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High-density percolation on the modified Bethe lattice
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High-density percolation is the formation of a system spanning cluster of vertices with at least m occupied
neighbors. We discuss high-density percolation on the modified Bethe lattice in terms of the theory of large
random graphs with arbitrary degree distributions. Using the formalism of generating functions, we derive
expressions for the cluster size distribution, the percolation threshold, the percolation probability, and the
mean size of finite clusters. We show that the critical exponents β = γ = 1. Additionally, numerical solutions
and simulation results for the percolation probability and mean size of finite clusters are compared for
illustration.
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I. INTRODUCTION

The term percolation refers to the formation of a sys-
tem spanning cluster, which can either sustain a mechanical
load (“rigidity percolation”) or on which particles can be
transported (“connectivity percolation”) [1–3]. In this paper
we concentrate on connectivity percolation. One branch of
connectivity percolation theory deals with the formation of
clusters on random graphs (for a comprehensive overview see
Ref. [4]). Percolation on random graphs is used as a model
in various fields of research, in the context of epidemiology
[5], as well as materials science, e.g., for conductive com-
posite systems [6–9], magnetic systems [10–12], and glasses
[13,14]. High-density percolation is a generalization of the
notion of connectivity percolation to clusters of vertices with
at least m occupied neighbors. For certain magnetic alloys as
well as for glasses, high-density percolation has proven to be
a useful model [12,14,15]. Also, in the context of contagion
processes, the extension from models that require contact with
one infected individual to produce an infection to models that
require several contacts has been shown to display interesting
dynamics [16].

The high-density percolation problem on the ordinary
Bethe lattice has been solved exactly by Reich and Leath by
mapping the formation of an m-cluster onto a random walk
[15]. Here, we study high-density percolation on the modified
Bethe lattice, employing the close resemblance between this
problem and the properties of large random graphs with
arbitrary degree distributions, which have been extensively
studied [17–19].

In Sec. II, we remind the reader of the theory of random
graphs. This section is based on the insightful paper from
Newman, Strogatz, and Watts [17]. In Sec. III, we present
solutions for the percolation threshold, the percolation prob-
ability, the mean size of finite clusters, as well as critical
exponents for high-density percolation on the modified Bethe
lattice.

*tanja.schilling@physik.uni-freiburg.de

II. THEORY OF RANDOM GRAPHS WITH ARBITRARY
DEGREE DISTRIBUTION

Let pk be the probability distribution of a random variable
k ∈ N0. Then, the generating function G(x) is defined as

G(x) :=
∑

k

pkxk . (1)

Therefore, the probabilities pk can be obtained by

pk = 1

k!

dk

dxk
G(x)

∣∣
x=0 (2)

and the nth moment is given by

〈kn〉 =
∑

k

kn pk =
[

x
d

dx

]n

G(x)
∣∣
x=1. (3)

The probability distribution pk is normalized, if and only if
G(1) = 1. A useful feature of the generating function G(x) is
that the generating function F (n, x) for the sum of n indepen-
dent realizations of the random variable k can be evaluated
according to

F (n, x) = [G(x)]n. (4)

We consider a large unipartite and undirected random
graph with arbitrary degree distribution pk . A random graph
is generated by the degree sequence which is drawn from
the specified degree distribution. The degree k of a vertex
denotes the number of its edges. The edges of each vertex are
then uniformly connected over all possibilities. In the limit of
infinite vertices, the probability of closed loops vanishes.

Let G0(x) be the generating function for the probabilities
pk . We introduce the excess probability qk which denotes
the probability that a vertex with degree k is reached, when
following an arbitrarily chosen edge to one of its ends. The
excess probability is proportional to the number of edges;
therefore, one obtains

qk = kpk

〈k〉 . (5)

2470-0045/2019/99(5)/052109(8) 052109-1 ©2019 American Physical Society

http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevE.99.052109&domain=pdf&date_stamp=2019-05-10
https://doi.org/10.1103/PhysRevE.99.052109


C. WIDDER AND T. SCHILLING PHYSICAL REVIEW E 99, 052109 (2019)

Hence, the corresponding generating function G̃1(x) for the
probabilities that a vertex has degree k when arriving from an
arbitrarily chosen edge is

G̃1(x) =
∞∑

k=0

kpk

〈k〉 xk.

Then, the generating function G1(x) for the probabilities that
a vertex has k − 1 outgoing edges when arriving from an
arbitrarily chosen edge is obtained by shifting the probabilities
by 1:

G1(x) =
∞∑

k=1

kpk

〈k〉 xk−1 = G′
0(x)

〈k〉 . (6)

Now, we consider generating functions for the finite sizes
of components. (These will correspond to the generating
functions for the cluster size distribution once we make the
transition to the percolation problem.) The generating func-
tion for the probabilities that the component at the end of
an arbitrarily chosen edge has a certain arbitrary but finite
size s ∈ N is denoted by H1(x). In the case where a giant
component (component of infinite size) exists, one therefore
has H1(1) < 1.

The generating function H1(x) fulfills the following self-
consistency condition: the size of the component at the end
of an arbitrarily chosen edge equals one plus the sum of the
sizes of the components following each outgoing edge (which
can also be regarded as arbitrarily chosen). To express this
self-consistency condition, Eq. (4) is applied

H1(x) = x
∞∑

k=1

kpk

〈k〉 [H1(x)]k−1 = xG1(H1(x)), (7)

where multiplication by x again simply shifts the probabilities
by 1 due to the loss of one vertex, when following the outgoing
edges.

Similarly, the size of the component of an arbitrarily cho-
sen vertex is one plus the sum of the sizes of the components
at the end of every edge of the chosen vertex. Again, the gen-
erating function H0(x) for the probabilities that an arbitrarily
chosen vertex is part of a component of size s ∈ N is obtained
by using Eq. (4) and shifting the probabilities by 1:

H0(x) = x
∞∑

k=0

pk[H1(x)]k = xG0(H1(x)). (8)

Equations (7) and (8) determine the generating function
H0(x) uniquely for x ∈ [0, 1); for x = 1, two solutions may
occur.

The percolation threshold corresponds to the critical point
of a random graph at which the so-called phase transition
occurs, which is the appearance of the giant component. Since
the right-hand side of Eq. (7) and its derivatives are monotonic
functions in y = H1(x) ∈ [0, 1], the “graphical solution” im-
plies that there is only one solution for x ∈ [0, 1). However,
for x = 1 there may exist two solutions. One solution occurs
at H1(1) = 1. In the case where a giant component exists,
it is known that H1(1) < 1; therefore, one has to take the
minimum of the two solutions. Furthermore, it is known that
the critical point occurs when H1(1) reaches the value 1. This

is the case, if and only if G′
1(1) = 1 (again, due to mono-

tonicity). Therefore, the condition for the phase transition is
given by

G′
1(1) = 1 ⇔

∞∑
k=1

k(k − 2)pk = 0. (9)

In the case where a giant component exists, one obtains

G′
1(1) > 1 ⇔ 〈k2〉 > 2〈k〉 (10)

and beyond the phase transition

G′
1(1) < 1 ⇔ 〈k2〉 < 2〈k〉. (11)

This also implies that in the case where no giant compo-
nent exists, there is only one solution of Eq. (7) for x = 1.
Therefore, the full expression which determines H1(x) for
x ∈ [0, 1] is

H1(x) = min{u ∈ [0, 1]|u = xG1(u)}. (12)

Consider the fraction of the giant component S, which is
the probability that a vertex is part of the giant component
and corresponds to the percolation probability. It is clear that
the probability u that a component at the end of a randomly
chosen edge has a finite size is given by

u := H1(1) = min {ũ ∈ [0, 1]|ũ = G1(ũ)}. (13)

Then, the probability that an arbitrarily chosen vertex is part
of a finite component is

1 − S =
∞∑

k=0

pkuk = G0(u). (14)

Given the generating function H0(x), the mean size of finite
components 〈s〉finite, which leads to the mean size of finite
clusters, can be evaluated according to Eqs. (6)–(8):

〈s〉finite := H ′
0(1)

H0(1)
= 1 + 〈k〉H1(1)2

H0(1)[1 − G′
1(H1(1))]

(15)

(13)(14)= 1 + 〈k〉u2

[1 − S][1 − G′
1(u)]

. (16)

Beyond or at the critical point, we have u = 1. Then,
the mean size of finite components diverges, if and only if
G′

1(1) = 1, in agreement with the condition for the phase
transition.

III. HIGH-DENSITY PERCOLATION ON
THE MODIFIED BETHE LATTICE

In this section we present solutions for high-density perco-
lation on the modified Bethe lattice.

Consider a modified Bethe lattice with arbitrary degree
distribution f (z), where z denotes the number of neighbors
(see Fig. 1). This is an infinite, acyclic, unipartite, and undi-
rected graph whose vertex degrees are drawn from an arbitrary
degree distribution. Here, finite components of the Bethe
lattice are explicitly allowed.

An m-cluster is a maximal component of occupied ver-
tices with at least m occupied neighbors. An occupied vertex
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FIG. 1. Section of a modified Bethe lattice. Solid vertices are oc-
cupied, open vertices are vacant. The dashed lines surround clusters
of occupied vertices. The numbers denote the parameter m.

with fewer than m occupied neighbors is considered to be a
cluster of size zero. High-density percolation is the formation
of (infinite) m-clusters. The only difference from ordinary
percolation is the generalized cluster definition.

The basic idea behind obtaining exact solutions for the
high-density percolation problem on the modified Bethe lat-
tice is to identify all m-clusters with size s > 0 with a unipar-
tite and undirected random graph in the limit of many vertices
(see Figs. 1 and 2). The equations from Sec. II can be directly
applied to the set of occupied vertices with at least m occu-
pied neighbors, which is in the following simply called the
random graph. Hence, the high-density percolation problem
is reduced to the task of calculating the generating function
for the degree distribution of the random graph. Afterwards,
the properties of the random graph can easily be converted
into the statements regarding the cluster size distribution, the
percolation threshold, the percolation probability, as well as
the mean size of finite clusters.

A. Generating functions for m-cluster

Here, we construct the generating function for the degree
distribution of the random graph for m-clusters, G0(x; p),
using the binomial distribution and the excess probability.

The binomial distribution with n samples and probability
p is denoted by Bp

n . Let k denote the number of neighbors
of a cluster vertex that are also part of the cluster. Further-
more, the excess probability on the modified Bethe lattice is

FIG. 2. Components of the random graph for the 2-cluster per-
colation problem which can be obtained from the section of the
modified Bethe lattice (see Fig. 1).

denoted by

qz = f (z)z

〈z〉 . (17)

Now, the probability p(z, t, k) that a vertex, which is part
of the random graph, has degree z, t occupied neighbors, and
k neighbors within the cluster is

p(z, t, k) = 1

r0
f (z)Bp

z (t )Br
t (k) (18)

for (m � t � z) ∧ (0 � k � t ), (19)

where p is the occupation probability,

r0 =
∞∑

z=m

f (z)
z∑

t=m

Bp
z (t ) (20)

is the probability that an occupied vertex has at least m
occupied neighbors, and

r =
∞∑

z=m

z−1∑
t=m−1

qzB
p
z−1(t ) (21)

is the probability that an occupied vertex, which is reached
when following an edge of an occupied vertex, has at least m
occupied neighbors.

Hence, the generating function for the degree distribution
of the random graph, G0(x; p), is obtained by summing up all
probabilities p(z, t, k), multiplied with xk:

G0(x; p) = 1

r0

∞∑
z=m

f (z)
z∑

t=m

Bp
z (t )

t∑
k=0

Br
t (k)xk (22)

= 1

r0

∞∑
z=m

f (z)
z∑

t=m

Bp
z (t )[1 + r(x − 1)]t , (23)

which can be written as

G0(x; p) =
∑∞

z=m

∑z−1
t=m−1

qz

t+1 Bp
z−1(t )[1 + r(x − 1)]t+1

∑∞
z=m

∑z−1
t=m−1

qz

t+1 Bp
z−1(t )

.

(24)

With the previous equation, one obtains for the generating
function G1(x; p) for the number of outgoing edges of a vertex
at the end of an arbitrary chosen edge (within the random
graph):

G1(x; p)
(6)= G′

0(x; p)

G′
0(1; p)

(25)

= 1

r

∞∑
z=m

z−1∑
t=m−1

qzB
p
z−1(t )[1 + r(x − 1)]t . (26)

B. Percolation threshold

The percolation threshold corresponds to the phase transi-
tion of the random graph. It is clear that the mean size of the
clusters will be infinite, if and only if the average number of
outgoing edges of a cluster vertex within the cluster exceeds
the value 1. Hence, with the result for the generating function
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G1(x; p), Eq. (26), and the condition for the phase transition,
Eq. (9), the percolation threshold is determined by

G′
1(1; p)

∣∣
pc

=
∞∑

z=m

z−1∑
t=m−1

qzt

(
z − 1

t

)
pt

c(1 − pc)z−1−t != 1.

(27)

For f (z̃) = δz,z̃, this expression is simplified to the condi-
tion for the percolation threshold for m-clusters on the Bethe
lattice with degree z, derived by Reich and Leath [15]:

z−1∑
l=m−1

l

(
z − 1

l

)
pl

c(1 − pc)z−1−l = 1. (28)

For m = 1 and m = 2, Eq. (27) yields

pc = 〈z〉
〈z2〉 − 〈z〉 , (29)

in agreement with the result for ordinary percolation
[6,20,21].

The derivation remains valid if the parameter m is a
function of the vertex degree z. For example, the percolation
threshold for a cluster, where every neighbor is occupied
(m(z) = z), is a solution of

〈
(z2 − z)pz−1

c

〉 = 〈z〉. (30)

Furthermore, the probability p may be a function of the vertex
degree z.

C. Cluster size distribution, percolation probability, and mean
size of finite clusters

The cluster size distribution returns the probability that
an occupied vertex is part of a cluster of any finite size
s ∈ N0. Given the generating function of the random graph,
G0(x; p), Eq. (23), the generating function for the cluster
size distribution, G(x; p), is almost given by the generating
function for the sizes of finite components of the random
graph, H0(x; p), Eqs. (8) and (12). However, following the
definition given in Ref. [15], we include clusters of size zero,
using the probability r0, Eq. (20),

G(x; p) = (1 − r0) + r0H0(x; p), (31)

where 1 − r0 is the probability that an occupied vertex is an
m-cluster of size zero.

Now, the cluster size distribution can be evaluated using
Cauchy’s formula [17]. The probability Ps that an occupied
vertex is in a cluster of size s ∈ N0 is given by

Ps = 1

2π i

∮
G(z; p)

zs+1
dz. (32)

The percolation probability P∞
m is defined as the proba-

bility that an occupied vertex is part of an infinite m-cluster
[15]. Given the generating function G(x; p), Eq. (31), and the
fraction of the giant component S, Eq. (14), one obtains

1 − P∞
m = G(1; p) ⇔ P∞

m = r0S. (33)

The mean size of finite clusters 〈s0〉finite is determined accord-
ing to Eqs. (14), (16), and (31),

〈s0〉finite := G′(1; p) = r0(1 − S)〈s〉finite, (34)

considering each vertex of the infinite cluster to be part of a
cluster of size zero.

D. Bond percolation

For high-density bond percolation [22], where every edge
is occupied with probability p, one obtains almost the same
solutions as for site percolation.

We consider a maximal component of vertices with at least
m occupied edges to be an m-cluster and a vertex with fewer
than m occupied edges to be an m-cluster of size one. Then,
the probability p(k) that a vertex has k occupied edges in the
cluster is given by

p(k) =
∞∑

z=m

z∑
t=m

f (z)Bp
z (t )Br

t (k), for (1 � k � t ), (35)

p(0) = (1 − r0) +
∞∑

z=m

z∑
t=m

f (z)Bp
z (t )Br

t (0), (36)

where r0, Eq. (20), is the probability that a randomly chosen
vertex has at least m occupied edges and r, Eq. (21), is the
probability that a vertex, which is reached when following an
occupied edge of an arbitrarily chosen vertex, has at least m
occupied edges.

Now, the generating function G0(x; p) is defined as

G0(x; p) =
∞∑

k=0

p(k)xk . (37)

Similarly to site percolation, we obtain for the generating
function for the cluster size distribution, the percolation
threshold, the percolation probability, and the mean size of
finite clusters

G(x; p) = H0(x; p), (38)

G′
1(1; pc) = 1, (39)

P∞
m = 1 − G(1; p) = S, (40)

〈s0〉finite = (1 − S)〈s〉finite, (41)

where the definitions of these quantities are the same as
for site percolation, only the probabilities refer to arbitrarily
chosen vertices instead of occupied vertices.

The generating function G1(x; p) = G′
0(x; p)/G′

0(1; p) is
the same as for site percolation. Thus, the percolation thresh-
old is the same.

E. Critical exponents β, γ

The critical exponents β and γ are defined by the following
equations which determine the behavior of the percolation
probability and mean size of finite clusters at the percolation
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threshold p → pc:

P∞ ∝ (p − pc)β, for p > pc, (42)

〈s0〉 ∝ |p − pc|−γ . (43)

We prove that

〈z3〉 < ∞ ⇔ β = 1, (44)

〈z2〉 < ∞ ⇔ γ = 1. (45)

In the following we assume 0 < G′′
1 (1; p) < ∞ for p > 0.

1. Exponent β

First, consider the quantity u = H1(1; p) just above the
percolation threshold p > pc. The Taylor expansion of

u
(12)= G1(u; p) at u = 1 gives the following approximation

for p → pc:

u = G1(1; p) + G′
1(1; p)(u − 1) + 1

2
G′′

1 (1; p)(u − 1)2

(46)

⇒ u = 2 − 2G′
1(1; p) + G′′

1 (1; p)

G′′
1 (1; p)

. (47)

This equation can now be used to show that the directional
derivative u′(pc) exists and is negative:

u′(pc) = lim
ε→0

1

ε

[
u(pc + ε) − u(pc)

]
(48)

= lim
ε→0

1

ε

[
2 − 2G′

1(1; pc + ε)

G′′
1 (1; pc + ε)

]
= −2

[∂pG′
1(1; p)]pc

G′′
1 (1; pc)

.

(49)

Therefore, u has for p → pc the following form:

u = 1 + u′(pc)(p − pc). (50)

Thus, with H0(1; p)
(8)= G0(u(p); p) one obtains

H0(1; p) = 1 + A(pc)(p − pc), (51)

where

A(pc) = G′
0(u(pc); pc)u′(pc) + [∂pG0(u(p); p)]pc (52)

= G′
0(1; pc)u′(pc). (53)

Hence, for the fraction of the giant component S [Eq. (14)] and
the percolation probability [Eqs. (33) and (40)], one obtains
for p → pc

S =
{

0 if p < pc

−A(pc)(p − pc) if p > pc,
(54)

P∞ =
{

S, bond percolation
r0(pc)S, site percolation. (55)

Therefore, the critical exponent β equals 1, if 0 < G′′
1 (1; p) <

∞ for p > 0.

2. Exponent γ

Consider the limit p ↗ pc. Then the mean size of finite
components, 〈s〉finite, is given by

〈s〉finite
(16)= 〈k〉pc

1 − G′
1(1; p)

. (56)

With

G′
1(1; p) = 1 + [∂pG′

1(1; p)]pc (p − pc) (57)

one obtains

〈s〉finite = 〈k〉pc

[∂pG′
1(1; p)]pc

(pc − p)−1. (58)

Now, consider p ↘ pc. Then,

〈s〉finite
(16)= 〈k〉pc

1 − G′
1(u(p); p)

. (59)

Furthermore,

G′
1(u(p); p) = 1 +

[
d

d p
G′

1(u(p); p)

]
pc

(p − pc) (60)

= 1 + [u′(pc)G′′
1 (1; pc) + ∂pG′

1(1; p)]pc

× (p − pc) (61)
(49)= 1 − [∂pG′

1(1; p)]pc (p − pc) (62)

yields

〈s〉finite = 〈k〉pc

[∂pG′
1(1; p)]pc

(p − pc)−1. (63)

Thus, the final result for p → pc is given by

〈s〉finite = 〈k〉pc

[∂pG′
1(1; p)]pc

|p − pc|−1, (64)

〈s0〉finite
(34)(41)=

{〈s〉finite, bond percolation
r0(pc)〈s〉finite, site percolation.

(65)

Hence, the critical exponent γ equals 1, if 0 < G′′
1 (1; p) < ∞

for p > 0.

3. Fat-tailed distributions

In some important cases, e.g., for power-law distributed
graphs, the third or even the second moment of the degree
distribution diverges. We have

〈z3〉 = ∞ ⇔ ∀p∈(0,1] G′′
1 (1; p) = ∞, (66)

〈z2〉 = ∞ ⇔ ∀p∈(0,1] G′
1(1; p) = ∞. (67)

In order to examine if the critical exponents are different
in these cases, we enforce convergence by means of the
following replacement,

f (z) → f (z)e−τ z∑
z′ f (z′)e−τ z′ , (68)

and take the limit for τ → 0.
The asymptotic form of 〈s0〉finite, Eqs. (64) and (65), does

not depend on G′′
1 (1; p). Hence, for 〈z2〉 < ∞ and 〈z3〉 =

∞, we still obtain γ = 1. However, 〈z2〉 = ∞ yields γ < 1.
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Similarly, for 〈z2〉 < ∞ and 〈z3〉 = ∞, we obtain β > 1.
Hence, also for 〈z2〉 = ∞, we have β > 1. For completeness,
consider G′′

1 (1; p) ≡ 0. For pc ∈ [0, 1], this is only true for
f (z) = δz,2 ∧ pc = 1. In this case, the exponent β does not
exist, but still γ = 1, using similar arguments. In summary,
we obtain the criteria in Eqs. (44) and (45) for the exponents
β and γ .

For power-law distributed graphs f (z) ∝ z−λ, we obtain

γ = 1 ⇔ λ > 3, (69)

β = 1 ⇔ λ > 4, (70)

in agreement with previous results [23].

F. Special cases

1. Ordinary percolation

The general solution for high-density site percolation also
works for m = 1; however, it is simpler to consider an oc-
cupied vertex that does not have an occupied neighbor as a
cluster of size 1. Then, the solutions appear to be the same as
for bond percolation and can also be obtained as the special
case m = 1 of the solutions given in Sec. III D. This solution
was previously derived for bond percolation in the context of
the spread of epidemic diseases on networks [5].

The probability p(k) that an occupied vertex has k occupied
neighbors is

p(k) =
∑
z�k

f (z)

(
z

k

)
pk (1 − p)z−k .

Thus, the generating function G0(x; p) for the number of
occupied neighbors of an occupied vertex is given by

G0(x; p) =
∞∑

k=0

p(k)xk =
∞∑

z=0

f (z)[1 + p(x − 1)]z,

which corresponds to the generating function of the degree
distribution of the random graph, consisting of all clusters (or
all occupied vertices).

The generating function G1(x; p) for the number of out-
going edges of a vertex, which is reached when following an
arbitrarily chosen edge (within the random graph), is given by

G1(x; p)
(6)=

∞∑
z=0

z f (z)

〈z〉 [1 + p(x − 1)]z−1. (71)

Now, the solutions are given according to Eqs. (38)–(41).

2. High-density percolation on the Bethe lattice

For the ordinary Bethe lattice, one can simply choose
the degree distribution to be f (z0) = δz,z0 , for z � m, where
z denotes the number of neighbors of each vertex. (In the
following, consistency of the generating function G1(x; p)
with previous results from Reich and Leath is ensured.)

The generating function G1(x; p) can be easily obtained
from ψ (x) (Eq. (18) from Ref. [15]), where ψ (x) is the
generating function for the step size of the corresponding
random walk problem. Imagine constructing a cluster step by
step. Then, the probability of executing a certain step size
l − 1 is equal to the probability that l neighbors are added to

a vertex from the cluster that also become part of the cluster.
Therefore, G1(x; p) is given by

G1(x; p)
!= xψ (x), (72)

where ψ (x) is given by

ψ (x) = 1

xr̃

z−1∑
l=m−1

(
z − 1

l

)
[p(1 − r̃[1 − x])]l (1 − p)z−1−l ,

(73)

r̃ =
z−1∑

l=m−1

(
z − 1

l

)
pl (1 − p)z−1−l . (74)

Indeed, one obtains for G1(x; p) from Eqs. (26) and (21) for
f (z0) = δz,z0

G1(x; p) = 1

r

z−1∑
l=m−1

Bp
z−1(l )[1 − r(1 − x)]l , (75)

r = r̃, (76)

⇒ G1(x; p) = xψ (x). (77)

G. Numerical solutions and simulation results

In order to validate the solutions given in the previous
sections, we evaluated the percolation probability and the
mean size of finite clusters for f (z) = B0.2

20 (z − 2) and m =
1, . . . , 9 and compared them with the simulation results. We
simulated the “growth” of clusters within the given modified
Bethe lattice 105 to 106 times (the number of samples for each
case are given in the captions of the respective graphs) and
we evaluated the percolation probability and mean size of the
finite clusters by calculating the average over all samples. For
p � pc, we set a maximum cluster size, which we considered
to correspond to the infinite cluster. The growth of clusters
was simulated starting with an occupied root, for which a
number of neighbors was drawn from the degree distribution
f (z). Then, the neighbors were occupied with probability p.
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FIG. 3. Numerical solutions (lines, black online) and simulation
results (circles, green online) for the percolation probability P∞

m

for m = 1, . . . , 9 as a function of the occupation probability p for
the degree distribution f (z) = B0.2

20 (z − 2). For each value of p, 105

samples and a maximum cluster size of 104 vertices is used.
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Afterwards, if the root had m occupied neighbors, for each
occupied neighbor the number of its neighbors was drawn
from the excess probability distribution qz = f (z)z

z and, again,
each new neighbor was occupied with probability p. This
procedure was repeated recursively if the occupied vertices
had m occupied neighbors, until the cluster was complete or
reached the maximum cluster size.

This method is efficient for p � pc but gets computation-
ally expensive for p � pc, because a fraction of the simu-
lated clusters will reach the maximum cluster size. Figure 3
shows P∞

m for m = 1, . . . , 9 as a function of the occupation
probability p for the degree distribution f (z) = B0.2

20 (z − 2).
The numerical solution of Eq. (33) and the simulation data
collapse perfectly. (Note: If there exists a fraction of vertices
with fewer than m neighbors, the percolation probability
cannot reach 1, even for the fully occupied lattice.) Figure 4
shows the mean size of finite clusters. Again, Eq. (34) and the
simulation data coincide.

Additionally we calculated numerical solutions for the
power-law distribution with a cutoff f (z) ∝ z−τ for z =
1, . . . , 50. Figures 5 and 6 show the mean size of finite
clusters and the percolation probability for τ = 2.5 and τ =
3 for several m. The cutoff at zmax = 50 changes the criti-
cal behavior dramatically, since pc → 0 for zmax → ∞ and
m = 1, 2.
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FIG. 4. Numerical solutions for the mean size of finite clusters
(a) 〈s〉finite and (b) 〈s0〉finite in comparison with the simulation results
(squares and circles) for m = 3 (top) and m = 9 (bottom) as a
function of the occupation probability p for the degree distribution
f (z) = B0.2

20 (z − 2). For m = 3, 105 samples and a maximum cluster
size of 104 vertices are used, and for m = 9, 106 samples and a
maximum cluster size of 105 vertices are used.
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FIG. 5. Numerical solutions for the mean size of finite clusters
〈s〉finite (black) and 〈s0〉finite (gray, red online) for the degree distribu-
tion f (z) ∝ z−τ for z = 1, . . . , 50 with τ = 2.5 and m = 2, 4 (solid
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of the occupation probability p.

In summary, we have presented a study of high-density
percolation on the modified Bethe lattice. Transferring meth-
ods from the theory of random graphs, we have derived
expressions for the cluster size distribution, the percolation
threshold, the percolation probability, and the mean size of
finite clusters and the critical exponents β and γ .
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FIG. 6. Numerical solutions for the percolation probability P∞
m

for m = 1, . . . , 8 (solid lines for odd m, dashed lines for even m)
for the degree distribution f (z) ∝ z−τ for z = 1, . . . , 50 with τ =
2.5 (top) and τ = 3.0 (bottom) as a function of the occupation
probability p.
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