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Universal broadening of zero modes: A general framework and identification
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We consider the smallest eigenvalues of perturbed Hermitian operators with zero modes, either topological
or system specific. To leading order for small generic perturbation we show that the corresponding eigenvalues
broaden to a Gaussian random matrix ensemble of size ν × ν, where ν is the number of zero modes. This
observation unifies and extends a number of results within chiral random matrix theory and effective field theory
and clarifies under which conditions they apply. The scaling of the former zero modes with the volume differs
from the eigenvalues in the bulk, which we propose as an indicator to identify them in experiments. These
results hold for all 10 symmetric spaces in the Altland-Zirnbauer classification and build on two facts. First,
the broadened zero modes decouple from the bulk eigenvalues and, second, the mixing from eigenstates of the
perturbation form a central limit theorem argument for matrices.
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I. INTRODUCTION

When studying the local (microscopic) spectral statistics
of eigenvalues of operators, random matrix theory (RMT)
provides universal results, see, e.g., Refs. [1–3] and references
therein. One particular intriguing regime of eigenvalues is that
close to the origin or at a spectral gap. These eigenvalues hold
information about the large-scale properties of the underlying
system, because they are of the order of inverse system size.
For instance, analysis of Dirac eigenvalues close to the origin
has led to a greater understanding of chiral symmetry breaking
in QCD [4–7].

The form of RMT relevant for a given physical system
depends on the symmetries of the system. Not only the pure
symmetry classes have been of interest; see Refs. [1,3,8–12]
for symmetry classifications in RMT and Refs. [5,8,13–22]
for the classification of these symmetries in physical systems.
It has been necessary to extend the random matrix models to
two-matrix models, see, e.g., Refs. [23–31], or even many
matrix models like products and sums, e.g., Refs. [32–37]
and references therein. Those models describe transitions be-
tween different symmetry classes. These are needed because
no realistic system is completely pure but usually perceives
perturbations from its environment.

Degeneracies are vulnerable to perturbations which vi-
olate the condition that caused the degeneracy. For exam-
ple, topological zero modes are broadened due to resid-
ual interactions that break topology. This broadening can
be used as a measure of the perturbation strength [38–42].
Topological modes are relevant in both high-energy physics
[4–7,43–47] and condensed matter systems [20,48–55]. For
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solid-state physics, interactions in many-body systems per-
turbed by thermal fluctuations of the kind found in topo-
logical superconductors has been proposed to broaden zero
modes [49,50,52,53,56–59]. An analogous structure is found
in quantum chromodynamics (QCD) for discretized fermions
on a lattice [41,60–62]. Surprisingly in the latter example,
the broadening of the zero eigenvalues coincides with the
statistics of a finite-dimensional Gaussian random matrix
model [41,60–62], which have been corroborated by lattice
simulations [38–40,42]. These observations were surprising
because universality of the spectral statistics, and thus agree-
ment with RMT, usually only holds in the limit of a large
number of eigenvalues, while the number of zero modes has
been finite in these systems. A similar observation was found
for outliers above the bulk of the spectrum, see, e.g., the math-
ematical review [63]. The statistics of outlier commonly play
an enormous role in time series analysis and, thus, statistics
[3]. In the present work, we want to investigate the mechanism
behind the finite size universalities in a spectral gap. We
model the physical ensemble average by an average over
the Haar measure of the unitary matrix which expresses the
unperturbed zero modes in the eigenbasis of the perturbation.

The main assumption needed to realize this is, in physical
terms, that the zero modes are sufficiently delocalized in
the eigenbasis of the perturbation. We will consider average
spectral properties, which could be an average over gauge
fields, as in QCD, or an average over disorder in solid-state
systems.

In the present work, we model the physical ensemble
average by an average over the Haar measure of the unitary
matrix which expresses the unperturbed zero modes in the
eigenbasis of the perturbation. This assumption is motivated
by the fact that a perturbation that affects topology must
be on a global scale. The short-distance dynamics of the
corresponding modes are therefore averaged out.
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It has been pointed out [51] that it is difficult to distinguish
between accumulation of eigenvalues around the origin and
perturbed topological modes in experiments. We propose to
look at the different scaling behaviours of the eigenvalues and
show that perturbed zero modes broaden with the system size
in a way that is not shared by the bulk. Our proposal is to
exploit this difference as an indicator. The intuition behind
this is that an accumulation of eigenvalues near zero will be
part of the same ensemble as the first excited state, whereas
perturbed zero modes behave as a separate finite-dimensional
ensemble and therefore have a different scaling behavior with
the volume of the system and the coupling constant. This scal-
ing property was first observed for lattice QCD in Ref. [38]
and understood within that context in Refs. [60,61]. We show
that it holds true for all 10 symmetric spaces in the Altland-
Zirnbauer classification and clarify the assumptions under
which the ν × ν RMT behavior of the near zero modes holds.

These results in the limit of large number of zero modes
are also expected to be relevant for analysis of correlation
matrices when applying a power map, see Ref. [64].

Our starting point is a situation where a Hermitian operator
Â is perturbed by another Hermitian operator Ŝ,

K̂ = Â + αŜ. (1.1)

We want to investigate the statistical properties of this op-
erator, that is, the spectrum of eigenvalues on an ensemble
average. The coupling constant α will be chosen to be small
such that first-order perturbation theory can be applied. The
procedure of the proof is as follows.

In Sec. II we specify what is meant by “small,” where we
also explain how to cut the Hilbert space to one of finite size
N . The size N will be sent to infinity at the end of the day.

We crystallize our assumptions in Sec. III, in particular
the three conditions on Â, Ŝ, and α. For this purpose we
show that the spectrum of the former zero modes decouple
from the bulk for small α. We also discuss that the first-order
perturbation theory becomes exact for N → ∞ under the
assumed conditions for all 10 symmetry classes of Hermitian
operators [8–10,15].

In Sec. IV we then average over the part of the eigenbasis
change between Â and Ŝ associated with the zero modes of
Â. The nontrivial change of basis creates a self-average and
forms a central limit theorem for matrices. Our analysis deals
with all 10 symmetry classes in a unified way.

Our results are substantiated by numerics of some exam-
ples in Sec. V that we expect will find some interest in lattice
QCD and systems with Majorana modes in condensed matter
system. In Sec. VI we conclude and discuss our results.

II. ESTIMATES OF SCALES

We start with a general unperturbed Hermitian operator
Â. This operator might be a Hamiltonian, a Euclidean Dirac
operator, or another quantity. Due to its hermiticity, we can
decompose it in its eigenvalues λ j and its normalized eigen-
vectors |ψ j〉, i.e.,

Â =
∑

j

λ j |ψ j〉〈ψ j |. (2.1)

Here we include degeneracies of the spectrum and zeros. The
operator may even have a continuum spectrum. In this case,

we perform a finite volume UV cut-off for our analysis and
let the volume V go to infinity afterward. Technically, we
send the dimension N of the Hilbert space to infinity, but
the dimension is proportional to the volume of the system,
N ∝ V . This is true in QCD [41,60–62] and is expected to
hold in condensed matter systems [31,65], too. Usually, other
quantities like the number of colors and the representation of
the gauge group or the size of the spins and the number of
particles enter into N as well.

Let us assume that Â has a fixed number ν > 0 of zero
modes and the eigenvalues are ordered so that |λk| > |λN |
for all k > N and |ψ j〉 for j = 1, . . . , ν form an orthonormal
basis of the zero mode space. This ordering corresponds to the
UV cut-off; the first N eigenvalues are also the N smallest. So
we consider the truncated operator

Â(N ) =
N∑

j=ν+1

λ j |ψ j〉〈ψ j |. (2.2)

This operator may be represented by a matrix∑
j

λ j |ψ j〉〈ψ j | =̂
(

A′ = diag(λν+1, . . . , λN ) 0
0 0

)
. (2.3)

The notation “ =̂ ” will be used to indicate that the truncated
operator in the eigenbasis of Â is a finite-dimensional matrix.
We want to address how a generic additive Hermitian pertur-
bation Ŝ broadens the eigenvalues of the zero modes for the
operator

K̂ = Â + αŜ = lim
N→∞

(Â(N ) + αŜ(N ) ) = lim
N→∞

K̂ (N ) (2.4)

with a small coupling constant α and the truncation of the
perturbation Ŝ of the form

Ŝ(N ) =
N∑

j,k=1

〈ψ j |Ŝ|ψk〉 |ψ j〉〈ψk|. (2.5)

Note that |ψ j〉 are still the eigenstates of Â. Since we are only
interested in the leading effects of Ŝ on the zero modes, we
work in a perturbative regime. To this purpose, we first need
to identify what the correct scale of α is in terms of Â, Ŝ, and
N . Additionally, we have to specify how Ŝ describes a generic
perturbation.

To get a feeling for the questions above, we do standard
perturbation theory ignoring the fact that the spectra of Â and
Ŝ may vary over different scales. A more rigorous approach
can be found in Sec. III A.

The first-order perturbation of the zero eigenvalues is given
by the eigenvalues of the perturbation matrix

K̂ (zero)
1 = α

ν∑
j′, j=1

〈ψ j |Ŝ|ψ j′ 〉 |ψ j〉〈ψ j′ |, (2.6)

where the subscript denotes the order of the perturbation. This
perturbation is only dominant if it is smaller than the second-
order perturbation given by the eigenvalues of

K̂ (zero)
2 = −α2

ν∑
j′, j=1

(
N∑

k=ν+1

〈ψ j |Ŝ|ψk〉〈ψk|Ŝ|ψ j′ 〉
λk

)
|ψ j〉〈ψ j′ |.

(2.7)
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The first- and second-order corrections are of equal magnitude
when the largest singular value of K̂ (zero)

2 becomes of the same
order as the smallest singular value of K̂ (zero)

1 . In Sec. IV, we
argue that 〈ψ j |Ŝ|ψ j′ 〉 are Gaussian distributed on the scale√

Tr(Ŝ(N ) )2/N for large N and sufficient mixing between the
eigenbases of Â and Ŝ. The mixing is important for the matrix
central limit theorem argument. The estimates of the smallest
and largest singular value follow from, respectively,

‖({〈ψ j |Ŝ|ψ j′ 〉}i, j=1,...,ν )−1‖op ∝
√

Tr(Ŝ(N ) )2

N
,∣∣∣∣∣∣

∣∣∣∣∣∣
{

N∑
k=ν+1

〈ψ j |Ŝ|ψk〉〈ψk|Ŝ|ψ j′ 〉
λk

}
i, j=1,...,ν

∣∣∣∣∣∣
∣∣∣∣∣∣
op

� Tr(Ŝ(N ) )2

N2|λν+1|
(2.8)

with ‖.‖op being the operator norm, meaning the largest
singular value of the operator. From this we find the simple
estimate

1

N

√
Tr[Ŝ(N )]2

|λν+1| α 	 1 (2.9)

for the coupling constant α. When the nonzero eigenvalues of
Ŝ are of order 1 and the smallest eigenvalue of Â is of order
1/N , we obtain

√
Nα 	 1, a relation which is well known in

lattice QCD [41,60–62]. Note that for certain ensembles the
second-order correction disappears due to symmetry. In this
case we have to compare to the higher orders. This observation
hints at the fact that we essentially need a different bound
for α for the general situation. This is found in Sec. III. The
discussion therein remains completely unaffected whether or
not the second-order perturbation theory vanishes.

As already mentioned, the heuristic approach above does
not necessarily take into account that Â as well as Ŝ may have
several parts of their spectra that scale differently. Usually
the smallest nonzero eigenvalue of Â(N ) is of order 1/N , see
Refs. [4–7,43–47]. Moreover, the largest eigenvalue of Ŝ can
even exceed the one of Â as it is the case for the Wilson-Dirac
operator [66]. In such cases α can never be perturbative for
the whole spectra but only for a certain subspectrum like the
zero modes. Eq. (2.8) sets the scale where the perturbative
approach of describing the broadening of the zero modes
applies.

III. PREPARATIONS

The ensemble average we will consider is an average over
the part of the transformation between the eigenbases of Â
and Ŝ associated with the zero modes. The full transformation
is unitary and denoted by U . That is, diagonalizing Ŝ(N ) =∑N

l=1 sl |φl〉〈φl |, we may write U = {〈ψ j |φl〉} j,l=1,...,N . The
matrices U will be drawn from the Haar measure of the
group corresponding to the considered symmetry class, see
Table II. To motivate this form of the average, note that
almost regardless what the eigenvalues sl are, the coefficients
〈ψ j |φl〉〈φl |ψ j′ 〉 behave in a generic case like random vari-
ables. “Generic” here means that these statements hold when
averaging over the eigenvectors. We will later split U into a
part corresponding to the zero modes and a part corresponding
to the rest of the spectrum.

Considering the leading-order term K̂ (zero)
1 we note that

each matrix entry can be expressed as a sum

〈ψ j |Ŝ|ψ j′ 〉 =
N∑

l=1

sl〈ψ j |φl〉〈φl |ψ j′ 〉. (3.1)

The perturbation matrix for the zero modes is the part j, j′ =
1, . . . , ν. The central limit theorem tells us that in the case of
uncorrelated and identically distributed summands, the sum
would be Gaussian. In Sec. IV, we extend the central limit
theorem to the sum (3.1) where neither the independence nor
the identicalness is given. The fulcrum of our setup is that, for
large N , the perturbation matrix for the zero modes becomes
independent of the exact values of sl . This requires the inverse
participation ratio

∑N
l=1 |〈ψ j |φl〉|4 to be sufficiently small for

j = 1, . . . , ν. We show that all matrix entries with j, j′ =
1, . . . , ν become Gaussian independent up to some symmetry
relations due to this sum. That is, we show that this sum and,
accordingly, the matrix entries are Gaussian. It hence follows
that the eigenvalues obey a ν × ν Gaussian RMT.

We want to corroborate our statements from the previous
section by listing the conditions under which the matrix val-
ued central limit theorem holds, see Sec. III A. Thereafter, in
Sec. III B, we explain why the first-order perturbation theory
becomes exact in the limit N → ∞. Because the central limit
theorem depends on the symmetry class of the operators, we
briefly review some of their particularities in Sec. III C and
introduce our notation which is employed in Sec. IV.

A. Conditions on the operators

We need the behavior of the number of eigenvalues of Ŝ(N )

that are of the same order as its maximal singular value σ (N )
max =

‖Ŝ(N )‖op when N goes to infinity. We recall that ‖Ŝ(N )‖op

denotes the operator norm, meaning the largest singular value.
A quantity which estimates the scaling of this number is the
ratio between the l2-norm and the operator norm,

q(N ) =
√

Tr[Ŝ(N )]2

‖Ŝ(N )‖op
∈ [1,

√
N]. (3.2)

This quantity is akin to a participation ratio for eigenvalues.
With the help of this definition, we assume the following
conditions:

TrŜ(N ) = 0, (3.3)

lim
N→∞

q(N ) = ∞, (3.4)

α = o

[
1

‖Ŝ(N )‖op

√
N

Tr(A′)−2

]
. (3.5)

The first condition is not mandatory but simplifies the notation
below. If the trace does not vanish, then the whole spectrum
is shifted by TrŜ(N )/N . Hence, after a redefinition Ŝ(N ) −
[TrŜ(N )/N]1N → Ŝ(N ) we end up with Eq. (3.3). Additionally,
it helps us avoid the completely degenerate case Ŝ ∝ 1 where
the Gaussian broadening of the zero modes collapses to a
Dirac δ function (the spectrum is only shifted). This also
shows that our results hold for any exact mode in a spectral
gap.
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The first true condition is Eq. (3.4). It guarantees the Gaus-
sian random matrix approximation describing the broadening
of the zero modes, see Sec. IV. Physically, the condition
(3.4) tells us that there are enough eigenvalues inducing self-
averaging due to the the relative change of the eigenvectors
of Â and Ŝ for the matrix central limit theorem to apply. That
is, there is sufficient delocalization. Note that this condition
does not carry any information about the strength of the
perturbation since the quotient q(N ) is scale invariant.

The bound on the strength of the perturbation is covered by
condition (3.5). It resembles Eq. (2.9) and describes when the
first-order approximation applies. One can show that Eq. (3.5)
yields a stronger bound than Inequality (2.9),

N

‖(A′)−1‖op

√
Tr[Ŝ(N )]2

� N

q(N )
√

Tr(A′)−2‖Ŝ(N )‖op

�
√

N√
Tr(A′)−2‖Ŝ(N )‖op

. (3.6)

The stricter bound is necessary to truncate the perturbation
series after the first term. The interpretation is that A′ has to
have a spectral gap where the former zero modes can live
without being perturbed by the bulk.

B. Secular equation of the broadened zero eigenvalues

Here we derive the first-order perturbation from the secular
equation of the whole system and study in detail the bounds
for its validity. As in Sec. II, we choose to work in the
eigenbasis of the truncated Hermitian operator Â(N ). In this
basis Ŝ(N ) takes the block form (for the rest of our analysis,
we represent the operators as N × N matrices Ŝ(N ) =̂ S(N ))

US(N )U † =
(

S1 S2

S†
2 S3

)
. (3.7)

Here we have explicitly written the unitary matrix Ui,k =
〈ψi|φk〉 which changes from the eigenbasis of S(N ) to A(N ),
that is,

[US(N )U †]i, j = Ui,kS(N )
k,k′ [U †]k′, j

= 〈ψi|φk〉〈φk|
(

N∑
l=1

sl |φl〉〈φl |
)

|φk′ 〉〈φk′ |ψ j〉,

(3.8)

where k and k′ are summed over. Since the zero modes of
A(N ) make up the final ν rows of U it is useful to introduce the
symbol U2 for this part of U , i.e., [U ]l,k = [U2]l,k = 〈ψl |φk〉,
where l = N − ν + 1, . . . , N . Likewise, we introduce the
symbol U1 for the first part of U , i.e., [U ]m,k = [U1]m,k =
〈ψm|φk〉, where m = 1, . . . , N − ν.

We do not make assumptions about the nature of these zero
modes. They may be of topological origin, like antisymmetry
or chirality, or are given by peculiarities of the unperturbed
system Â. Moreover, the symmetry classes of Â and Ŝ are still
open and will be discussed in the next subsection as well as
in Sec. IV. Thence, we have not yet chosen the group K from
where we draw the unitary matrix U via the corresponding
Haar measure, see Table II.

To derive the first-order perturbation of the secular equa-
tion of an eigenvalue λ, we start with the secular equation of
the whole system K (N ) = A(N ) + αS(N ), i.e.,

det(K (N ) − λ1N ) = 0. (3.9)

Employing the invariance of the determinant under the adjoint
action of a unitary matrix, we can rephrase this equation into
the block form (3.7),

det(K (N ) − λ1N ) = det

(
A′ + αS1 − λ1N−ν αS2

αS†
2 αS3 − λ1ν

)
= det(A′ − λ1N−ν ) det

(
1N−ν + α(A′ − λ1N−ν )−1S1 α(A′ − λ1N−ν )−1S2

αS†
2 αS3 − λ1ν

)
= det(A′ − λ1N−ν ) det(1N−ν + α(A′ − λ1N−ν )−1U1SU †

1 )

× det[αU2SU †
2 − λ1ν − αU2SU †

1 (1N−ν + α(A′ − λ1N−ν )−1U1SU †
1 )−1α(A′ − λ1N−ν )−1U1SU †

2 ]

= det(A′ − λ1N−ν ) det(1N + αS(N )U †
1 (A′ − λ1N−ν )−1U1)

× det(αU2[1N + αS(N )U †
1 (A′ − λ1N−ν )−1U1]−1S(N )U †

2 − λ1ν ). (3.10)

In the second equality we pull out the factor (A′ − λ1N−ν ) in the first N − ν rows of the determinant. Then we have expanded
the second determinant in its two blocks on the diagonal and exploited the explicit expression for S1,2,3. The last line follows
from the expression of inverse matrices as a Neumann series.

In the next step we make use of the bound of α. Since the gap of A′ must not be allowed to close via the broadening of the
zero modes, we need the smallest singular value of A′, which is ‖(A′)−1‖op, to be much bigger than the largest singular value of
αU2[1N + αS(N )U †

1 (A′)−1U1]−1SU †
2 . Therefore, the dependence on λ in the first two determinants of Eq. (3.10) can be dropped

so that those terms cannot vanish. This spectral gap between A′ and αU2[1N + αS(N )U †
1 (A′)−1U1]−1S(N )U †

2 can most easily be
seen when simplifying the latter. We can drop the term αS(N )U †

1 (A′)−1U1 because it is on average smaller than 1N . To see this
let us choose an arbitrary vector |χ〉 ∈ CN . Then the square norm of αU †

1 (A′)−1U1S(N )|χ〉 is on average∫
K

dμ(U )α2〈χ |S(N )U †
1 (A′)−2U1S(N )|χ〉 = α2Tr(A′)−2

N
〈χ |(S(N ) )2|χ〉 � α2Tr(A′)−2‖S(N )‖2

op

N
	 1, (3.11)
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where we used that each of the groups K comprises the
symmetric group of permutations which immediately leads to
the right-hand side, cf. Sec. III C. The second moment also
vanishes as can be checked by∫

K
dμ(U )α4[〈χ |S(N )U †

1 (A′)−2U1S(N )|χ〉]2

= α4{c1Tr(A′)−4 + c2[Tr(A′)−2]2}
N2

〈χ |(S(N ) )2|χ〉2

�
α4{|c1|Tr(A′)−4 + |c2|[Tr(A′)−2]2}‖S(N )‖4

op

N2
, (3.12)

where c1 and c2 are two constants that are of order unity for
large N . Here we used the fact that∫

K
dμ(U )|Ui j |2|Uil |2 N�1∝ 1

N2
, for i, j, l = 1, . . . , N,

(3.13)

for all of the groups K in Sec. III C and that S(N )|χ〉〈χ |S(N )

is of rank one. Moreover, we have Tr(A′)−4 � (Tr(A′)−2)2

because (A′)−2 is positive definite. Hence, it holds∫
G

dμ(U )α4[〈χ |S(N )U †
1 (A′)−2U1S(N )|χ〉]2

� (|c1| + |c2|)
α4[Tr(A′)−2]2‖S(N )‖4

op

N2
	 1. (3.14)

Therefore, on average each singular value of
αS(N )U †

1 (A′)−1U1 is much smaller than unity and the term can
be neglected in the sum 1N + αS(N )U †

1 (A′)−1U1.
Now we are ready to argue that λ can be omitted in the

combination A′ − λ1N−ν in the final determinant of (3.10).
This decouples the spectrum such that λ measures the eigen-
values of

αU2[1N + αS(N )U †
1 (A′)−1U1]−1S(N )U †

2 ≈ αU2S(N )U †
2 .

(3.15)

In Sec. IV we show that the matrix U2S(N )U †
2 is distributed

according to a Gaussian random matrix where each matrix
entry has the standard deviation

√
Tr(S(N ) )2/N . Due to the

fixed and finite dimension ν (the number of the former zero
modes), also the largest eigenvalue of the matrix (3.15) is of
the order

√
Tr(S(N ) )2/N . We conclude that

α 	 N

‖(A′)−1‖op

√
Tr(S(N ) )2

(3.16)

is needed to drop λ in A′ − λ1N−ν . This is given from
Eq. (3.6).

Summarizing, with our assumed conditions (3.3–3.5) the
broadened zero modes are completely described by the
leading-order term K (z)

1 = αS3 = αU2S(N )U †
2 . As we will

show in Sec. IV, this matrix takes generically the form of a
Gaussian random matrix.

C. Symmetry classes

To see a broadening of finitely many zero modes we
need an ensemble average. Otherwise, we have only finitely

many peaks somewhere about the origin. The ensemble av-
erage considered here will be an average over the matrix
U2 = {〈ψ j |φl〉} j=N−ν+1,...,N,l=1,...,N . We choose U2 to be Haar
distributed in a Stiefel manifold of one of the groups K in
Table II. Note that we do not require all of U to be Haar
distributed.

The nature of the groups K strongly depends on what
the generic symmetry class of S3 = U2SU †

2 is. There are 10
symmetry classes of Hermitian operators in total that S3 can
take. Those have been classified by Altland and Zirnbauer
[9,15]. Five of the 10 classes exhibit a chiral symmetry and
the other five do not. We start with the latter.

1. Nonchiral classes

The nonchiral symmetries can be described through the
three number fields of real (R), complex (C), and quaternion
(H) numbers. These three fields each have a corresponding
group, which are the orthogonal matrices O(N ), the unitary
matrices U (N ), and the unitary symplectic matrices USp(N )
with N even. They are the maximal compact subgroups of the
general linear groups G = GlR(N ), GlC(N ), GlH(N ), respec-
tively. There are two Hermitian subsets invariant under O(N )
which are the real symmetric matrices H = Sym(N ) and the
imaginary antisymmetric matrices H = ASym(N ). The same
holds true for the quaternion case where we have the self-dual
Hermitian matrices H = Self (N ) and the anti-self-dual Her-
mitian matrices H = ASelf (N ). For the complex case only the
Hermitian matrices H = Herm(N ) are invariant under U (N ).
The matrix S3 = U2S(N )U †

2 has to be in one of these five
matrix sets when it is not generically chiral. Since only the
projection of U to its last ν rows is of interest, we do not aver-
age over the whole group K = O(N ),U (N ), USp(N ) but only
over the corresponding Stiefel manifolds Kν = O(N )/O(N −
ν),U (N )/U (N − ν), USp(N )/USp(N − ν); for the last case
also ν has to be even. In our calculations in Sec. IV,
we need the fact that Kν can be embedded into ν ×
N matrices which are given by the matrix spaces Gν =
MatR(ν, N ), MatC(ν, N ), MatH(ν, N ). We denote with Hν

the matrix space from which S3 is drawn.

2. Chiral classes

When chiral symmetry is present the situation is slightly
more complicated. There are the three standard chiral sym-
metry classes [5], where

Ŝ(N ) =̂
(

0 W
W † 0

)
(3.17)

comprises a real [W ∈ MatR(p, n) =̂H], complex [W ∈
MatC(p, n) =̂H], or a quaternion [W ∈ MatH(p, n) =̂H with
p and n even] matrix with p + n = N . Here the notion “ =̂ ”
carries the additional meaning that there is a unitary ma-
trix for the ensemble where S(N ) is drawn from to write
it in this form. The matrix U = diag(V1,V2) can be cho-
sen in a block diagonal form with (V1,V2) ∈ K = O(p) ×
O(n),U (p) × U (n), USp(p) × USp(n).

The remaining two symmetry classes are of the
Bogoliubov–de Gennes type where W is either complex sym-
metric SymC(p = n = N/2) =̂H or complex antisymmetric
ASymC(p = n = N/2) =̂H. In both cases the unitary group
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TABLE I. The 10 symmetry classes given in terms of the acronym of the Gaussian random matrix ensemble (first column, notation follows
[22]) and the symbol along the Cartan classification scheme (second column, see Refs. [9,10,15]). The third column represents the matrix
space in which S3 lives, and the fourth column shows its structure in matrix form. The matrix τ2 is the second Pauli matrix. In the first five rows
we listed the nonchiral classes followed by the three classical chiral ensembles where p + n = N and p′ + n′ = ν. The two Boguliubov–de
Gennes classes are given in the last two rows. For the symplectic cases (third, fifth, and eighth rows) the dimensions N, ν, p, . . ., have to be all
even. This table is continued in Table II.

RMT Cartan class Hν Matrix structure

GUE A Herm(ν ) S3 = S†
3 ∈ Cν×ν

GOE AI Sym(ν ) S3 = ST
3 = S∗

3 ∈ Rν×ν

GSE AII Self (ν ) S3 = τ2ST
3 τ2 = τ2S∗

3τ2 ∈ Cν×ν, ν ∈ 2N

GAOE B | D ASym(ν ) S3 = −ST
3 = −S∗

3 ∈ ıRν×ν

GASE C ASelf (ν ) S3 = −τ2ST
3 τ2 = −τ2S∗

3τ2 ∈ Cν×ν, ν ∈ 2N

χGUE AIII MatC(p′, n′) S3 =
[ 0 W3

W †
3 0

]
, W3 ∈ Cp′×n′

χGOE B | DI MatR(p′, n′) S3 =
[ 0 W3

W †
3 0

]
, W3 = W ∗

3 ∈ Rp′×n′

χGSE CII MatH(p′, n′) S3 =
[ 0 W3

W †
3 0

]
, W3 = τ2W ∗τ2 ∈ Cp′×n′

, p′, n′ ∈ 2N

GBOE CI SymC(ν/2) S3 =
[ 0 W3

W †
3 0

]
, W3 = W T

3 ∈ Cν/2×ν/2, ν ∈ 2N

GBSE DIII ASymC(ν/2) S3 =
[ 0 W3

W †
3 0

]
, W3 = −W T

3 ∈ Cν/2×ν/2, ν ∈ 2N

K = U (N/2) keeps this structure invariant, but the unitary
matrix U = diag(V1,V2) satisfies the condition V1 = V ∗

2 .
To get the statistics of the cut-out S3 we assume that

the projection is symmetry-preserving, meaning S and S3

share the same symmetry class though they are of different
dimensions. The matrix S3 should be also chiral,

S3 =̂
(

0 W3

W †
3 0

)
, (3.18)

with W3 being p′ × n′ dimensional, where the dimensions
satisfy p′ � p, n′ � n, and p′ + n′ = ν � N . Due to
this projection we have to effectively integrate over the
Stiefel manifolds Kν = O(p)/O(p − p′) × O(n)/O(n −
n′),U (p)/U (p − p′) × U (n)/U (n − n′), USp(p)/USp
(p − p′) × USp(n)/USp(n − n′) for the three classical
chiral ensembles. As for the nonchiral ensembles we
need their embedding in a flat vector space which here is
Gν =MatR(p′, p)⊕ MatR(n′, n), MatC(p′, p) ⊕ MatC(n′, n),

TABLE II. Continuation of Table I where the order of the rows is the same. The first column shows again the acronym of the corresponding
ensemble. The corresponding Stiefel manifold, which we obtain after projecting the eigenvectors U = {〈ψ j |φl〉} j,l=1,...,N to the broadened zero
modes U2, is given in the second column, and the third column shows the flat matrix space in which Kν is embedded. This embedding is needed
in our calculations in Sec. IV. The same is also true for the Hermitian matrix spaces given in the fourth column, that are employed to rewrite
the Haar measures as Gaussian integrals. The parameter γ in the last column appears at several places in the derivation, too. It is essentially
the exponent of the determinant that can be obtained by a multivariate Gaussian integral.

RMT Kν Gν Pν γ

GUE U (N )
U (N−ν ) MatC(ν, N ) Herm(ν ) 1

GOE O(N )
O(N−ν ) MatR(ν, N ) Sym(ν ) 1/2

GSE USp(N )
USp(N−ν ) MatH(ν, N ) Self (ν ) 1/2

GAOE O(N )
O(N−ν ) MatR(ν, N ) Sym(ν ) 1/2

GASE USp(N )
USp(N−ν ) MatH(ν, N ) Self (ν ) 1/2

χGUE U (p)
U (p−p′ ) × U (n)

U (n−n′ ) MatC(p′, p) ⊕ MatC(n′, n) Herm(p′) ⊕ Herm(n′) 1

χGOE O(p)
O(p−p′ ) × O(n)

O(n−n′ ) MatR(p′, p) ⊕ MatR(n′, n) Sym(p′) ⊕ Sym(n′) 1/2

χGSE USp(p)
USp(p−p′ ) × USp(n)

USp(n−n′ ) MatH(p′, p) ⊕ MatH(n′, n) Self (p′) ⊕ Self (n′) 1/2

GBOE U (N/2)
U [(N−ν )/2] MatC(ν/2, N/2) Herm(ν/2) 1/2

GBSE U (N/2)
U [(N−ν )/2] MatC(ν/2, N/2) Herm(ν/2) 1/2
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MatH(p′, p)⊕MatH(n′, n). For the two Boguliubov–de
Gennes classes the two spaces are Kν = U (N/2)/U [(N −
ν)/2] and Gν = MatC[(N − ν)/2, N/2]. Here let us
emphasize that for these two cases N as well as ν are
assumed to be even.

The above discussion is summarized in Tables I and II.

IV. CENTRAL LIMIT THEOREMS FOR MATRICES

In this section, we want to answer the question what the
distribution of the matrix S3 = U2S(N )U †

2 of finite size ν × ν is
when N becomes large. We here ignore the overall factor α as
the perturbative expansion of the zero modes has already taken
place, see Sec. III B. We study the nonchiral, the classical
chiral, and the Bogoliubov–de Gennes classes separately in
Secs. IV A, IV B, and IV C. For all 10 symmetry classes we
find that under the conditions (3.3)–(3.5) S3 is distributed by
a Gaussian in the limit of large N . Results from effective field
theory [62,65] suggest that these results hold for an even more
general setting when the unitary submatrix U2 is not Haar
distributed.

A. Gaussian limit for nonchiral S3

We define the distribution of S′ = κS3, with κ =
N/

√
Tr[S(N )]2, via a Dirac δ function,

p(S′) =
∫
Kν

dμ(U2)δ[S′ − κU2S(N )U †
2 ], (4.1)

where dμ(U2) is the normalized Haar measure of the Stiefel
manifold Kν , see the first five rows of Tables I and II. We
have contained the scaling explicitly in κ to simplify later
calculations. The Haar measure has also a representation as
a Dirac δ function over the larger set Gν ,∫

Kν

dμ(U2) f (U2) =
∫
Gν

dU2 f (U2)δ(1ν − U2U
†
2 )∫

Gν
dU2δ(1ν − U2U

†
2 )

. (4.2)

with an arbitrary integrable function f . Both Dirac δ functions
can be expressed as Gaussian integrals over the symmetric
spaces Hν for Eq. (4.1) and Pν for Eq. (4.2). Thus, we start
with the expression

p(S′) = lim
ε→0

∫
Gν

dU2
∫
Pν

dP fε (U2, S′) exp[εγ NTr(1ν − iP)2 + γ NTr(1ν − U2U
†
2 )(1ν − iP)]∫

Gν
dU2

∫
Pν

dP exp[εγ NTr(1ν − iP)2 + γ NTr(1ν − U2U
†
2 )(1ν − iP)]

,

fε (U2, S′) =
∫
Hν

dH exp[−εTrH2 + iTr(S′ − κU2S(N )U †
2 )H]∫

Hν
dS̄

∫
Hν

dH exp[−TrH2 − TrS̄2/4]

(4.3)

to analyze the large N behavior. The shift in H guarantees that the integral over U2 is absolutely integrable and the denominators
normalize the integrals properly. The factor γ N in the P-dependent part of the exponent is introduced in foresight of the saddle-
point approximation when taking N → ∞. Here γ is a parameter depending on the symmetry class and can be read off from
Table II.

Due to the absolute integrability of the integrals we can interchange them. This allows us to carry out the integral over U2

which is now a Gaussian over a ν × N dimensional matrix yielding a determinant. Thence, we find

p(S′) = lim
ε→0

∫
Pν

dP f̃ε (P, S′) exp[εγ NTr(1ν − iP)2 + γ NTr(1ν − iP)]∫
Pν

dP exp[εγ NTr(1ν − iP)2 + γ NTr(1ν − iP)] det−γ N [γ N (1ν − iP)]
,

f̃ε (P, S′) =
∫
Hν

dH exp[−εTrH2 + iTrS′H] det−γ [γ N1N ⊗ (1ν − iP) + iκS(N ) ⊗ H]∫
Hν

dS̄
∫
Hν

dH exp[−TrH2 − TrS̄2/4]
,

(4.4)

where the exponent γ depends on the symmetry class and can be read off from Table II.
For N large enough, the limit ε → 0 can be performed for the integral over P because the determinant guarantees the

convergence. However, we still need this regularization for the integral over H . We therefore do the saddle-point analysis of
the simplified version,

p(S′) =
∫
Pν

dPg(P, S′) exp[−iγ NTrP] det−γ N [1ν − iP]∫
Pν

dP exp[−iγ NTrP] det−γ N [1ν − iP]
,

g(P, S′) = lim
ε→0

∫
Hν

dH exp[−εTrH2 + iTrS′H] det−γ [1Nν + iγ −1S(N )/
√

Tr(S(N ) )2 ⊗ H (1ν − iP)−1]∫
Hν

dS̄
∫
Hν

dH exp[−TrH2 − TrS̄2/4]
,

(4.5)

where we have written out κ . For large N , we rescale P → P/
√

γ N in the enumerator as well as in the denominator. This allows
us to perform the limit for the P integral exactly with Lebesgue’s dominated convergence theorem. We have also written out κ .
This implies that the P-integrand becomes the Gaussian exp[−TrP2/2] via a Taylor expansion. Hence we obtain

lim
N→∞

p(S′) = lim
N→∞

lim
ε→0

∫
Hν

dH exp[−εTrH2 + iTrS′H] det−γ [1Nν + iγ −1S(N )/
√

Tr(S(N ) )2 ⊗ H]∫
Hν

dS̄
∫
Hν

dH exp[−TrH2 − TrS̄2/4]
. (4.6)
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The limit of the integral over H results from an expansion of the determinant which is

ln det−γ

{
1Nν + i

S(N )

γ
√

Tr[S(N )]2
⊗ H

}
= γ

∞∑
j=1

1

j
Tr

{
−i

S(N )

γ
√

Tr[S(N )]2

} j

TrH j . (4.7)

The first term ( j = 1) vanishes because of condition (3.3) and the coefficient for j = 2 becomes −1/(2γ ). The other terms for
j > 2 can be estimated as follows:∣∣∣∣ Tr[S(N )] j

{Tr[S(N )]2} j/2

∣∣∣∣ � ‖S(N )‖ j−2
op Tr[S(N )]2

{Tr[S(N )]2} j/2
= 1

[q(N )] j−2

N→∞→ 0, (4.8)

resulting from condition (3.4). Therefore, the determinant can be approximated by a Gaussian telling us that we can set ε = 0.
Eventually we arrive at

lim
N→∞

p(S′) =
∫
Hν

dH exp[−TrH2/(2γ ) + iTrS′H]∫
Hν

dS̄
∫
Hν

dH exp[−TrH2 − TrS̄2/4]
= exp[−γ TrS′2/2]∫

Hν
dS̄ exp[−γ TrS̄2/2]

, (4.9)

which is the main result of the section.
We conclude that the former zero eigenvalues are broadened by the matrix αS3 which is distributed like a Gaussian random

matrix with standard deviation α
√

Tr[S(N )]2/(γ N2) for large N .

B. Gaussian limit of S3 for one of the three standard chiral classes

The three classical chiral ensembles can be dealt with in a similar way to the five nonchiral ensembles in the previous section.
We anew replace the normalized Haar measure of Kν by a Gaussian integral over Gν and Pν and the Dirac δ function in S′ by a
Gaussian integral on Hν . Thus, Eq. (4.3) still holds only for the respective spaces, see the sixth to eighth rows of the Tables I and
II. The difference shows in the structure of the matrices. While the matrix γ N (1N − iP) = diag(γ p(1p′ − iP1), γ n(1n′ − iP2))
is block diagonal, one block is of size p′ × p′ and the other of size n′ × n′, the matrices

S(N ) =
(

0 W
W † 0

)
as well as H =

(
0 X

X † 0

)
(4.10)

consist of off-diagonal blocks of size p × n and n × p as well as p′ × n′ and n′ × p′, respectively. Note that we weight the two
blocks of P differently, again in foresight of the saddle-point analysis. With this in mind one can perform the integral over
U2 = diag(Ṽ1, Ṽ2) leading to the counterpart of Eq. (4.4) with the appropriate matrix spaces and the exponent γ as given in
Table II. Here we use the identity∫

Gν

d (Ṽ1, Ṽ2) exp[−γ pTrṼ †
1 (1p′ − iP1)Ṽ1 − γ nTrṼ †

2 (1n′ − iP2)Ṽ2 − iκTrṼ †
1 XṼ2W

† − iκTrṼ †
2 X †Ṽ1W ]

∝ det−γ

[
γ p1p ⊗ (1p′ − iP1) iκW ⊗ X

iκW † ⊗ X † γ n1n ⊗ (1n′ − iP2)

]
, (4.11)

which can be readily computed.
The rest of the calculation does not differ much from the nonchiral situation. First we can take the limit ε → 0 in the P

integral because the convergence is given by the determinant and the limit N → ∞, which implies that p/N and n/N are fixed
since the number of zero modes shall be fixed, can be done for P exactly after rescaling P1 → P1/

√
γ p and P2 → P2/

√
γ n.

Finally, we expand the remaining determinant,

det−γ

[
1Nν +

(
0 i κ

γ
√

pnW ⊗ X

i κ
γ
√

pnW † ⊗ X † 0

)]
= γ

∞∑
j=1

1

j
Tr

{
− N2

γ 2 pnTr[S(N )]2
WW †

} j

Tr(XX †) j . (4.12)

In view of 2Tr(WW †) j = Tr(S(N ) )2 j , we can exploit the same estimation as in Eq. (4.8) such that only the term for j = 1
survives. The leftover Gaussian integral over H can be carried out and we obtain the result

lim
N→∞

p(S′) = exp[−γ pnTrS′2/N2]∫
Hν

dS̄ exp[−γ pnTrS̄2/N2]
. (4.13)

Consequently, the matrix αS3 is again distributed along a Gaussian random matrix with a standard deviation
α
√

Tr[S(N )]2/(2γ pn).

C. Gaussian limit for the Boguliubov–de Gennes types of S3

For the two Boguliubov–de Gennes cases we have almost the same situation as in other three chiral classes only that for
U2 = diag(Ṽ1, Ṽ2) we have additionally the condition Ṽ2 = Ṽ ∗

1 . For this reason, the matrix P satisfies the diagonal block form
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(a () b)

FIG. 1. (a) Identification of former topological modes: A comparison of the ratio between the width of the smallest eigenvalue and the
position of the second smallest eigenvalue as a function of the matrix size N for Ensemble 1 (ν = 1) and Ensemble 2 (ν = 0) in Sec. V B. We
have normalized the mean of each curve. The coupling constant is set to α = 0.01

√
TrA−2‖S‖op/

√
N according to (3.5). The ensemble size is

105. (b) The density of the smallest eigenvalues for Ensemble 4 with n = 33 and ν = 3 from Sec. V B. The Monte Carlo simulation (blue error
bars, 106 matrices generated) and the theoretical distribution of the GUE of size 3 × 3 (red solid curve) are compared, see (5.7).

P = diag(P̃, P̃∗) with P̃ ∈ Herm(ν/2). The matrices S(N ) and H attain the chiral forms (4.10) with the additional conditions
W T = ±W and X T = ±X , both relations with the same sign.

Starting with Eq. (4.3) only with the corresponding matrix spaces, see last two rows of the Tables I and II, as well as replacing
N by N/2 and setting γ = 1/2 in the exponential functions, we need the counterpart of Eq. (4.11) which is∫

Gν

dṼ1 exp
[−NTrṼ †

1 (1ν/2 − iP̃)Ṽ1/2 − iκTrṼ †
1 XṼ ∗

1 W † − iκTrṼ T
1 X †Ṽ1W

]
∝ det−1/2

[
N

2
12 ⊗ 1N/2 ⊗ (1ν/2 − iP̃) + iκ (τ3 − iτ1) ⊗ X ⊗ W † + iκ (τ3 + iτ1) ⊗ X † ⊗ W

]
= det−1/2

[
N
2 1N/2 ⊗ (1ν/2 − iP̃) 2iκX † ⊗ W

2iκX ⊗ W † N
2 1N/2 ⊗ (1ν/2 − iP̃)

]
, (4.14)

with τ j the three Pauli matrices. The second line is ob-
tained after decomposing Ṽ1 into real and imaginary part and
the third line can be found by performing a rotation with
exp[iπ (12 − τ3)/4] exp[iπτ2/4]. The saddle-point expansion
can be achieved by rescaling P̃ → P̃/

√
γ N and the Taylor

expansion of the determinant works along Eq. (4.12). We
hereby again find the Gaussian distribution

lim
N→∞

p(S′) = exp[−TrS′2]∫
Hν

dS̄ exp[−TrS̄2]
, (4.15)

which implies that αS3 is a Gaussian random matrix with
standard deviation α

√
Tr(S(N ) )2/(2N2) in the limit N → ∞.

V. SCALING AND APPLICATION

Let us analyze the scaling behavior of the spectra in more
detail. As mentioned above, the smallest eigenvalue of A(N )

is typically on the scale N−1. We may therefore zoom in on
the microscopic spectrum around the origin if we consider
rescaled eigenvalues

x = Nλ, (5.1)

where λ are the eigenvalues of K (N ), in the limit N → ∞.
Following (2.9), the width of the former zero eigenvalues

is α
√

TrS2/N and the smallest eigenvalues of A are 1/N .
Rescaling of the eigenvalues according to (5.1) yields a
broadening of α

√
TrS2. Assuming TrS2 ∼ N and fixed α, the

width of the rescaled broadened zero modes scale as
√

N .
We will demonstrate how this different scaling can be used
as an experimental identifier of topological modes. We also
illustrate this in Fig. 1(a).

A. Application to experiments

We wish to relate the scaling with N to physical quantities.
We here use a result from the ε-regime of effective field
theory, namely that the size of the matrix scales linearly with
the volume of the system. We refer to Refs. [44,45] for the full
derivation, but the general idea is to calculate the nonlinear
σ model (or chiral Lagrangian) of the random matrix model,
which for all classes has the form

S =
∫

d4x[Tr(∂μU∂μU −1) + TrM(U + U −1)]. (5.2)
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The exact nature of the Goldstone field U will depend on the
class. As we consider the low-energy modes around the origin,
where dynamics are frozen out [7,67,68], the potential term
becomes the most important. Constructing the Lagrangian
directly from the matrix model leads to the identification
V ∼ N . This means that under the above assumptions, the
width of the broadened modes scale as

√
V .

The proposed identifier is therefore the ratio σ0/μ1, where
σ0 is the width of the ground-state distribution and μ1 is
the mean position of the first excited state. If this scales
significantly different from 1, it is safe to conclude a system
with a broadened zero mode. This scaling is also found in the
literature of lattice QCD and has helped to explain the unusual
behavior observed in lattice simulations [60,61].

B. Example ensembles

For the numerical checks, we compare the following four
ensembles. We first draw a fixed A(N ) and S(N ) and then we av-
erage over U for the Hamiltonian K (N ) = A(N ) + αUS(N )U †.

Ensemble 1. To illustrate a particular condensed matter
application we consider a direct sum of two antisymmet-
ric matrices that are the same up to a sign, corresponding
to particle-hole-symmetry [20,54,58]. This ensemble is per-
turbed by off-diagonal blocks in order to model topological
superconductors carrying Majorana modes. The ensemble has
the form

K (N ) =
(

iM 0
0 −iM

)
+ αO

(
0 iW

−iW T 0

)
OT ,

M = −MT . (5.3)

The matrices M and W are real and of dimension 2n + ν,
and M is antisymmetric. So for α = 0 and ν = 1 the model
exhibits two generic zero modes. The matrices are generated

once via independent and identically distributed entries uni-
form on the interval [−1, 1] and then kept fixed. The ensemble
average is only done via the orthogonal matrix O. The full
matrix K (N ) is of size N = 4n + 2ν and imaginary antisym-
metric, and for α > 0 no exact modes are present. For ν = 1
the two zero modes are broadened by the coupling. They form
a 2 × 2 imaginary antisymmetric Gaussian ensemble.

Ensemble 2. To illustrate the different scalings of broad-
ened zero eigenvalues and bulk eigenvalues, we also consider
an ensemble for comparison of the form

K (N ) = iA(N ) + iαOS(N )OT , K (N ) = K (N )† = −K (N )T

(5.4)

with matrix size N = 2n and no further substructure. This
ensemble never has exact zero modes in contrast to the models
covered by our discussion. We again draw all matrix entries
of A and S independent and identically distributed once,
uniformly from the interval [−1, 1]. Afterward, we keep them
fixed and average over the orthogonal matrices O only.

In Fig. 2 we compare the microscopic densities about the
origin for both Ensembles 1 and 2. In both plots we have
rescaled the eigenvalues according to (5.1) to keep the mean
intereigenvalue distance of order 1. We have also averaged
over the spectrum of A and S, which was not the case in
Fig. 1(a). This is done to increase the contrast of the scaling
of the eigenvalues with the volume V represented by N . As
predicted in Sec. V A, the perturbed zero mode in Ensemble 1
changes with the volume in the rescaled variables, whereas
the same does not happen for the smallest eigenvalue in
Ensemble 2.

However, averaging over the spectrum is not necessary,
as we show in Fig. 1(a), where we plot the ratio σ0/μ1 as a
function of the matrix size N . We suggest this quantity as an

(a () b)

FIG. 2. The microscopic density for Monte Carlo simulations of an ensemble with a single topological mode and one without [see (5.3)
and (5.4)] for different matrix sizes. Here we have also averaged over the spectrum for visual clarity. The eigenvalues have been rescaled
according to (5.1) to keep the distance between the smallest eigenvalues of the order 1. We compare the difference between a topological
and a nontopological mode. We see the former topological mode broaden with N . The ensemble size is 105 and the bin size is roughly 0.2
for (a) plot and 0.1 for (b). The density in (a) is shown on logarithmic scale to keep both peaks visible in the same plot, but a zoom-in is
provided.
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(a () b)

FIG. 3. Distribution of the two smallest eigenvalues of Ensemble 1 (a) and Ensemble 3 (b) in Sec. V B. In both ensembles the unperturbed
Hamiltonian A is imaginary, antisymmetric and block-diagonal of dimension N = 134 so that it has two zero eigenvalues. The perturbation
S is a full generic imaginary matrix iαW (Ensemble 1) on the off-diagonal block and a constant matrix iα1 (Ensemble 3) with α = 0.01.
The Monte Carlo simulations (blue error bars, 106 matrices generated) are compared with our theoretical RMT predictions that are Gaussian
distributions with the correct variances derived in Sec. IV (red solid curves).

identifier for topological or other system specific zero modes.
We rescale α‖S‖op

√
TrA−2/

√
N → α to keep the coupling

constant on the same scale for all matrix sizes, see (3.5).
As we do not average over the spectrum, the variance of the
individual modes partially obscures the scaling, but it is still
visible. If an average over the spectrum is also performed, the
difference becomes even clearer, cf. Fig. 2.

Ensemble 3. To illustrate that degeneracy of the perturba-
tion is irrelevant as long as it satisfies the conditions (3.3)–
(3.5), we consider an ensemble very similar to Ensemble 1,
except that the perturbation is proportional to the second Pauli
matrix. That is,

K (N ) =
(

iM1 0
0 iM2

)
+ iαO

(
0 1

−1 0

)
OT ,

M1 = −M1
T , M2 = −M2

T . (5.5)

M1 and M2 are real antisymmetric but independent as the
eigenvalues would otherwise be shifted rather than perturbed.
These are chosen fixed with independent and identically dis-
tributed entries on the interval [−1, 1] while the average is
over the orthogonal matrix O. With this ensemble we would
like to emphasize the generality of the conditions (3.3)–(3.5).
That is, the matrix central limit theorem stated above describes
the limit for a broad class of ensembles. This similarity is il-
lustrated in Fig. 3 where we compare Monte Carlo simulations
to the corresponding theoretical curves derived in Sec. IV.

Ensemble 4. As an application to QCD, more precisely
lattice QCD, where chirality is broken by a perturbation
[39–41,60–62], we consider the following model:

K (N ) =
(

0 M
M† 0

)
+ αUSU †. (5.6)

M is a complex (n + ν) × n matrix with no further sym-
metries, S is a complex Hermitian matrix, and U is unitary

and Haar distributed. As before the only average we perform
is over U . The index ν determines the number of exact
zero modes, which allows us to have any number of broad-
ened modes, unlike the antisymmetric ensembles. The ν zero
modes from the chiral ensemble are all broadened by the
perturbation, which is Hermitian and has no further symmetry.
This means that the former zero modes are distributed accord-
ing to a Gaussian unitary ensemble of size ν × ν [1],

ρν
GUE(λ) = 1

2σ

ν−1∑
j=0

ϕ j

(
λ

σ

)2

,

ϕ j (λ) = 1√
2 j j!

√
π

e−λ2/2Hj (λ) (5.7)

with σ = α
√

Tr(S(N ) )2/(γ N2) and Hj (λ) the Hermite poly-
nomials corresponding to the weight e−λ2

. In Fig. 1(b) we
compare the broadening of this ensemble to the theoretical
prediction with the width found in Sec. IV A.

VI. CONCLUSION

We have presented a general mechanism explaining the
observation of the universal broadening of degenerate eigen-
values inside a spectral gap when a generic perturbation
is switched on. This universality states that the broadening
follows the statistics of a finite-dimensional Gaussian random
matrix ensemble. Exactly the finite dimensionality is sur-
prising because one usually expects that spectral universality
only holds in the limit of large matrix dimensions. This
new universality relies on a self-average of the change of
basis U2 = {〈ψ j |φl〉} j,l=N−ν+1,...,N between the unperturbed
operator A and the perturbation S associated with the zero
modes of A. In the present work, we have averaged over all
bases transformations U2 drawn from the Haar measure of
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the group associated to the respective symmetry class. Yet
lattice simulations in QCD [38–40,42] strongly suggest that
the measure can be relaxed to something nonuniform. As
a further study it is natural to investigate what happens if
the assumption of an average over the full Haar measure is
loosened.

In our analysis, we quantified the conditions under which
this universal broadening holds. The three conditions (3.3)–
(3.5) are rather mild and have very natural physical interpre-
tations like the relation between closing of the spectral gap
and the coupling strength α. Especially, we recover the critical
scaling of α found in lattice QCD with Wilson fermions
[38–40,42] and in the RMT models for Majorana modes in
disordered quantum wires [31,65].

As a possible application we have suggested that our results
may be used to distinguish topological modes in the bulk
from modes in the bulk. The scaling behavior in the system
size and the coupling parameter α of the broadening for the
eigenvalues of the two kind of modes is completely different.

Consequently, this scaling might provide an ideal indicator of
experiments.
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