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We analyze two models of subdiffusion with stochastic resetting. Each of them consists of two parts:
subdiffusion based on the continuous-time random walk scheme and independent resetting events generated
uniformly in time according to the Poisson point process. In the first model the whole process is reset to the
initial state, whereas in the second model only the position is subject to resets. The distinction between these
two models arises from the non-Markovian character of the subdiffusive process. We derive exact expressions
for the two lowest moments of the full propagator, stationary distributions, and first hitting time statistics. We
also show, with an example of a constant drift, how these models can be generalized to include external forces.
Possible applications to data analysis and modeling of biological systems are also discussed.
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I. INTRODUCTION

Recently, a simple model of diffusion with stochastic reset-
ting has been proposed [1]. In its basic form it is a Brownian
motion interrupted by reset events, which instantaneously
bring the process back to the initial position. Resets happen
randomly in time, according to the Poisson point process
with intensity r. In contrast to standard, symmetric diffusion,
diffusion with resetting leads to a finite mean first-arrival time
(MFAT) to any fixed position [1]. Moreover, it has been shown
that resetting may be beneficial for search in a variety of
modified scenarios, e.g., when the initial random walk process
is superdiffusive [2,3], when the space is higher dimensional
[4] and/or bounded [5], and when the resetting intensity is
inhomogeneous in time [6–13]. The combination of a random
walk process with stochastic resetting events leads to many
nontrivial features: A nonlocal character of resets results in
a current-carrying nonequilibrium steady state, i.e., a sta-
tionary distribution in which detailed balance does not hold
[1,8,14–16]. When analyzed as a search process involving a
mixture of local steps with resets, the mean first-passage time
to find a target has been computed exactly and has been found
to have a minimum at an optimal resetting rate [1], indicating
that the search process is more efficient in the presence of
resetting. This nonequilibrium search is more efficient than a
corresponding (leading to the same shape of stationary dis-
tribution) conservative-force-induced equilibrium dynamics
[14] and in some cases more efficient than any conservative-
force-induced equilibrium dynamics [17]. When instead of
the Brownian motion the search is performed by long-range
Lévy moves combined with resets, the motion generates a
bifurcation in the optimal search strategy (i.e., bifurcation in
the shortest mean first time to reach a target). The bifurcation
is discontinuous [3] or continuous [2], depending on whether
the process is performed in discrete or continuous time.

Stochastic resets can modify the splitting probabilities leading
to a higher success rate in Bernoulli trials [18]. A one-
dimensional version of the walk where the walker, at each
time step, resets to the maximum of the already visited posi-
tions with a certain probability leads to a dynamical transition
in the temporal relaxation [19]. The stochastic resetting model
is related to reinforced random walks [20], a version of
which has recently been proposed as a model of large-scale
movement of a free-ranging capuchin monkey and shown to
lead to superslow (logarithmic) diffusion [21]. It can also
lead to a localization transition similar to Anderson localiza-
tion if supplemented by a simple model of nonhomogeneous
learning [22].

Here we explore another generalization of diffusion with
resetting, wherein the diffusive process between resets is
substituted with a process generated by the continuous-time
random walk (CTRW) scheme [23–26]. In contrast to re-
cent works that combine stochastic resets with the CTRW
with exponentially distributed waiting times between jumps
[16,27,28], we assume that the waiting times are distributed
according to a power law p(t ) ∝ t−μ−1, where t � 1 and
μ ∈ (0, 1). Due to the infinite mean waiting time, the pri-
mary process (i.e., without resetting) is subdiffusive with the
mean square displacement (MSD) growing sublinearly with
time, 〈X 2(t )〉 ∝ tμ, and the Brownian diffusion is recovered
in the limit μ → 1. A subdiffusive CTRW process is non-
Markovian [29] and shows weak ergodicity breaking [30,31],
i.e., time and ensemble averages of physical observables do
not coincide.

In addition to the CTRW process, there are several distinct
mathematical models of subdiffusion [32], differing signifi-
cantly in the details of dynamics. Two of the most popular
are fractional Brownian motion (FBM) [33–37] and diffusion
on fractals [38–40]. Each of these models corresponds to
a different physical mechanism leading to the subdiffusive
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behavior. While all of them share the sublinear growth of the
variance, they exhibit many dissimilarities in other features.
Importantly, in contrast to the subdiffusive CTRW, the other
two processes are ergodic (but see [37]). Recently, statistical
methods of discriminating between FBM and a CTRW [41],
diffusion on fractals and a CTRW [42], and diffusion on
fractals and FBM [43] have been proposed.

Subdiffusion has been observed in a number of distinct
physical phenomena [44–47]. Many experiments have shown
that the transport in living cells is subdiffusive [48–50], but
the underlying mechanism is not yet fully understood. In
this context, some recent works report nonergodic CTRW-like
behavior [51–54], whereas others are in favor of ergodic FBM
or diffusion on fractals [55–58]. In view of those findings,
we study how the statistical properties of a subdiffusive
CTRW process are altered under random relocations. The
overall process is a combination of a CTRW and independent
resets. In subsequent sections we define two models of the
resetting mechanism when either the relocation event erases
memory about the past motion (model I) or otherwise resets
do not interfere with waiting for the next step of the random
motion (model II). As we will show, nontrivial features of
such processes may not only provide a descriptive model
of natural phenomena, such as the dynamics of molecular
motors in the crowded cytoplasm, but also may be help-
ful in designing resampling-based statistical inference meth-
ods aiming at detecting trapping and associated ergodicity
breaking.

Some of our results can be considered to be special cases of
previous more general considerations [7,13,59]. In contrast to
these works, we focus almost exclusively on the CTRW sub-
diffusion with exponential resetting and analyze the possible
outcomes in depth, uncovering intriguing effects. Power-law
waiting times have also been recently explored in [12,60]
in the context of refractory periods and residence times
that follow resets. Such trapping at the resetting position is
related to, but distinct from, the space-homogeneous trapping
which happens in our model I. Interestingly, our model II also
has a net effect of trapping at the resetting position. Notice,
however, that the underlying mechanism is different from
models in [12,60] and is driven by the power-law-distributed
waiting times between steps.

Throughout the paper we use the following nota-
tion. The propagator of a process of interest is writ-
ten as W (x, t |x0) ≡ W (x, t |x0, 0), with the initial condition
W (x, 0|x0) = δ(x − x0). Partial derivatives with respect to
time and space are written as ∂t and ∂x, respectively. The
parameter r, called resetting intensity, gives the expected
number of reset events in units of time. We denote the space
Fourier transform and the time Laplace transform implicitly,
by changing the argument(s) of the transformed function
(x → k and t → s, respectively).

II. SUBDIFFUSION AND THE FRACTIONAL
FOKKER-PLANCK EQUATION

Here we list basic results related to CTRW subdiffusion
that we will use throughout the paper. For a complete de-
scription, see, e.g., [26]. In our derivations of quantities re-
lated to the process with resetting we will often employ the

function

W0(x, s|x0) = sμ/2−1

2
√

D
e−√

sμ/D|x−x0|, (1)

which is the (Laplace transformed) solution of a time-
fractional Fokker-Planck equation (FFPE)

∂tW0(x, t |x0) = 0D1−μ
t D∂2

xxW0(x, t |x0), (2)

where 0D1−μ
t denotes the Riemann-Liouville fractional

derivative operator [26,61,62] with 0 < μ < 1. The function
W0(x, t |x0) is the propagator of the process without resetting,
i.e., the probability density function (PDF) of the CTRW
subdiffusion starting from x0 at time t0 = 0. Multiplying (1)
by (x − x0)2 and integrating over x, we obtain the variance
(in this case equivalent to the MSD) evolution in the Laplace
space 〈X 2(s)〉 = 2D/s1+μ, which translates to

〈X 2(t )〉 = 2D

�(μ + 1)
tμ. (3)

The FFPE (2) can be derived as follows. The movement of
a particle is generated via jumps generated from a PDF g(x).
The time between two consecutive jumps is generated from
a non-negative random variable, called waiting times, that is
described by a PDF ψ (t ) or, equivalently, by the probability
that the time before the next jump happens is longer than t ,
�(t ) = ∫ ∞

t dτ ψ (τ ). Between subsequent jumps the particle
is immobile and, importantly, jumps and waiting times are
independent. It is well known that the propagator of such a
process is given by the Montroll-Weiss formula [23,26,63]

W0(k, s|x0) = �(s)eikx0

1 − ψ (s)g(k)
. (4)

In the case of the subdiffusive CTRW, we assume that
g(k) ≈ 1 − D0k2 and ψ (s) ≈ 1 − Aμsμ and perform the limit
Aμ → 0 and D0 → 0 with D0/Aμ → D, which leads to (1)
and (2). Most results obtained in this paper will have two
forms: a general CTRW form generalizing (4) and a subdiffu-
sive form that follows from taking the described limit. In some
cases this will allow us to write a modified fractional Fokker-
Planck equation. Nevertheless, our derivations are based on
the renewal approach that can be used in the very general
setting of the CTRW.

It is easy to calculate the Laplace transform of the survival
probability S0(t ) of the subdiffusive search process without
resetting in the presence of a single target located at x = 0.
The corresponding unnormalized density G0(x, t |x0) is the
solution of the equation

∂t G0(x, t |x0) = 0D1−μ
t D∂2

xxG0(x, t |x0), (5)

which has the same form as (2) except for the boundary
conditions. The target is introduced by imposing the absorp-
tion condition G0(x = 0, t |x0) = 0. We can construct such a
solution from the solution (1) of (2) via the method of images,
leading to

G0(x, s|x0) = sμ/2−1

2
√

D
(e−√

sμ/D|x−x0| − e−√
sμ/D|x+x0|). (6)
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The corresponding survival probability reads

S0(s) =
∫ ∞

0
dx G0(x, s|x0) = 1

s
(1 − e−√

sμ/D|x0|), (7)

which shows that, despite the trapping, in the long-time
limit limt→∞ S0(t ) = 0, i.e., the target is almost surely (with
probability 1) reached. The first-arrival time (FAT) probability
density function

ρ0(s) = 1 − sS0(s) = exp(−
√

sμ/D|x0|) (8)

behaves proportionally to t−(1+μ/2) for large t , which general-
izes the well-known Sparre Andersen scaling proportional to
t−3/2, which holds for symmetric Markovian processes with
stationary increments [64–66].

III. FIRST MODEL: RESETTING OF THE PROCESS

Resets in the first model bring the position to the origin and
delete all memory about the past. In the CTRW scheme wait-
ing times for the diffusive jump and for the reset are drawn
independently. Whenever the latter is shorter, the position is
reset to 0 and both waiting times are generated again. Thus,
the aging effect of subdiffusion is also subject to reset. In the
following we will refer to such events as hard resets. Although
we assume that resetting brings the process back to the initial
position, it is convenient to perform calculations for any initial
position x0, with the resetting position kept at the origin. At
the end we set x0 = 0.

Given these assumptions, the propagator of the process
subject to random resets can be written in terms of the
propagator of the process without resetting via the renewal
equation [3,67]

W (x, t |x0) = e−rtW0(x, t |x0) +
∫ t

0
dτ re−rτW0(x, τ |0), (9)

which in the Laplace space reads

W (x, s|x0) = W0(x, r + s|x0) + r

s
W0(x, r + s|0). (10)

We can therefore use the known propagator of the CTRW
process (4) to construct the propagator of the process with
hard resets, which reads

W (k, s|x0) = �(r + s)(eikx0 + r/s)

1 − ψ (r + s)g(k)
. (11)

Expression (11) is very general and can be used to study
any CTRW process with hard resets. In fact, it would be
straightforward to generalize it further to include spatiotempo-
ral coupling between the jump distribution and waiting times,
as in the case of Lévy walks [63]. As announced, here we
focus on the special case of the subdiffusive CTRW.

We note in passing that, for any g(x) that is continu-
ous at x = 0, the propagator (11) has a singular part that
behaves like �(r + s)(eikx0 + r/s). However, if we assume
that g(k) ≈ 1 − D0k2 and ψ (s) ≈ 1 − Aμsμ with Aμ → 0,
D0 → 0, and D0/Aμ → D, the singular part disappears. As
we will show later, this is one of the features that discriminates
hard from soft (model II) resets.

Taking such a limit is equivalent to plugging the sub-
diffusive W0 given by (1) into (10). The corresponding

propagator with hard resets in the Fourier-Laplace space
W (k, s|x0) solves the algebraic equation

[D (s + r)1−μ k2 + s + r]W (k, s|x0) = eikx0 + r

s
. (12)

Equation (12) corresponds to the following integro-
differential equation in (x, t ) space:

∂tW (x, t |x0) = De−rt
0D1−μ

t ert∂2
xxW (x, t |x0)

− rW (x, t |x0) + rδ(x). (13)

The operator e−rt
0D1−μ

t ert corresponds to a version of trun-
cated Riemann-Liouville fractional operator [68–70]. The
same operator was previously proposed in the context of
reaction subdiffusion [71] and, interestingly, it also appears
in the context of subdiffusion with a constant external force
that affects waiting times [72]. In our case, it emerges because
the resets induce two effects: The position of the particle is
set to 0 and the waiting times are generated anew. The latter
phenomenon introduces an effective truncation on the wait-
ing times, which is realized in the fractional Fokker-Planck
equation through the described modification of the Riemann-
Liouville fractional operator. From Eq. (12) we obtain the
stationary distribution

fs(x) = lim
t→∞W (x, t |x0) = lim

s→0
sW (x, s|x0)

= 1

2

√
rμ

D
e−√

rμ/D|x|. (14)

The same formula was recently derived independently in [13].
As expected, for μ = 1 we recover the formula derived for
diffusion with stochastic resetting [1]. For any μ we obtain the
Laplace distribution. The difference lies in the dependence of
its mean value on the resetting intensity, which could also be
deduced from dimensional analysis.

In order to examine the transient behavior of the process
we calculate first and second moments. First, we focus on the
general case of a process starting from some position x0. By
inspecting Eq. (12) it is easy to check that 〈X (t )〉 = x0e−rt ,
i.e., relaxation of the expected position is exponential and
is driven purely by the resetting events. Relaxation of the
variance incorporates two distinct processes. The first of them
is related to relaxation of the position and is described by the
expression (e−rt − e−2rt )x2

0. As announced before, we focus
on the second relaxation process, which is strictly related to
the width change, and thus we set x0 = 0, i.e., we assume that
the process starts from the resetting position. From Eq. (12)
we obtain the MSD in the Laplace space

〈X 2(s)〉 = 2D

s(s + r)μ
. (15)

Inverting the Laplace transform leads to the integral expres-
sion

VarX (t ) = 〈X 2(t )〉 = 2D

�(μ)

∫ t

0
dτ τμ−1e−rτ

= 2D

rμ�(μ)
γ (μ, rt ), (16)
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where γ (s, x) stands for the lower incomplete gamma func-
tion. Asymptotically,

〈X 2(t )〉 ≈ 2D

rμ

(
1 − e−rt

�(μ)(rt )1−μ

)
, (17)

as t → ∞, i.e., the stationary state is approached exponen-
tially fast.

In the following we calculate the FAT statistics. We follow
the general strategy introduced in [7]. Due to the renewal
structure of the resetting, we can link the FAT distribution
of the process with resetting with S0. We introduce random
variables R (time to the next reset), T0 (FAT of the process
without resetting), and Tr (FAT of the process with resetting).
The resets can be introduced as follows. First draw T0 and
R. If T0 � R then the reset was supposed to happen after the
target was found, and thus Tr = T0. If, on the other hand,
T0 > R, then the reset came before the target was supposed
to be found, thus the search has to start anew. In that case
Tr = R + T ′

r , where T ′
r is a new realization of the FAT of

the process with resetting, which in turn depends on the
independent realizations of the resetting times and FATs of the
process without resetting. We can summarize this procedure
with the equation

Tr = I[T0 � R]T0 + I[T0 > R](R + T ′
r )

= min(T0, R) + I[T0 > R]T ′
r , (18)

where the indicator function I[a > b] = 1 if a > b and
I[a > b] = 0 if a � b. Since T ′

r is independent of T0 and
R, we can easily average both sides of (18), leading to the
known general formula for the MFAT of the process subject
to resetting [7]

〈Tr〉 = 〈min(T0, R)〉
〈I[T0 � R]〉 , (19)

where averaging is performed over independent R and T0.
In the case of exponential (i.e., constant rate) resetting
〈min(R, T0)〉 = S0(r) and 〈I[T0 � R]〉 = 1 − rS0(r), and thus

〈Tr〉 = S0(r)

1 − rS0(r)
, (20)

where S0(r) ≡ S0(s = r). Combining (7) and (20), we arrive
at

〈Tr〉 = 1

r
(e

√
rμ/D|x0| − 1). (21)

Equation (21) is consistent with a more general formula
derived with different methods in [59]. In the limit of μ → 1
it simplifies to the well-known formula for the MFAT of
diffusion with stochastic resetting [1] (see Fig. 1). In contrast
to superdiffusive Lévy flights with resetting [2,3], the CTRW
subdiffusion with resetting preserves the exponential form of
the dependence of the MFAT on the distance to the target.
Interestingly, for a fixed |x0| > 0, there is no local minimum
in parameter space (r, μ). The infimum of the MFAT is 0,

lim
r=1/μ→∞

〈Tr〉 = 0, (22)

because subdiffusion is slow at large timescales, but extremely
fast at short timescales. This can be seen from the following
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FIG. 1. Comparison of the mean first arrival time 〈Tr〉 obtained
with analytical prediction (21) (lines) and stochastic simulations
(points with 99% confidence intervals) as a function of resetting
intensity (red) (a) μ = 0.25, (b) μ = 0.5, and (c) μ = 0.75 and target
position (green) (d) μ = 0.5.

formula, which holds for pure subdiffusion without resetting
(r = 0):

∂t 〈X 2(t )〉 ∝ tμ−1. (23)

Note, however, that at short timescales this formula cannot
describe physical phenomena for which the speed is bounded.

For a fixed μ there is exactly one minimum of the MFAT
as a function of r. The optimal resetting intensity is given by
the expression

r∗ =
(

z2
μD

x2

)1/μ

, (24)

where zμ is the solution of the transcendental equation

μ

2
zμ = 1 − e−zμ . (25)

When zμ is large, the exponential element on the right-hand
side of Eq. (25) is negligible; thus we can write an approxi-
mate solution

zμ ≈ 2

μ
, (26)

which is valid for μ � 1. This leads to the following depen-
dence of the optimal resetting intensity on μ:

r∗ ∝
(

2

μ

)2/μ

. (27)

How is Tr distributed around its mean value? We square
both sides of (18) and calculate averages

〈min(T0, R)2〉 = −2∂rS0(r) (28)

and

〈I[T0 > R] min(T0, R)〉 = −r∂rS0(r), (29)
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FIG. 2. Squared coefficients of variation (32) (solid lines) and
the (scaled) mean first arrival times (21) (solid lines) of subdiffusion
with hard resets as functions of y = rμ/2|x|/√D for different values
of μ (increasing from left to right).

arriving at

VarTr = 〈T 2
r 〉 − 〈Tr〉2 = −2∂rS0(r) + S0(r)2

1 − rS0(r)
. (30)

Combining (7) and (30), we obtain

VarTr = r−2(e2y − μyey − 1), (31)

where y = rμ/2|x0|/
√

D. Let us analyze the squared coeffi-
cient of variation

CV2 = VarTr

〈Tr〉2
= 1 + 2

(ey − 1)2

[(
1 − μ

2
y
)

ey − 1
]
. (32)

At r = r∗ (and thus y = zμ), i.e., when the intensity of reset-
ting is optimal, the coefficient of variation is equal to 1 (see
Fig. 2), in line with the universal result obtained recently [6].
The resetting intensity at which CV admits its minimum is
given by

r∗∗ =
(

y2
μD

x2

)1/μ

, (33)

where yμ is the solution of the transcendental equation

yμ

1 + 2
μ

= tanh
yμ

2
. (34)

Note that r∗∗ > r∗ for any μ ∈ (0, 1] (cf. Fig. 2). For small
μ we can approximate the solution of the transcendental
equation (34) by assuming tanh yμ

2 ≈ 1, leading to

yμ ≈ 1 + 2

μ
(35)

and thus

r∗∗ ∝
(

1 + 2

μ

)2/μ

. (36)

Combining Eqs. (27) and (36), we can calculate the limit

lim
μ→0

r∗∗

r∗ = e, (37)

which gives the upper bound on the relative separation be-
tween r∗ and r∗∗. We now show an alternative derivation
of the first-passage-time statistics, which should shed some
light on the features of the CTRW subdiffusion with stochastic
resetting. For a process starting at t0 = 0 from x0 = 0 we can
link the distribution of the FAT to a position of the target x,
denoted in the following by ρ, with the free propagator W
(without absorbing boundaries) [3,44,73–75],

W (x, t |x0) =
∫ t

0
dτ ρ(τ )W (x, t − τ |x). (38)

In the time-Laplace space (38) simplifies to an algebraic
equation

W (x, s|0) = ρ(s)W (x, s|x). (39)

We can now combine (10) and (39) to obtain the formula
for the Laplace transform of the FAT’s probability density
function in the process with hard resets

ρ(s) = s + r

s[ρ0(r + s)]−1 + r
, (40)

with ρ0(s) standing for the (Laplace-transformed) PDF of first
arrival times in the (corresponding) process free of resets.
Equation (40) has previously been derived [6,7] using the
same general technique that we used here to derive formulas
for 〈Tr〉 and VarTr and one can easily verify that it leads to
the same expressions [plug in (8) and compare with (21) and
(31)].

IV. SECOND MODEL: RESETTING OF THE POSITION

In our second model we assume that resets bring the
particle back to x = 0, but do not affect the waiting times,
i.e., after the reset the particle still waits for the next jump as
scheduled by the previously generated waiting time. We will
refer to this resetting mechanism as soft resets. If the process
is space homogeneous (invariant under translations), one can
first generate the trajectory of the process without resets and
then introduce the resets by shifting the trajectory from the
times of resets onward.

Similarly to the standard CTRW scenario, we derive the
formula for the evolution of the PDF of the process W (x, t )
by considering a set of renewal integral equations linking the
propagator and an auxiliary function Q(x, t ), which describes
the density of particles jumping from the position x at time
t . We assume that initially the distribution of the particles
is described by P0(x) ≡ W (x, t = 0) and all particles have
their waiting times generated at t = 0 (no history). Resets are
generated from the exponential distribution, thus the prob-
ability that resets do not happen up to time t is given by
�R(t ) = exp(−rt ),

W (x, t ) = P0(x)�(t )�R(t ) + δ(x)�(t )[1 − �R(t )]

+
∫ ∞

−∞
dy

∫ t

0
dτ g(y)Q(x − y, t − τ )�(τ )�R(τ )

+ δ(x)
∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ t

0
dτ g(y)Q(x − y, t − τ )

× �(τ )[1 − �R(τ )], (41)
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where the four terms correspond to the following cases: (i) no
jumps and no resets up to time t , (ii) no jumps and at least one
reset up to time t , (iii) last jump at time t − τ and no resets
from t − τ up to t , and (iv) last jump at time t − τ and at least
one reset from t − τ up to t . Similarly, the equation for Q(x, t )
reads

Q(x, t ) = P0(x)ψ (t )�R(t ) + δ(x)ψ (t )[1 − �R(t )]

+
∫ ∞

−∞
dy

∫ t

0
dτ g(y)Q(x − y, t − τ )ψ (τ )�R(τ )

+ δ(x)
∫ ∞

−∞
dz

∫ ∞

−∞
dy

∫ t

0
dτ g(y)Q(x − y, t − τ )

× ψ (τ )[1 − �R(τ )]. (42)

Notice that the only change on the right-hand side is the usage
of the waiting-time PDF ψ instead of the survival probability
�. We can rewrite (41) and (42) in the Fourier-Laplace space

W (k, s) = P0(k)�(s + r) + g(k)Q(k, s)�(s + r)

+ [1 + Q0(s)][�(s) − �(s + r)], (43)

Q(k, s) = P0(k)ψ (s + r) + g(k)Q(k, s)ψ (s + r)

+ [1 + Q0(s)][ψ (s) − ψ (s + r)], (44)

where we have introduced

Q0(t ) =
∫ ∞

−∞
dx Q(x, t ), (45)

which describes the total flow of particles at time t indepen-
dently from the position. Since resets do not affect waiting
times, we can write a simple renewal equation

Q0(t ) = ψ (t ) +
∫ t

0
dτ ψ (τ )Q0(t − τ ), (46)

which immediately leads to

Q0(s) = ψ (s)

1 − ψ (s)
. (47)

Algebraic equations (43), (44), and (47) lead to the general
solution

W (k, s) = P0(k)�(s + r)

1 − g(k)ψ (s + r)

+ 1

s

(
1 − �(s + r)

�(s)

1 − g(k)ψ (s)

1 − g(k)ψ (s + r)

)
. (48)

As before, we assume that ψ (s) ≈ 1 − Aμsμ and g(k) ≈ 1 −
D0k2, take the limits Aμ → 0 and D0 → 0 with Aμ/D0 → D,
and arrive at

W (k, s) = P0(k) + (1 + r/s)μ − 1

r + s + D(r + s)1−μk2
+ 1

s
− 1

sμ(r + s)1−μ
,

(49)

which is our central result in this section.
As we will now show, the process possesses rather peculiar

qualities. The stationary probability is given simply by

fs(x) = lim
t→∞W (x, t ) = lim

s→0
sW (x, s) = δ(x) (50)

and is the same as the initial distribution if x0 = 0, i.e.,
P0(k) = 1. It does not however imply that the process is trivial
(Xt = 0). In order to show this we calculate the variance as a
function of time. As in the previous example we assume that
x0 = 0 and obtain the expression for the MSD in the Laplace
space

〈X 2(s)〉 = 2D

sμ(s + r)
. (51)

Inverting the Laplace transform leads to the integral expres-
sion

〈X 2(t )〉 = 2D

�(μ)
e−rt

∫ t

0
dτ τμ−1erτ , (52)

which can be represented in terms of the confluent hypergeo-
metric function of the first kind

〈X 2(t )〉 = 2D

�(μ + 1)
tμe−rt

1F1(μ,μ + 1, rt ). (53)

The MSD as a function of time admits a maximum value at
t∗ = z0/r, where z0 is the positive solution of the equation∫ z0

0
zμ−1ezdz = zμ−1

0 ez0 , (54)

which can rewritten in terms of a zero of the confluent
hypergeometric function

1F1(μ − 1; μ; z0) = 0. (55)

The maximum value of the MSD takes the form

max
t

〈X 2(t )〉 = 2D

rμ�(μ)
z0(μ)μ−1. (56)

By expanding (51) we see that 〈X 2(s)〉 ∝ s−μ for s � r,
which translates to 〈X 2(t )〉 ∝ 1/t1−μ for large t . The station-
ary state is approached with a slow algebraic decay, which
gets slower with larger values of μ (see Fig. 3).

To sum up, the initial and the stationary distribution are
the same, with a nontrivial transient behavior. This bears
a resemblance to homoclinic orbits in dynamical systems
[77] and is related to the stationary state splitting observed
recently in a similar model [59]. One may think that this
nonmonotonic behavior is induced by subdiffusion. In order
to show that this is not the case, let us modify the model by
introducing a power-law heavy-tailed distribution of jumps,
i.e., g(k) ≈ 1 − D0|k|α , with α ∈ (0, 2). The corresponding
process without resets is described by the FFPE

∂tW0(x, t |x0) = 0D1−μ
t D∂α

|x|W0(x, t |x0), (57)

where ∂α
|x| denotes the Riesz fractional space operator [26].

Sample paths of the process are discontinuous, and its in-
crements are described by a Lévy α-stable distribution [78],
hence the name Lévy flights [79,80]. Additionally, the vari-
ance of the position is infinite for any α < 2. Nevertheless,
one can still differentiate between superdiffusive and subdif-
fusive cases using quantiles (we could avoid this difficulty by
using Lévy walks, but we choose Lévy flights for the sake
of simplicity of the calculations). In the case of the process
with soft resets, the same calculations as before lead to the
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FIG. 3. Comparisons of (a) variances and (b) porigin as functions of time obtained with analytical predictions (53) and (61) (black dashed
lines). Calculations of 1F1 were performed with the help of the code published in [76] and with stochastic simulations (colored lines). The
details of the simulations are as follows. Waiting times were generated from a power-law distribution with μ = {0.25, 0.5, 0.75} and cutoff
timescales τ0 = {10−9, 10−8, 10−7}, where Aμ = τ

μ

0 . Steps were generated from a normal distribution with σ 2 = 2Dτ
μ

0 . Trajectories were
sampled every �t = 10−3 and resets were introduced at each time step with probability r�t . The number of sample trajectories was 105.
The other parameters were D = r = 1.

formula

W (k, s) = P0(k) + (1 + r/s)μ − 1

r + s + D(r + s)1−μ|k|α + 1

s
− 1

sμ(r + s)1−μ
.

(58)

The underlying process without resets is self-similar and its
quantiles scale with time as μ/α. Therefore, the process
behaves subdiffusively for 2μ < α and superdiffusively for
2μ > α. However, it is easy to show that the nonmonotonic
behavior of the process with position resets appears indepen-
dently of α, since the stationary probability

fs(x) = lim
t→∞W (x, t ) = δ(x), (59)

which holds for μ < 1 and any α. This time we cannot use
the MSD as a proxy to see the dispersion in time, but we can
plot quantile lines to confirm the nonmonotonic behavior (see
Fig. 4). Thus, it is evident that the nonmonotonic behavior
of the process relies on the trapping with power-law waiting
times. For the same reason no such nonmonotonic behavior
is observed in the case of subdiffusion with hard resets,
wherein power-law waiting times are effectively exponentially
truncated. We hypothesize that this is related to the weak er-
godicity breaking, i.e., we expect the nonmonotonic behavior
will not appear in the fractional Brownian motion or random
walks on fractals. If this is the case, one could use the resetting
as a computational method to assess whether the process at
hand is weakly nonergodic.

Figure 4 illustrates another interesting feature of the
CTRW with soft resets: Quantile lines converge to zero in a
finite time, which means that even for t < ∞ there is a finite
probability porigin(t ) that the particle is exactly at the origin.
This probability corresponds to the singular part of W (x, t )
and can be calculated as limk→∞ W (k, s), which for any g(x)

that is continuous at x = 0 reads

porigin(s) = 1

s
− 1

sμ(r + s)1−μ
, (60)

which can be represented in terms of the confluent hypergeo-
metric function

porigin(t ) = 1 − 1F1(1 − μ; 1; −rt ) = 1 − e−rt
1F1(μ; 1; rt ).

(61)

Figure 3 shows the behavior of porigin(t ) for different values
of μ. Our analytical predictions (61) are fully corroborated
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FIG. 4. Quantile lines of Lévy flights with power-law waiting
times corresponding to (58) with α = 1 and different values of μ

(increasing from left to right). Results were obtained by means of
stochastic simulations. Steps were generated from a Cauchy distri-
bution. Trajectories were sampled every �t = 0.01 and resets were
introduced at each time step with probability r�t . The number of
sample trajectories was 106. The other parameters were D = r = 1.
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by the stochastic simulations. Note that for any value of
μ < 1 the density is concentrated in the atom in the limit of
t→ ∞. However, the closer the value of μ to 1, the slower the
convergence, in line with the asymptotic (t � 1/r) formula

1 − porigin(t ) ∝ 1/t1−μ. (62)

We now turn our attention to the FAT statistics in the model
of subdiffusion with soft resets. Since resets do not affect
waiting times for random jumps and for μ < 1 these waiting
times have infinite expected value, we expect the MFAT to be
infinite for μ < 1. Moreover, since at any given moment some
particles are trapped at the origin and the proportion of trapped
particles increases with time, one may expect that there is a
finite probability that the target will never be found. This is,
surprisingly, not the case. By means of the general formula for
the first-passage time’s density (39) together with (49) we find

ρ(s) = 1

1 + (
s

s+r

)μ{exp[(r + s)μ/2|x0|/
√

D] − 1} , (63)

which can be rewritten as

ρ(s) = 1(
s

s+r

)μ
[ρ0(s + r)]−1 + 1 − (

s
s+r

)μ (64)

[compare to (40)]. In contrast to hard resets, soft resets do
not lead to a finite MFAT; as expected, 〈Tr〉 = ∞ for μ < 1.
However, limt→∞ S(t ) = 0, i.e., the particle reaches the target
almost surely. The tail of ρ(t ) behaves like 1/t1+μ and is
lighter than the tail of the process without resets 1/t1+μ/2.

V. EXTERNAL POTENTIALS: DRIFT
SUBDIFFUSION WITH RESETS

We can introduce external potentials into the subdiffusive
CTRW and the corresponding FFPE in different ways: Trap-
ping (waiting times) may directly affect both random and
potential-dependent terms [26,61]. The FFPE takes the form

∂tW0(x, t |x0) = 0D1−μ
t {D∂2

xxW0(x, t |x0)

+ ∂x[U ′(x)W0(x, t |x0)]}, (65)

where U (x) is the time-independent external potential and
F (x) ∝ −U ′(x) is the corresponding external force (for a
time-dependent generalization see [81]). In an alternative
approach, waiting times may be affected by the external force,
leading to another, more complicated form of the FFPE, in
which both terms depend on the external force [72].

Here we explore (65) with a constant force f =
−U ′(x), i.e., g(k) ≈ 1 + ik f0 − D0k2, where f0 → 0, D0 →
0, f0/Aμ → f , and D0/Aμ → D. The corresponding free
propagator (without absorbing boundaries) takes the form

W0(k, s|x0) = eikx0

s + Ds1−μk2 − ik f s1−μ
. (66)

In order to calculate the FAT statistics we again place an
absorbing target at x = 0 and apply the method of images
with a linear combination of solutions (66) of (65) starting
from ±x0. For simplicity of the notation and without loss of
generality, we assume that the process starts from x0 > 0. The

formula

G0(x, s) = c2e f̄ (x−x0 )

2s
√

c2 + f̄ 2
(e−

√
f̄ 2+c2|x−x0| − e−

√
f̄ 2+c2|x+x0|),

(67)

with c = √
sμ/D, is a straightforward generalization of the

known case of diffusion [78]. The corresponding survival
probability reads

S0(s) = 1

s
{1 − exp[−( f̄ +

√
f̄ 2 + c2)x0]}. (68)

The infinite-time survival depends on the sign of f and is
equal to 0 if f < 0 (the target is found with probability 1),
whereas for positive force the target is found with probability
exp(−2 f̄ x0). The MFAT is finite if and only if f < 0 and μ =
1 and in this case is given by the ballistic time 〈Tr〉 = x0/| f |.

The propagator of the corresponding model with hard
resets to the origin can be calculated from (10) and the
corresponding stationary distribution reads

fs(x) = 1

2

a2√
a2 + f̄ 2

exp( f̄ x −
√

f̄ 2 + a2|x|), (69)

where f̄ = f
2D and a = √

rμ/D. The corresponding MFAT in
the process with hard resets to the initial position x0 can be
calculated with (20) and reads

〈Tr〉 = 1

r
{exp[( f̄ +

√
f̄ 2 + a2)x0] − 1}. (70)

It has recently been shown that whether or not resets can lower
the MFAT of diffusion with drift is controlled by the Péclet
number [82]. Our results show that hard resets can always help
for μ < 1, since in this case the process without resetting has
infinite MFAT.

The propagator of the model with soft resets takes the
form

W (k, s|x0) = exp(ikx0) + (1 + r/s)μ − 1

r + s + D(r + s)1−μk2 − i f (r + s)1−μk

+ 1

s
− 1

sμ(r + s)1−μ
. (71)

As before, model II exhibits a trivial stationary distribution
fs(x) = δ(x) with a nontrivial transient. In this case the
nonmonotonic behavior can already be observed in the first
moment

〈X (s)〉 = x0

r + s
+ f

sμ(r + s)
, (72)

where the second term behaves like the variance in the model
without the drift term (51). One can easily verify that in the
case of soft resets drift does not change the main conclusions
regarding the FAT statistics: Yet again the particle almost
surely reaches the target, but the MFAT is infinite.

VI. CONCLUSION

Two models of subdiffusion with stochastic resetting have
been presented. Their statistical properties, including station-
ary distributions, transient behavior of the probability distribu-
tion functions, and the first two moments of first arrival time,
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have been calculated. While the subdiffusion with hard resets
provides a rather straightforward generalization of diffusion
with stochastic resetting, soft resets lead to quite peculiar
features of the process, including nonmonotonic behavior of
the MSD and nonintuitive properties of the first-passage-time
statistics. In the following we list a few possible applications
of these results.

A number of models of molecular motor dynamics based
on the ratchet mechanism in a thermally fluctuating environ-
ment have been proposed before [83–90]. Since the cytoplasm
in the living cells is crowded, the transport inside of them
is observed to be subdiffusive (cf. Sec. I). Therefore, some
authors have devised molecular motor models in subdiffusive
environments [91–95]. Our first model of subdiffusion with
stochastic resetting may provide a useful building block in
such models, wherein resetting would describe binding and
unbinding of molecular motors from microtubules or the

disappearance and appearance of particles due to chemical
reactions [6,96].

The second model introduced in this work may be used
as a starting point to construct novel resampling statistical
methods [97–103], e.g., for an estimation of the tail index
or testing hypothesis whether the observed trajectories are
subdiffusive [32]. The idea is to create auxiliary trajectories
by randomly resetting positions in the original data, with the
hope of the new data being easier to handle, especially when
a limited number of trajectories is given. The details of the
algorithm and whether this hope is justified are subjects for
further research.
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[17] Ł. Kuśmierz, M. Bier, and E. Gudowska-Nowak, J. Phys. A:

Math. Theor. 50, 185003 (2017).
[18] S. Belan, Phys. Rev. Lett. 120, 080601 (2018).
[19] S. N. Majumdar, S. Sabhapandit, and G. Schehr, Phys. Rev. E

91, 052131 (2015).
[20] B. Davis, Probab. Theory Relat. Fields 84, 203 (1990).
[21] D. Boyer and C. Solis-Salas, Phys. Rev. Lett. 112, 240601

(2014).
[22] A. Falcón-Cortés, D. Boyer, L. Giuggioli, and S. N.

Majumdar, Phys. Rev. Lett. 119, 140603 (2017).
[23] E. W. Montroll and G. H. Weiss, J. Math. Phys. 6, 167 (1965).
[24] E. Barkai, R. Metzler, and J. Klafter, Phys. Rev. E 61, 132

(2000).

[25] M. M. Meerschaert and H.-P. Scheffler, J. Appl. Prob. 41, 623
(2004).

[26] R. Metzler and J. Klafter, Phys. Rep. 339, 1 (2000).
[27] D. Campos and V. Méndez, Phys. Rev. E 92, 062115

(2015).
[28] M. Montero, A. Masó-Puigdellosas, and J. Villarroel, Eur.

Phys. J. 90, 176 (2017).
[29] E. Scalas, R. Gorenflo, and F. Mainardi, Physica A 284, 376

(2000).
[30] G. Bel and E. Barkai, Phys. Rev. Lett. 94, 240602 (2005).
[31] A. Lubelski, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett.

100, 250602 (2008).
[32] Y. Meroz and I. Sokolov, Phys. Rep. 573, 1 (2015).
[33] B. B. Mandelbrot and J. W. Van Ness, SIAM Rev. 10, 422

(1968).
[34] M. S. Taqqu, Z. Wahrscheinlichkeitstheor. Verw. Geb 31, 287

(1975).
[35] F. Biagini, Y. Hu, B. Øksendal, and T. Zhang, Stochastic

Calculus for Fractional Brownian Motion and Applications,
Probability and Its Applications (Springer Science + Business
Media, New York, 2008).

[36] Y. Mishura, Stochastic Calculus for Fractional Brownian Mo-
tion and Related Processes, Lecture Notes in Mathematics Vol.
1929 (Springer Science + Business Media, New York, 2008).

[37] W. Deng and E. Barkai, Phys. Rev. E 79, 011112 (2009).
[38] J. A. D’Auriac, A. Benoit, and R. Rammal, J. Phys. A: Math.

Gen. 16, 4039 (1983).
[39] B. O’Shaughnessy and I. Procaccia, Phys. Rev. A 32, 3073

(1985).
[40] D. Ben-Avraham and S. Havlin, Diffusion and Reactions in

Fractals and Disordered Systems (Cambridge University Press,
Cambridge, 2000).

[41] M. Magdziarz, A. Weron, K. Burnecki, and J. Klafter, Phys.
Rev. Lett. 103, 180602 (2009).

[42] S. Condamin, V. Tejedor, R. Voituriez, O. Benichou, and J.
Klafter, Proc. Natl. Acad. Sci. USA 105, 5675 (2008).

[43] Y. Meroz, I. M. Sokolov, and J. Klafter, Phys. Rev. Lett. 110,
090601 (2013).

[44] H. Scher and E. W. Montroll, Phys. Rev. B 12, 2455 (1975).

052116-9

https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.106.160601
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevLett.113.220602
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1103/PhysRevE.92.052127
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/47/28/285001
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1088/1751-8113/48/28/285003
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.116.170601
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1103/PhysRevLett.118.030603
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1367-2630/18/3/033006
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1742-5468/2016/08/083401
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
https://doi.org/10.1088/1751-8113/49/22/225001
http://arxiv.org/abs/arXiv:1812.11577
https://doi.org/10.1088/1742-5468/ab02f3
https://doi.org/10.1088/1742-5468/ab02f3
https://doi.org/10.1088/1742-5468/ab02f3
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1103/PhysRevE.99.012141
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1088/1751-8113/46/18/185001
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.91.012113
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1103/PhysRevE.87.012116
https://doi.org/10.1088/1751-8121/aa6769
https://doi.org/10.1088/1751-8121/aa6769
https://doi.org/10.1088/1751-8121/aa6769
https://doi.org/10.1088/1751-8121/aa6769
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1103/PhysRevLett.120.080601
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1103/PhysRevE.91.052131
https://doi.org/10.1007/BF01197845
https://doi.org/10.1007/BF01197845
https://doi.org/10.1007/BF01197845
https://doi.org/10.1007/BF01197845
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.112.240601
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1103/PhysRevLett.119.140603
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1063/1.1704269
https://doi.org/10.1103/PhysRevE.61.132
https://doi.org/10.1103/PhysRevE.61.132
https://doi.org/10.1103/PhysRevE.61.132
https://doi.org/10.1103/PhysRevE.61.132
https://doi.org/10.1239/jap/1091543414
https://doi.org/10.1239/jap/1091543414
https://doi.org/10.1239/jap/1091543414
https://doi.org/10.1239/jap/1091543414
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1016/S0370-1573(00)00070-3
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1103/PhysRevE.92.062115
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1140/epjb/e2017-80348-4
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1016/S0378-4371(00)00255-7
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.94.240602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1103/PhysRevLett.100.250602
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1016/j.physrep.2015.01.002
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1137/1010093
https://doi.org/10.1007/BF00532868
https://doi.org/10.1007/BF00532868
https://doi.org/10.1007/BF00532868
https://doi.org/10.1007/BF00532868
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1103/PhysRevE.79.011112
https://doi.org/10.1088/0305-4470/16/17/020
https://doi.org/10.1088/0305-4470/16/17/020
https://doi.org/10.1088/0305-4470/16/17/020
https://doi.org/10.1088/0305-4470/16/17/020
https://doi.org/10.1103/PhysRevA.32.3073
https://doi.org/10.1103/PhysRevA.32.3073
https://doi.org/10.1103/PhysRevA.32.3073
https://doi.org/10.1103/PhysRevA.32.3073
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1103/PhysRevLett.103.180602
https://doi.org/10.1073/pnas.0712158105
https://doi.org/10.1073/pnas.0712158105
https://doi.org/10.1073/pnas.0712158105
https://doi.org/10.1073/pnas.0712158105
https://doi.org/10.1103/PhysRevLett.110.090601
https://doi.org/10.1103/PhysRevLett.110.090601
https://doi.org/10.1103/PhysRevLett.110.090601
https://doi.org/10.1103/PhysRevLett.110.090601
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevB.12.2455
https://doi.org/10.1103/PhysRevB.12.2455
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