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Generalized Wigner–von Neumann entropy and its typicality
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We propose a generalization of the quantum entropy introduced by Wigner and von Neumann [Z. Phys. 57,
30 (1929)]. Our generalization is applicable to both quantum pure states and mixed states. When the dimension
N of the Hilbert space is large, this generalized Wigner–von Neumann (GWvN) entropy becomes independent
of the choices of basis and is asymptotically equal to ln N in the sense of typicality. The dynamic evolution
of our entropy is also typical, and is reminiscent of quantum H theorem proved by von Neumann. For a
composite system, the GWvN entropy is typically additive; for the microcanonical ensemble, it is equivalent
to the Boltzmann entropy; and for a system entangled with environment, it is consistent with the familiar von
Neumann entropy, which is zero for pure states. In addition, the GWvN entropy can be used to derive the Gibbs
ensemble.
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I. INTRODUCTION

As an empirical understanding of macroscopic irreversible
processes, the second law of thermodynamics has stood the
test of time. However, its microscopic origin is still perplexing
physicists. Boltzmann gave us a clear understanding of how
the second law could arise from the time-reversible Newton’s
laws of motion. Unfortunately, we now know that macro-
scopic objects are made of microscopic particles that obey
the laws of quantum mechanics. It is therefore desirable and
imperative to understand the second law from the perspective
of quantum dynamics [1–15].

In 1929, von Neumann made the first attempt to understand
the second law quantum mechanically by proving the quantum
ergodic theorem and the quantum H theorem [1,2,16]. In
proving the H theorem, von Neumann introduced an entropy
for quantum pure states but acknowledged that this definition
came from Wigner’s unpublished work [1,2]. Therefore, we
call such quantum entropy Wigner–von Neumann (WvN)
entropy. The well-known von Neumann entropy was not
used because it is always zero for quantum pure states and
it can not describe the relaxation and fluctuations in iso-
lated macroscopic quantum systems. After introducing WvN
entropy, von Neumann showed with the help of typicality
arguments that for the overwhelming majority of bases, the H-
theorem holds without exception for all states. The typicality
argument [17–21] is mathematically known as a measure
concentration [22] and Levy’s lemma [5].

However, WvN entropy involves vaguely defined coarse
graining, and it does not apply to systems with spins. It was
shown in Ref. [11] that the quantum H theorem still holds
for a generalized WvN entropy that does not involve coarse
graining. In this work, we generalize WvN entropy further
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so that it applies to any quantum systems including spin
systems. We choose the eigenstates of a given observable as
a complete basis set. The generalized WvN (GWvN) entropy
for a quantum state is defined with the probability distribution
of this state over the chosen basis. We show analytically
that the GWvN entropy of almost all quantum states in a
Hilbert space of dimension N lies around ln N with a variance
of order 1/N . This means that when N is large, there is
typicality for the GWvN entropy. The GWvN entropy can
also be readily defined for a mixed state, for which it has a
similar typical behavior. When it applies to a system entangled
with the environment, the GWvN entropy is consistent with
the familiar von Neumann entropy. When the quantum state
can sample adequately the Hilbert space during its dynamical
evolution, the GWvN entropy will typically change quickly
from its initial value and saturate around ln N , reminiscent of
the quantum H theorem [1,2,11]. In the sense of typicality,
the GWvN entropy is additive. Therefore, when it is applied
to a microcanonical ensemble of N quantum states in an
energy shell, the GWvN entropy is not only identical to the
Boltzmann entropy but it also shares its property of being
additive. In the end, we show that the Gibbs ensemble can
be derived from the GWvN entropy with the maximal entropy
principle [23,24].

II. GENERALIZED WIGNER–VON NEUMANN ENTROPY
AND ITS TYPICALITY

In 1929, von Neumann introduced an entropy for pure
quantum states, but he acknowledged that the idea was from
Wigner’s unpublished work [1,2]. To define the entropy,
Wigner and von Neumann chose a pair of macroscopic po-
sition and macroscopic momentum operators that commute.
Their common eigenstates are wave functions localized on
individual Planck cells in phase space, and they form a
complete basis set. A wave function is then mapped unitarily
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FIG. 1. Statistical properties of the GWvN entropy S over a
Hilbert space of dimension N . (a) The distributions of the normalized
entropy s = S/ ln N . (b) The average entropy obtained by numerical
calculations, analytical results, and fittings. The blue rectangle rep-
resents the most probable entropy. (c) The variance of the entropy
obtained by numerical calculations, analytical results, and fittings.

to the phase space with this basis. The resulting probability
distribution in the phase space is coarse-grained and used to
define the WvN entropy. This WvN entropy was generalized
in Ref. [11] with two improvements: (i) there is no more
coarse graining, and (ii) an efficient way is found to compute
the basis as a set of Wannier functions [25].

Here we choose an operator A whose eigenstates {|φi〉}
form a complete basis. For a quantum state |ϕ〉, we use
its probability distribution over the basis {|φi〉} to define an
entropy

S(ϕ) ≡ −
N∑

j=1

|〈ϕ|φ j〉|2 ln |〈ϕ|φ j〉|2. (1)

Entropy of this form has appeared in many different contexts
and had different names [11,26–31]. In particular, without the
minus sign, it was defined as the information of operator A in
Ref. [32]. In our judgment, it is fair to regard Eq. (1) as the
generalization of the quantum entropy proposed by Wigner
and von Neumann in 1929 [1,2]. We will show in this work
that this GWvN entropy is independent of the choice of A in
the sense of typicality.

Due to the normalization rule, all quantum states in
a Hilbert space of N dimensions lie on the (2N − 1)-
dimensional hypersphere S2N−1,

N∑
j=1

|z j |2 = 1, z j = 〈φ j |ϕ〉 . (2)

We are interested in the statistical average, variance, and
distribution of the GWvN entropy when the quantum states
are sampled on this hypersphere uniformly at random. Let
us look at the numerical results first. Shown in Fig. 1(a) are
the distributions of the entropies for N = 110, 510, 5210. The
figure shows that the distribution P(S) becomes narrower and
the average gets closer to ln N quickly as N increases. These

two trends are further demonstrated in Figs. 1(b) and 1(c).
These results indicate that when N is large, which is the usual
case for a quantum many-body system, the GWvN entropy
is the same for the overwhelming majority of quantum states
with a value that is very close to ln N . It is clear that these
results are independent of the choice of operator A.

We find that the distribution P(S) of the GWvN entropies
obtained numerically in Fig. 1 can be fit very well with a
function P (s) = d Pr(s)/ds, where Pr(s) is a Fermi-Dirac-
like function

Pr(s) = 1

1 + exp
[−cN

(
s − μN

ln N

)] (3)

with s = S/ ln N being the normalized GWvN entropy and the
parameters

μN = �′(N + 1)

�(N + 1)
− �′(2)

�(2)
, cN = μN

√
π2N

π2 − 9
. (4)

Here �′(z) is the derivative of the gamma function with re-
spect to z. As shown in Fig. 1, all three essential features of the
entropy distribution—shape, average value, and variance—
are captured very well by P (s). The empirical distribution in
Eq. (3) is discussed and compared with rigorous results of the
concentration of measure and Levy’s lemma in Appendix A.
We note that a distribution similar to Fig. 1(a) was computed
in a very different context in Ref. [33].

We turn to analytical results, which can be obtained for
the average value and the variance of the GWvN entropy
over all quantum states on S2N−1. This is achieved with the
introduction of an auxiliary function Hλ = −∑

j |z j |2λ [34],
which is related to the GWvN entropy as

S(ϕ) = dHλ

dλ

∣∣∣∣
λ=1

. (5)

We average |z j |2λ over all points on S2N−1 and obtain (see
Appendix B for details)

〈|z j |2λ〉 = �(N )�(1 + λ)

�(N + λ)
. (6)

Therefore, the average GWvN entropy reads

〈S〉 = −N
d〈|zi|2λ〉

dλ

∣∣∣∣
λ=1

= μN . (7)

Asymptotically, we have μN = ln N + γ − 1 + O(1/N ),
where γ ≈ 0.577 is the Euler-Mascheroni constant. This con-
firms our numerical and fitting results [see Fig. 1(b)]. In fact,
when N is of order 1019 (about 63 spins in a spin-1/2 model,
still a small system), 〈S〉 is already 0.99 ln N , less than 1% off
the maximal value.

Similarly, with the auxiliary function Hλ, we find the vari-
ance of the GWvN entropy according to (7), (B7), and (B8),

σ 2
S = ∂2〈HλHζ 〉

∂λ∂ζ

∣∣∣∣
λ=ζ=1

− 〈S〉2

= N (N − 1)
∂2〈|zi|2λ|z j |2ζ

∂λ∂ζ

∣∣∣∣
λ=ζ=1,i �= j
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+ N
∂2〈|zi|2(λ+ζ )〉

∂λ∂ζ

∣∣∣∣
λ=ζ=1

− 〈S〉2

= 1

N + 1

(
π2

3
− 2

)
− �1(N + 1), (8)

where �1(z) = d2 ln �(z)/dz2 is a trigamma function.
Asymptotically, �1(N + 1) = 1/(N + 1) + O(1/N2). So, the
leading term of the variance of GWvN entropy is
∼ 0.3/N [26]. It agrees with the numerical result and the
fitting result [see Fig. 1(c)].

All of the above results, analytical or numerical, demon-
strate clearly that there is typicality for the GWvN entropy
when the dimension of the occupied Hilbert space N is large
enough. In other words, for a closed many-body quantum
system, the GWvN entropy of almost any of its quantum state
is very close to ln N and the exception is very rare. These
results are independent of the choice of operator A as long as
the eigenstates of A form a complete basis. When N can be re-
garded as the number of microstates (e.g., energy eigenstates)
of a quantum system, GWvN entropy is consistent with the
well-known Boltzmann entropy. We will discuss further the
physical implication of these results.

III. GWvN ENTROPY OF SUBSYSTEMS

The GWvN entropy can be extended to quantum sub-
systems that are described by mixed states. We consider a
closed quantum system that consists of two subsystems. We
focus on one of the subsystems and call the other subsystem
the environment. The whole system is in a pure quantum
state |ϕ〉 = ∑

i,α ciα|φi, ψα〉 with normalization
∑

i,α |ciα|2 =
1. Here the Roman indices represent the subsystem and
the Greek indices the environment. By convention, {φi, i =
1, 2, . . . , n} is a complete basis for the subsystem and
{ψα, α = 1, 2, . . . , m} is a complete basis for the environ-
ment. Tracing out the environment in the density matrix of
the system, ρ = ∑

i j,αβ ciαc∗
jβ |φi, ψα〉〈φ j, ψβ |, we obtain the

reduced density matrix for the subsystem,

ρs = Treρ =
∑

i j

pi j |φi〉〈φ j |, (9)

where pi j = ∑m
α=1 ciαc∗

jα . The definition of GWvN entropy
for the subsystem is

S(ρs) = −
n∑

i=1

Tr(ρs |φi〉 〈φi|) ln Tr(ρs |φi〉 〈φi|)

= −
n∑

i=1

pii ln pii. (10)

We are interested in the average value and the variance of
S(ρs) when the quantum state |ϕ〉 of the whole system is
sampled uniformly over the hypersphere S2N−1. Here N =
nm.

We introduce another auxiliary function Kλ = −∑n
i=1 pλ

ii,
which is related to the entropy as

S(ρs) = dKλ

dλ

∣∣∣∣
λ=1

. (11)

Direct computation (see Appendix B for details) shows that

〈
pλ

ii

〉 = �(mn)�(m + λ)

�(mn + λ)�(m)
. (12)

When λ = 1, we have 〈pii〉 = 1/n as expected. This leads to

−d
〈
pλ

ii

〉
dλ

∣∣∣∣∣
λ=1

= 1

n

[
�′(mn + 1)

�(mn + 1)
− �′(m + 1)

�(m + 1)

]
. (13)

With Eq. (11) we have the average of the GWvN entropy,

〈S(ρs)〉 = �′(mn + 1)

�(mn + 1)
− �′(m + 1)

�(m + 1)
≈ ln n, (14)

where the approximation is asymptotic and it holds when both
n and m are very large. The variance of S(ρs) can also be
derived analytically. With Eqs. (14), (B7), and (B8), we have

σ 2
S(ρs ) = ∂2〈KλKζ 〉

∂λ∂ζ

∣∣∣∣
λ=ζ=1

− 〈S(ρs)〉2

= n(n − 1)
∂2

〈
pλ

ii p
ζ
j j

〉
∂λ∂ζ

∣∣∣∣∣
λ=ζ=1,i �= j

+ n
∂2

〈
pλ+ζ

ii

〉
∂λ∂ζ

∣∣∣∣∣
λ=ζ=1

− 〈S(ρs)〉2

= m + 1

N + 1
�1(m + 1) − �1(N + 1). (15)

When N > m 
 1, we have

σ 2
S(ρs ) ≈ 1

2mN
+ O

(
1

N2

)
. (16)

Here we have used the condition m > n, which is usually the
case. This shows that the variance of a subsystem’s entropy
is effectively controlled by the environment and the whole
system. The reason is that we are averaging over the Hilbert
space of the whole system, where the overwhelming majority
of quantum states are almost maximally entangled [35]. If
the subsystem and the environment are not entangled, then
the subsystem can be regarded as an isolated system, which
was already discussed in the preceding section. It is clear
from these results that the GWvN entropy of a subsystem has
typicality. Similarly, the GWvN entropy of the environment
is typical, with the average being 〈S(ρe)〉 ≈ ln m and the
variance of order 1/(nN ).

It is interesting to compare these results on mixed states
with the familiar von Neumann entropy. For this purpose, we
assume that m 
 n since the environment should usually be
much larger than the subsystem. Page computed the average
value of the von Neumann entropy Sv (ρs) = −Trρs ln ρs when
the quantum state |ϕ〉 is sampled randomly [35]. He found
that the average value is approximately ln n − n/(2m), which
is consistent with the GWvN entropy asymptotically. Page
did not compute the variance of Sv (ρs). This shows that the
GWvN entropy for a system with a large environment is
consistent with the von Neumann entropy, which was already
noticed in Ref. [11]. However, for the environment, its von
Neumann entropy Sv (ρe) = Sv (ρs) ≈ ln n, very different from
its GWvN entropy ln m.
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Strictly speaking, the GWvN entropy is not additive. How-
ever, in the sense of typicality it is additive. This is evident in
the following result:

〈S(ρs) + S(ρe) − S(ρ)〉

= �′(mn + 1)

�(mn + 1)
− �′(m + 1)

�(m + 1)
− �′(n + 1)

�(n + 1)
+ �′(2)

�(2)

= 1 − γ + O

(
m + n

mn

)
. (17)

When N , m, and n are large, we can safely ignore the constant
1 − γ and therefore have 〈S(ρs)〉 + 〈S(ρe)〉 = 〈S(ρ)〉. The
result can be easily generalized to multipartite systems where
each subsystem has a Hilbert space of large dimension.

The dimension N of the Hilbert space in the above discus-
sion should be regarded as the dimension of a subspace that is
physically relevant. As an example, and also as an important
application, let us consider a quantum microcanonical ensem-
ble, which is characterized by an energy shell [E , E + �E ]
with a large but finite number of energy eigenstates [36,37].
Suppose that N is the number of energy eigenstates in the
shell. According to the above results, the GWvN entropy
of any quantum state (pure or mixed) in the microcanonical
ensemble is typically ln N with a very small variance. This is
consistent with the well known Boltzmann entropy.

In the above discussion, we have fixed the basis {|φi〉} (or
operator A) while sampling the quantum states in the Hilbert
space. It is clear that we can equivalently fix the quantum state
while sampling all possible bases. In fact, this is exactly what
von Neumann did in his 1929 paper [1,2].

IV. DYNAMIC EVOLUTION OF GWvN ENTROPY

Our results for the GWvN entropy so far are kinematic
and have nothing to do with the Hamiltonian of a quantum
system. In this section, we investigate how the GWvN entropy
evolves dynamically, and we find that the GWvN entropy has
dynamical typicality, similar to the dynamical behavior of
observables found in Refs. [38,39]. For an isolated quantum
system with a set of energy eigenstates |Ej〉, its dynamical
evolution is given by

|ϕ(t )〉 =
∑

j

a je
−iE jt/h̄ |Ej〉 , (18)

where a j = 〈Ej |�(0)〉 is determined by the initial quantum
state |ϕ(0)〉. In general, because aj quickly approaches zero as
j → ∞, there are only a finite number of energy eigenstates
occupied. During the dynamical evolution, this number of
occupied states does not change as aj is independent of time.
This means that when a quantum system evolves dynamically,
its dynamical path in Hilbert space will lie entirely in this
sub-Hilbert space of occupied states.

Let us consider a quantum system with a macroscopic
number of particles. In this case, the dimension N of the
sub-Hilbert space of occupied states is in general enormously
large. It is natural to expect that almost all the quantum
states on the dynamical path are typical and their GWvN
entropies are very close to ln N with small fluctuations. This is
exactly what is implied in the quantum H theorems proved in
Refs. [1,2,11]. However, according to these proofs, there are

exceptions that occur when the system’s Hamiltonian has a
great deal of degeneracy in its eigenenergies and eigenenergy
differences. These degeneracies are shown to be closely con-
nected to the integrability of the Hamiltonians [40]. In other
words, when the system is integrable, its quantum dynamics
will be restricted by various good quantum numbers and can-
not adequately sample the sub-Hilbert space. When the system
is nonintegrable, its quantum dynamics can adequately sample
the sub-Hilbert space so that the quantum states involved in
the dynamics are typical.

We now show how the GWvN entropy relaxes dynami-
cally in a quantum chaotic system. We choose a complete
orthonormal basis, {|ψ0〉, |ξi〉}(i = 1, . . . , N − 1), where |ψ0〉
is the initial state. In this case, the GWvN entropy is zero
initially. As the system evolves under a unitary operator
U (t ) = exp (−iHt/h̄), its GWvN entropy changes with time
as

S(t ) = − d

dβ

[
pβ (t ) +

N−1∑
i=1

|〈ψ (t )|ξi〉|2β

]
β=1

, (19)

where p(t ) = |〈ψ |ψ (t )〉|2 is the surviving probability (also
called fidelity) [41,42] and the overline denotes averaging
over the other (N − 1) basis {|ξi〉}. The averaging is justified
by the fact that the system is quantum chaotic, and its dynam-
ics can sample adequately in the subspace spanned by {|ξi〉}.

Note that |〈ψ (t )|ξi〉|2 = [1 − p(t )]|〈ψ ′(t )|ξi〉|2, where
|ψ ′(t )〉 is the normalized state projected by |ψ (t )〉 onto the
subspace spanned by {|ξi〉}. Similar to Eq. (6), we have

|〈ψ (t )|ξi〉|2β = [1 − p(t )]β
�(N − 1)�(1 + β )

�(N − 1 + β )
. (20)

Eventually we find

S(t ) = f (p(t )) + [1 − p(t )]

[
�′(N )

�(N )
− �′(2)

�(2)

]
= f (p(t )) + [1 − p(t )]μN−1, (21)

where f (p) = −p ln p − (1 − p) ln(1 − p) and asymptoti-
cally μN−1 = ln(N − 1) + γ − 1 + O(1/N ). The deviation is
negligible with the order O(1/N ) by typicality arguments.
More precisely, it is a direct result from (8). A very interesting
fact is that this expression of S(t ) explicitly verifies the
validity of the conjectured form proposed by Flambaum and
Izrailev [43].

V. CONNECTION TO THERMODYNAMICS

The GWvN entropy can also be used to derive the Gibbs
ensemble with the maximal entropy principle [23,24]. We
choose the operator A = H , and its eigenstates |Ei〉 form a
complete basis. For a typical quantum state ρ, its GWvN en-
tropy is S = −∑

i Tr(ρPEi ) ln Tr(ρPEi ), where PEi = |Ei〉 〈Ei|.
We want to maximize it under the condition that 〈H〉 =
Tr(ρH ) is constant. Mathematically, this can be done as

d

dε

∑
i

Tr
[
(ρ + ε�)PEi

]
ln

{
Tr

[
(ρ + ε�)PEi

]}∣∣∣
ε=0

= 0,

(22)
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with the restriction Tr(�H ) = 0 and Tr(�) = 0. This leads to

Tr

(
�

∑
i

ln
[
Tr

(
ρPEi

)]
PEi

)
= 0. (23)

It can be inferred that
∑

i ln [Tr(ρPEi )]PEi is a linear function
of H . Therefore, the density matrix has the general form

ρ = α exp(−βH ), (24)

where α is the normalization factor and β is the inverse
temperature. Explicitly, we have

α = 1

Tr[exp(−βH )]
, β = δS

δ〈H〉 . (25)

From a standard textbook in statistical physics [36,37],
Eq. (24) represents the well-known Gibbs ensemble. And
from (25) we have

�〈H〉 = δ〈H〉
δS

�S = T �S, (26)

where the temperature T = 1/β. This is exactly the first law
of thermodynamics. Similar derivations can be done for the
general operator A and its eigenstates |φi〉 with the restriction
of fixed 〈A〉. We would then have the generalized Gibbs en-
semble ρ = α exp (−λAA), where α is a normalization factor
and λA is the generalized inverse temperature. With the Gibbs
ensemble, other thermodynamical relations can also be easily
derived. Our result here is consistent with previous results in
Refs. [18,29,44].

VI. CONCLUSION

We have generalized the quantum entropy proposed by
Wigner and von Neumann in 1929. Although the definition
uses a specific complete basis, the generalized Wigner–von
Neumann entropy becomes typical when the dimension N of
the Hilbert space is large. We have shown analytically that
when we sample a quantum state uniformly at random in the
Hilbert space, the average of its GWvN entropy is asymptotic
to ln N and its variance is of order 1/N . As a result, when the
GWvN entropy is applied to a microcanonical ensemble, it is
equivalent to the Boltzmann entropy. When it is extended to a
subsystem with a large environment, it is consistent with the
von Neumann entropy. In the end, with the maximal entropy
principle we have shown that the GWvN entropy can be used
to obtain the Gibbs ensemble from which all thermodynamic
relations can be derived.

ACKNOWLEDGMENTS

We acknowledge stimulating discussion with Chushun
Tian. This work was supported by The National Key R&D
Program of China (Grants No. 2017YFA0303302 and No.
2018YFA0305602).

Z.H. and Z.W. contributed equally to this work.

APPENDIX A: CONCENTRATION OF MEASURE AND
LEVY’S LEMMA

The concentration of measure states as a function that
depends in a Lipschitz way on many independent variables

is almost constant. As a special form of concentration of
measure, Levy’s lemma is commonly used in the typicality
related literature [14,33,45]. Here we compare the distribution
of the GWvN entropy S [Eq. (3)] to Levy’s lemma. According
to Levy’s lemma, for entropy S(ϕ), where ϕ is a random point
drawn uniformly from hypersphere S2N−1, the upper bound of
the deviations from an expected value 〈S〉 is given by

Pr[|S(ϕ) − 〈S〉| � δ] � 2 exp

(−2Nδ2

9π3η2

)
, (A1)

where η = sup |∇ϕS| is a Lipschitz constant. Straightforward
computation shows that

η2 = 4
N∑

j=1

|z j |2(ln |z j |2 + 1)2

= 4

⎛
⎝1 + 2

N∑
j=1

|z j |2 ln |z j |2 +
N∑

j=1

|z j |2 ln2 |z j |2
⎞
⎠

� 4(1 − ln N )2. (A2)

The last inequality is true for dimension N > e2, and the
equality holds only when those |z j |2 are all the same. This
means that Pr (|S − 〈S〉| � δ) has a sub-Gaussian tail, which
presents stronger convergence than a Poisson-like tail in the
distribution of Eq. (3). However, the GWvN entropy is far
away from zero only in a small region given by |S − μN | ∼
ln N/cN ∼ N−1/2. In this region, our distribution is very accu-
rate, as indicated in Fig. 1(a).

Moreover, the variance of our distribution [Eq. (3)] is
consistent with Levy’s lemma. Among all the distributions
that satisfy Levy’s lemma, the one that has the maximal
variance should be given by

ρ(x = |S − 〈S〉|) =
{

0, x <
√

ln 2/ fN ,

4 fN xe− fN x2
, x � √

ln 2/ fN ,
(A3)

where fN = 2N/9π3η2 is the factor in the exponent of
Eq. (A1). It leads to the maximal variance that Levy’s lemma
allows,

varmax =
∫ +∞

√
ln 2/ fN

4 fN x3 exp(− fN x2)dx (A4)

= 9π3(1 + ln 2)η2

2N
. (A5)

The variance (of order 1/N) of our distribution gives a tighter
bound than the above variance bound (of order η2/N , namely
ln2 N/N).

APPENDIX B: AVERAGING IN HILBERT SPACE

In this Appendix, we give out the derivation details that
are needed in the main text, particularly those related to
Eqs. (6), (8), (12), and (15).

Any quantum state |ϕ〉 in an N-dimensional Hilbert
space can be expanded in an orthonormal basis with
coefficients z1, . . . , zN . zi is usually a complex number,
and we denote the real part and the imaginary part as x2i−1

and x2i. Due to the normalization, the quantum state |ϕ〉
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corresponds to point (x1, x2, . . . , x2N ) on the (2N − 1)-
dimensional
hypersphere S2N−1.

The average of a function in N-dimensional Hilbert space
is to integrate it on the hypersphere S2N−1. We can con-
nect the integration on the sphere with an integration in the
ball [46,47]. More precisely, let Bn = {x ∈ Rn : |x| � 1}. If
f : Bn → R is continuous, then∫

Bn

f (x)dx1dx2, . . . , dxn =
∫ 1

0
rn−1dr

∫
Sn−1

f (rs)dσn−1(s),

(B1)

where dσn−1(s) denotes an element on hypersphere Sn−1.
If f (rx) = rα f (x) is a homogeneous function of degree α,

we have∫
Bn

f (x)d (x1, . . . , xn) = 1

α + n

∫
Sn−1

f (s)dσn−1(s). (B2)

Consider a function

g(x1, . . . , x2N ) =
n∏

k=1

T αk
k , (B3)

where N = nm and

Tk =
m∑

i=1

(
x2

2(k−1)m+2i−1 + x2
2(k−1)m+2i

)
. (B4)

Then the average 〈g〉 of g(x1, . . . , x2N ) on sphere S2N−1 reads

〈g〉 = 1

�2N−1

∫
S2N−1

n∏
k=1

T αk
k dσ2N−1(s) = �(N )

2πN
(2α1 + 2α2 + · · · + 2αn + 2N )

∫
B2N

n∏
k=1

T αk
k dx1dx2 · · · dx2N

= �(N )(α1 + · · · + αn + N )

πN

∫
B2N−2m

n−1∏
k=1

T αk
k

∫ √
1−∑n−1

k=1 Tk

0
ρ2αnρ2m−1dρ dσ2m−1 dx1dx2 · · · dx2N−2m

= πm�(N )(α1 + · · · + αn + N )

πN�(m)(m + αn)

∫
B2N−2m

n−1∏
k=1

T αk
k

(
1 −

n−1∑
k=1

Tk

)m+αn

dx1dx2 · · · dx2N−2m

= �(N )(α1 + · · · + αn + N )

πN−m�(m)(m + αn)

∫ 1

0
r2(α1+···+αn−1+N−m− 1

2 )(1 − r2)m+αn dr
∫
S2N−2m−1

n−1∏
k=1

T αk
k dσ2N−2m−1

= �(N )(α1 + · · · + αn + N )

πN−m�(m)(m + αn)

�(α1 + · · · + αn−1 + N − m)�(αn + m + 1)

2�(α1 + · · · + αn + N + 1)

2πN−m

�(N − m)

〈
n−1∏
k=1

T αk
k

〉
2N−2m

= �(N )

�(m)�(N − m)

�(α1 + · · · + αn−1 + N − m)�(αn + m)

�(α1 + · · · + αn + N )

〈
n−1∏
k=1

T αk
k

〉
2N−2m

= �(N )

�n(m)

�(αn + m)�(αn−1 + m) · · · �(α1 + m)

�(α1 + · · · + αn + N )

〈
T α1

1

〉
2m

= �(N )

�n(m)

�(αn + m)�(αn−1 + m) · · · �(α1 + m)

�(α1 + · · · + αn + N )
, (B5)

where �2N−1 = 2πN

�(N ) is the surface area of S2N−1.
It is useful to calculate some derivatives of special forms of g(x1, . . . , x2N ) = ∏n

k=1 T αk
k ,

d

dα1

〈
T α1

1

〉 = �(N )�(α1 + m)

�(m)�(α1 + N )
[�(α1 + m) − �(α1 + N )], (B6)

∂2

∂α1∂α2

〈
T α1+α2

1

〉 = �(N )�(α1 + α2 + m)

�(m)�(α1 + α2 + N )
([�(α1 + α2 + m) − �(α1 + α2 + N )]2 + [�1(α1 + α2 + m) − �1(α1 + α2 + N )]),

(B7)

∂2

∂α1∂α2

〈
T α1

1 T α2
2

〉 = �(N )�(α1 + m)�(α2 + m)

�2(m)�(α1 + α2 + N )
([�(α1 + m) − �(α1 + α2 + N )]

× [�(α2 + m) − �(α1 + α2 + N )] − �1(α1 + α2 + N )). (B8)

Here �(z) = �′(z)/�(z) and �1(z) = d2 ln �(z)/dz2 are digamma and trigamma functions, respectively.
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