eq. (10). The exact density (points)
differs from p(x) given by Eq. (13); nevertheless, these dif-
ferences are not so pronounced. These differences originate in
the finite height of the barrier separating the left and the right
minimum of the double-well potential. Therefore, internal
maxima of the stationary density are lower than the outer one.

Subsequently, we have explored the behavior of stationary
states for the increasing values of the exponent n in Eq. (12).
With the increasing n, positions of internal modes shift toward
x = 0. Finally, in the limit of n → ∞, internal maxima of the
stationary density merge, resulting in the amplification of the
central mode. This phenomenon produces a stationary state
with three modal values. At the same time, external modal
values shift toward x = ±1 and their height increases. For
a large-enough steepness (exponent) n, the stationary state
p∞(x) is a sum of stationary states in two rectangular potential
wells, see Eq. (11). Analogously like in Fig. 4, dashed lines in
Fig. 5 present exact solutions given by transformed formulas
[42, Eqs. (38) and (39)], see Eq. (13) for the reference. A
comparison of computer simulations (points) with dashed
lines demonstrates how the asymptotic density is reached.
It indicates how the interference of internal modes is re-
sponsible for significant deviations from theoretical densities.
Finally, this comparison is especially useful for observing the
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FIG. 5. Stationary solutions for α = 1 with n ∈ {8, 32, 512} and
V (x) = n(|x| − 1)n.
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FIG. 6. Sample parabolic and quartic potentials, see Eq. (14),
with h = 100 and h = 10−1.

behavior of outer modes, since it nicely shows how, with the
increasing n, outer maxima of probability densities approach
impenetrable boundaries arising at ±1. Here, the qualitative
explanation of the observed effect is the same as for the
single-well potential. The only difference is that the random
pulses can induce transition over the finite potential barrier
separating left and right potential wells.

C. Barrier height

In Sec. II B, we have verified how the shape of stationary
states changes with the increasing height of the potential
barrier separating potential wells. We have also explored how
the limit of double-well infinite rectangular potential well is
reached. Here we examine the opposite situation. Namely, we
want to investigate how the shape of stationary states changes
with the decreasing height of the potential barrier separating
both potential wells. Since the double-well potential given by
Eq. (12) is not very suitable for such tests, we use the potential

V (x) = (|x| − h1/n)n, (14)

with n = 2 and n = 4, see Fig. 6. In Eq. (14), h controls
the height of the potential barrier separating minima of the
double-well potential. The parameter h controls also a posi-
tion of potential minima. In the limit of h = 0, the double-well
potential reduces to a single-well potential with a minimum at
the origin. Therefore, for a decreasing h, it is possible to see
when the barrier separating potential wells is not sufficient
to produce maxima of the stationary state in left and right
potential wells (n = 2) or when bimodality within a potential
well disappears (n = 4), see Fig. 7.

The top panel of Fig. 7 presents results for V (x) = (|x| −√
h)2. For h large enough, the potential is built by two

parabolas separated by a high potential barrier. Therefore,
within each potential well, there is a stationary state which
is given by the stationary state for the harmonic potential,
see Fig. 8. With decreasing h, both peaks of the stationary
density are approaching each other and start to interfere. In
the limit of h = 0, the potential is of a single-well, parabolic
type. Consequently, the stationary state is the same as for the
stochastic (overdamped) harmonic Cauchy oscillator. From
computer simulations, one may observe that for h = 10−4

the stationary state is very close to the stationary state for
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FIG. 7. Stationary states for V (x) = (|x| − h1/n)n with α = 1 and
n = 2 (a) and n = 4 (b). Black solid lines present h = 0 theoretical
densities, see Eqs. (15) and (16).

V (x) = x2. A perfect agreement is obtained for h = 0. How-
ever, due to the cusp in the potential, even for a very small h,
p(x = 0) is reduced in comparison to the stationary density for
the stochastic harmonic oscillator. The cusp at x = 0 moves
from the origin some of particles, which want to accumulate
there. Finally, for h = 0, the single-well parabolic potential is
recovered and the unimodal stationary state is given by the
appropriately rescaled Cauchy density, which for V (x) = x2

0
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p(
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n = 2, h = 102
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FIG. 8. Stationary states for V (x) = (|x| − h1/n)n with α = 1 and
n ∈ {2, 4}. Various curves correspond to various values of h. Black
solid lines present shifted and normalized theoretical densities, see
Eqs. (15) and (16). The inset shows whole histograms, while the main
plot zooms the vicinity of the right potential minimum.

and σ = 1 is given by Eq. (B10) with λ = 1/2, i.e.,

p(x) = 2

π
× 1

(2x)2 + 1
. (15)

Similar situation is observed for n = 4, see Eq. (14) and
the bottom panel of Fig. 7. For n = 4 and large-enough h,
the potential is built by two quartic, single-well potentials.
Therefore, within each potential well, the stationary state is
bimodal, see Eq. (10) and Figs. 1 and 8. With the decreasing
h, internal maxima of the stationary state decrease. Simulta-
neously, outer modes shift toward the origin and their height
increase. Finally, for h = 0, the single-well quartic potential
V (x) = x4 is recovered. For σ = 1 in the Langevin equation,
the bimodal stationary state is given by the equation derived
from Eq. (B8) with n = 4 and λ = 1/4, i.e.,

p(x) = 22/3

π

1

28/3x4 − 24/3x2 + 1
. (16)

The potential given by Eq. (14) is one of many possible
potentials that allow to investigate the role of a height of
a barrier separating potential’s minima on the shape of sta-
tionary states. The potential (14) have been used due to its
properties. In Eq. (14) the h parameter controls the barrier
height. On the one hand, single-well potentials, e.g., harmonic
(n = 2) or quartic (n = 4), are recovered in the limit of h → 0.
On the other hand, for very large h, there are no transitions
between potential minima and the potential is practically
built from two independent single-well potentials. One of the
drawbacks of the potential (14) is the fact that the increase in
h shifts also positions of potential minima into the direction
of larger |x|, see Fig. 6. Figure 8 presents stationary states
for large h: h = 104 (quartic potential) and h = 102 (parabolic
potential). For such values of h, potential minima are located
at x = ±10, where axes of symmetry of within the well
probability densities are located. In every potential well, prob-
ability densities perfectly follow shifted and renormalized
densities for single-well potentials, see Eqs. (15) and (16). The
perfect agreement between theoretical single-well densities
and numerically estimated histograms originates in the height
and width of the potential barrier, which makes the transition
from one well to another very unlikely. Alternatively, one
can generalize potential (12) to noninteger n or use V (x) =
h(|x| − 1)n. Unfortunately, these generalizations also possess
some disadvantages. For the generalized Eq. (12), with the
change in n not only the barrier height is changed but also
the steepness (exponent) and the “slope” (prefactor) of the
potential are modified. In the case of V (x) = h(|x| − 1)n, the
steepness is fixed but the “slope” changes. Noticeably, in the
limit of h → 0, this potential does not reduce to the single-
well potential, because it disappears. Nevertheless, we use this
potential to inspect the role of multimodality on noise-induced
effects, see Sec. III.

Naturally, it is still possible to fine-tailor other, more com-
plicated, potentials bearing required properties. Nevertheless,
we have used potential (14) as a simple potential that allows to
study the role of the barrier height on the shape of stationary
states. Already from the potential (14) it is possible to draw
many general conclusions, see Sec. IV.
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FIG. 9. The mean first passage time for the parabolic and quartic
potentials. Error bars are smaller than the symbol size.

III. ESCAPE FROM A POTENTIAL WELL

In Sec. II we have inspected conditions for emergence of
multiple modes within a single potential well. In the current
section we compare the noise-induced escape from the po-
tential well in order to explore the role of a multimodality of
stationary states.

We consider a motion of the particle driven by the Cauchy
noise in the double-well potential

V (x) = h(|x| − 1)n, (17)

with n ∈ {2, 4}. We are studying the escape from a potential
well [45–48], due to symmetry of the problem, we can assume
x(0) = 1 and consider x > 0 only; x = 0 is the point sepa-
rating left and right potential wells. Therefore, the stochastic
dynamics is continued as long as x � 0, see Appendix C.
Every first escape from the right potential well is associated
with the first passage time

τ = min{τ : x(0) = 1 and x(τ ) � 0}. (18)

The mean first passage time (MFPT) is the average of first
passage times. In Fig. 9 the dependence of the MFPT 〈τ 〉 on
the barrier height h is presented. For the parabolic potential
the mean first passage time is larger than for the quartic
potential. With the increasing barrier height (h > 10) the
MFPTs become comparable. The MFPT is influenced also
by size of the domain in which the random walk can be
performed, i.e., by the outer (|x| 
 1) parts of the potential.
For the quartic potential, the particle is effectively bounded in
a smaller fraction of space than for the parabolic potential, see
the top panels of Figs. 10 and 11. The effective domain size
depends also on the h parameter. For instance, stationary states
for V (x) = hx4 and V (x) = hx2 can be found from Eq. (B8)
with λ = h/4 and from Eq. (B10) with λ = h/2, respectively.
The decrease of the h parameter makes excursions to the large
|x| more probable. In turn these excursion are responsible for
the increase in the MFPT. In the limit of h → 0, a motion in
the potential given by Eq. (17) reduces to the problem of the
escape from the positive half-line which is characterized by
the diverging mean first passage time [49–53]. Consequently,
in the limit of h → 0 the MFPT 〈τ 〉 → ∞. For large |x|,
the parabolic potential is less steep, consequently, increase
in the MFPT with the decrease of the barrier height for the

0

1

2

3

4

0 0.5 1 1.5 2 2.5 3

(a)

p(
x
)

x

h = 0.1
h = 1
h = 5

h = 10

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3

(b)

p(
x

la
st
)

xlast

h = 0.1
h = 1
h = 5

h = 10

0

1

2

3

4

5

6

7

0 0.5 1 1.5 2 2.5 3

(c)

p(
x

la
st
)

xlast

h = 0.1
h = 1
h = 5

h = 10

FIG. 10. Stationary states (a), last hitting point densities for
x(0) = 1 (b), and last hitting point densities for x(0) ∼ U (0.5, 1.5)
(c) for n = 2. The main plot in the top panel shows the stationary
density for x > 0, while the inset presents the whole density.

parabolic potential is more rapid than for the quartic potential.
Therefore, the role of a multimodality on escape kinetics can
be assessed for a high-enough potential barrier. The top panel
of Figs. 10 and 11 suggest that h = 1 is sufficient because,
in the stationary state, the majority of the probability mass is
localized in comparable domains.

Changes in the shape of stationary states, see top panels
of Fig. 10 and 11, are also reflected in the dependence of the
MFPT on the barrier height h, see Fig. 9. For n = 2, the MFPT
monotonically decays with the increase of h. At the same time
the maximum of the stationary density does not move and
is located at x ≈ 1, see the top panel of Fig. 10. For n = 4,
the nonmonotonous dependence of the MFPT, with a shallow
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FIG. 11. The same as in Fig. 10 for n = 4.

minimum at h ≈ 0.5, is due to changes in the shape of the
stationary states, see top panel of Fig. 11.

The significant differences between the parabolic and the
quartic potential are visible on the level of stationary states,
see the top panels of Figs. 10 and 11. Analogously, like for
the potentials considered in Secs. II B and II C, if the barrier
is high enough, the stationary state in the quartic potential
has four modes. At the same time, the stationary state for the
parabolic potential is characterized by two modes located in
minima of the potential, i.e., x = ±1. In order to elucidate
further differences between both potentials we have studied
the distribution of the last hitting points.

The last hitting point xlast is the last point visited before
escape from the domain of motion, i.e., it is x(τi − �t ), where
�t is the integration time step and τi is the first passage time
associated with this particular realization of the trajectory. For
the selected setup, it is the last point such that x > 0. Due

TABLE I. The ratio of probabilities of escape in a single jump
and two consecutive jumps, i.e., p(1)/p(2).

h n = 2 n = 4

0.1 0.75/0.14 0.73/0.15
1 0.82/0.12 0.79/0.13
5 0.86/0.09 0.80/0.11
10 0.87/0.09 0.81/0.11

to the presence of noise in Eq. (1) trajectories are randomized.
Consequently, the first passage time τ and the last hitting point
xlast are random variables. The distribution of the last hitting
points for both setups is very different (compare middle panels
of Figs. 10 and 11). The distribution of last hitting points
is related to the stationary state and the initial condition.
A particle is more likely to escape from points where a
probability of finding the particle is larger. Therefore, the last
hitting point density follows a very different pattern for n = 2
and n = 4. The most probable escape scenario, even for finite
σ , is the escape via a single long jump [48,54,55] because in
the weak noise limit the Lévy noise can be decomposed into
the Gaussian white noise and the Poisson compound process.
This does not mean that the particle escapes immediately,
because it can be wandering due to the Gaussian component
of the noise. For the parabolic potential, if the barrier has
an appropriate height, then the escape from the potential
well typically is not immediate [P(τ > 0.1) > 96%] and most
probably finishes from the minimum of the potential. For
the quartic potential the situation is more complicated due
to two modes of the stationary state within a potential well.
Thus, for the high-enough potential barrier, the last hitting
point density has three modes: two modes in points where
the stationary state has modes and the additional mode in the
minimum of the potential, due to immediate escapes from the
starting point (initial condition). Nevertheless, an immediate
escape is not very probable as P(τ < 0.1) < 4%, while the
integration time step is 10−5. The peak arising due to the
initial condition can be diminished or removed by the change
in the initial condition. For instance, for x(0) uniformly
sampled from (0.5,1.5), i.e., x(0) ∼ U (0.5, 1.5), there is no
third peak, compare middle and bottom panels of Fig. 11.
The height of peaks in the last hitting density is reversed
in comparison to the height of peaks in the stationary state,
because it is easier to escape from the point which is closer
to the boundary. Moreover, for the decreasing barrier height,
the height of peaks located at |x| �= 1 decrease and finally
they disappear due to the larger role played by trajectories
approaching the boundary separating states. For a very low
potential barrier, regardless of a potential type, the particle can
also approach the vicinity of the point separating states, due
to “weak” noise pulses ruled by the central part of the Lévy
distribution. Therefore, in addition to the peak in the minimum
of the potential, the peak at the boundary emerges.

Last, we have compared escape scenarios in both poten-
tials. We have estimated probabilities of surmounting the
potential barrier via a sequence of given number of jumps
into the direction of the boundary. Table I presents the ratio
of probabilities of the passage over the barrier in a single
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jump p(1) and two consecutive jumps p(2), i.e., p(1)/p(2).
From numerical simulations, it looks that the results included
in Table I are robust with respect to the integration time
step as long as the integration time step is small enough.
Table I confirms the hypothesis that the main scenario of
the Lévy noise-induced escape is an escape via a single
long jump [48,54–56]. With the increasing barrier height, the
escape via a single long jump becomes dominant. With the
increasing value of the stability index α, longer sequences are
observed. Finally, in the limits of α = 2, i.e., for the Gaussian
white noise, the escape takes place in a sequence of jumps.
This effect is fully coherent with the decomposition of the
Lévy noise into the Gaussian white noise and the Poisson
compound process [54,55,57]. In the weak noise limits (small
σ ), transitions over the potential barrier are due to Poissonian
component of the noise.

IV. SUMMARY AND CONCLUSIONS

We have studied stationary states in single-well and
double-well potentials. It has been demonstrated that, for
a sufficiently high potential barrier separating minima of
double-well potentials, stationary states for systems perturbed
by the Lévy noises can be at least bimodal, due to the
possibility of producing more than one maximum of the
stationary state within each potential well. In order to produce
two maxima of the stationary density within a potential well,
the potential well needs to be steeper than parabolic. For
instance, for the double-well potential built from two single-
well potentials of x4 type, the stationary density can have four
modal values. If single-well potentials are of x2 type, then the
stationary state can be bimodal, with modal values located
in potential wells. To conclude, the number of modal values
is sensitive to the height of the potential barrier separating
potential wells and the leading term describing the potential
shape in the vicinity of its minima.

In general, it also possible to construct double-well poten-
tials producing more than four modal values of the stationary
state. Such potentials can be built from two single-well poten-
tials of the type considered in Ref. [30], i.e., from single-well
potentials with nonmonotonous dependence of the potential
curvature. The multimodality of stationary states can be also
produced by the combined action of the Gaussian white
noise and the Markovian dichotomous noise [31,32]. The
dynamically induced multimodalidy emerges due to sliding
to minima of the altered potential [31] while the Lévy noise-
induced multimodality is produced due to the competition
between random long excursion and the deterministic sliding
toward minima of the static potential, which is interrupted by
long jumps.

Finally, we have studied the role of the multimodality on
an escape from a potential well. We have observed that the
escape process from a quartic potential well is slightly faster
than the escape from the parabolic potential well, because
particles are more likely to concentrate closer to the boundary,
due to inner modes of the stationary state. The concentration
of the probability mass closer to the boundary allow for
faster escape because a shorter jump is more likely to occur
than a longer one. This effect is the most pronounced for
moderate barrier heights. In addition to stationary states, the

most striking differences are visible on the level of last hitting
point densities, which follow very different patterns due to
different shapes of stationary states.

We have performed our considerations for the Cauchy
noise but they can be extended to other Lévy noises. On the
one hand, such an extension is straightforward. On the other
hand, we are not expecting to observe different results (except
weakening of effects for 1 < α < 2) that one described within
the current manuscript. We have used the Cauchy density
due to analytically known stationary states, which can be
compared with numerical simulations.
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APPENDIX A: STATIONARY STATE FOR V (x) = xn/n
WITH n = 4 AND σ �= 1

The quartic oscillator V (x) = x4

4 is described by the fol-
lowing Langevin equation:

dx

dt
= −x3 + ζα (t ). (A1)

As proved in Refs. [7,25–28], for α = 1, the stationary state
is

fα=1(x) = 1

π (x4 − x2 + 1)
. (A2)

The stationary state for

dx

dt
= −x3 + σζ1(t ) (A3)

can be reconstructed by rescaling the space variable x and time
t . Let us introduce

x̃ = x

x0
(A4)

and

t̃ = t

t0
. (A5)

The nontrivial part is the noise transformation

σζα (t ) = σ
dL(t )

dt
= σ

d

dt
L(t0t̃ ) = σ

d

dt
t

1
α

0 L(t̃ ) (A6)

= σ t
1
α

0

d

dt
L(t̃ ) = σ t

1
α

0

dt̃

dt

d

dt̃
L(t̃ )

= σ t
1
α
−1

0 ζα (t̃ ),

where L(t ) is the α-stable Lévy motion, which is 1
α

self-
similar process, whose derivative is the α-stable (Lévy) noise
ζα (t ). Equation (A3) transforms into

x0

t0

dx̃

dt̃
= −x3

0 x̃3 + σ t
1
α
−1

0 ζα (t̃ ). (A7)
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First, we multiply both sides of Eq. (A7) by t0
x0

. Next, we
require that prefactors in the deterministic force and in the
random force (noise) are equal to unity

t0x2
0 = 1,

σ
t

1
α

0
x0

= 1.
(A8)

For α = 1, the solution of the above equation is

x0 = σ
1
3 ,

t0 = σ− 2
3 .

(A9)

After rescaling of variables Eq. (A3) takes the form of
Eq. (A1) with x and t interchanged with x̃ and t̃ . Consequently,
the stationary state is given by Eq. (A2) with x replaced by x̃
because the rescaling of time does not change the stationary
state. The stationary state for x can be reconstructed by the
change of variables

fα=1(x) = fα=1

(
x̃ = x

x0

)
1

x0

= fα=1

(
x̃ = x

σ
1
3

)
1

σ
1
3

= 1

πσ
1
3

1[
x

σ
1
3

]4 − [
x

σ
1
3

]2 + 1
. (A10)

APPENDIX B: STATIONARY STATES FOR V (x) = λnxn

WITH n = 4 AND n = 2

For V (x) = λnxn, the Langevin equation takes the follow-
ing form:

dx

dt
= −V ′(x) + σζα (t )

= −λn2xn−1 + σζα (t ). (B1)

Please note that the scale parameter of noise ζα is set to 1.
Thus σζα acts as the α-stable noise with the scale parameter
σ . By the appropriate change of variables, the prefactor in the
deterministic force can be incorporated into the σ parameter
allowing us to use results of Appendix A. Let us substitute
x = ay in Eq. (B1)

a
dy

dt
= −λan−1n2yn−1 + σζα (B2)

and divide it by a

dy

dt
= −λan−2n2yn−1 + σ

a
ζα. (B3)

For n �= 2, the value of a is determined by the condition

λan−2n2 = 1 (B4)

resulting in

a = (λn2)
1

2−n . (B5)

Therefore, Eq. (B3) transforms into

dy

dt
= −yn−1 + σ ′ζα, (B6)

where

σ ′ = σ

a
= σ

(λn2)
1

2−n

. (B7)

Consequently, from the stationary solution f (y) of Eq. (B6)
the stationary state f (x) of Eq. (B1) can be obtained by the
transformation of variables

f (x) = f
(

y = x

a

)1

a
. (B8)

In particular for n = 4, λ = 1, and α = 1 we have a =
1
4 and σ ′ = 4σ . In the special case of the quartic Cauchy
oscillator the stationary solution is

f (x) = 4

π (σ ′)1/3

1[ y
(σ ′ )1/3

]4 − [ y
(σ ′ )1/3

]2 + 1

∣∣∣∣
σ ′=4σ,y=4x

= 4

π (4σ )1/3

1[
4x

(4σ )1/3

]4 − [
4x

(4σ )1/3

]2 + 1
. (B9)

Similar calculations can be performed for any n > 0; how-
ever, for n = 2 one needs to transform both space and time
in the full Langevin equation. Following calculations from
Appendix A, for n = 2 with α = 1, one obtains t0 = 1/4λ and
x0 = σ/4λ. Consequently, the stationary state is the Cauchy
density,

f (x) = 1

π

1

y2 + 1

1

x0

∣∣∣∣
y=x/x0

= 1

π

1

(4λx/σ )2 + 1
× 4λ

σ
. (B10)

APPENDIX C: NUMERICAL METHODS

The Langevin equation, see Eq. (1),

dx

dt
= −V ′(x) + σζα (t ) (C1)

is integrated with the Euler-Maryuama scheme,

x(t + �t ) = x(t ) − V ′(x(t ))�t + �t1/ασζt , (C2)

where ζt represents independent, identically distributed
random variables [34–36] following the symmetric α-stable
density [37,38]. The Euler-Maryuama scheme assures proper
interpretation of stochastic integrals [58], which become more
complex due to discontinuity of Lévy flights. Equation (C2) is
accompanied with the initial condition on x(0) which can be
deterministic, i.e., x(0) = x0, or random, e.g., x(0) ∼ U (a, b).
In the absence of impenetrable boundaries, stationary states
are independent to the selection of x(0), while for the first
escape problems results are usually sensitive to the choice
of x(0).

Scheme (C2) is used both for the construction of stationary
states and examination of first escape problems. Crucial pa-
rameters in the approximation (C2) are the integration time
step �t and the number of repetitions N . The number of
repetitions controls the statistical error of the approximation
and fluctuations of the histogram. The integration time step
controls the systematic error. These parameters are either
selected by comparison of results of computer simulations
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with theoretical predictions or by self-consistency tests.
Therefore, we have performed a series of simulations with the
decreasing integration time step. This sequence was stopped
when results were coherent with theoretical predictions or
statistically equivalent to results with a larger integration time
step. After fixing �t we have increased the number of repe-
titions in order to decrease statistical errors. In order to asses
whether a stationary state was reached we have measured the
interquantile widths. Simulations were performed until the
time tmax, which is long enough to assure that the interquantile
width is not increasing. The interquantile width is more robust
than the standard deviation because it can be defined also for
distributions with the diverging variance.

The problem of first escape is also studied with the help of
Eq. (C2). After fixing x(0) the simulation is performed as long

as the particle has not crossed the prescribed boundary (here
as long as x > 0). From many simulations of escape events we
have recorded a series of first passage times τi and last hitting
points xlast , i.e., positions of the last visited point before leav-
ing the domain of motion. In the next step from these series
we can calculate the mean first passage time 〈τ 〉 along with its
error and estimate statistics of last hitting points, e.g., p(xlast ).

Within simulations the integration time step varied be-
tween 10−3 and 10−5, while the number of repetitions was
adjusted to 105–108. Stationary states were constructed with
a smaller integration time step and a larger number of repe-
titions because they were constructed using CUDA on GPU
(graphics cards). The MFPT was estimated on conventional
CPUs; consequently, statistics was poorer than for stationary
states.
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