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Local conservation laws in ultracold Fermi systems with time-dependent interaction potential
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In the context of an ultracold Fermi gas, we derive conservation laws for mass, energy and momentum based
on a generalized nonlocal Boltzmann equation with gradient corrections in the collision integral. The corrections
are expressed in terms of effective collision duration, particle displacement and changes of total momentum and
energy. Their origin is in the in-medium T matrix. Using variations of the optical theorem, we show that in
the collision integral the particle-hole symmetry can be recast into a form of collision symmetry amenable to
semiclassical simulation. Pauli-blocked collisions are distinguished from Bose-stimulated nondissipative ones;
the latter are not present in the absence of gradient corrections. Consolidating with the microscopic theory, we
extract local conservation laws for a general time-dependent interaction potential, and demonstrate how both
types of collisions affect densities and flows of conserving quantities. Comparison is made with the approach
of Nozières and Schmitt-Rink in the limit of thermal equilibrium. Under approximations used for normal-state
ultracold Fermi gases interacting via Feshbach resonances we demonstrate the effect of the collision delay on
the shear viscosity.
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I. INTRODUCTION

The ability to tune interaction strength via Feshbach res-
onance in ultracold gases, moving the system continuously
from the BCS to the BEC regime [1–4], is important for the
the study of many-body effects in strongly correlated systems.
At low temperatures, where thermal fluctuations are reduced
significantly, the quantum nature of particle interactions such
as Pauli blocking, pairing in space and momentum space,
quantum interference and other virtual processes dramatically
affects the thermodynamic properties of the system and char-
acterizes its dynamic responses to external fields.

A. Background

In the unitary region, universal relations between physical
properties of Fermi gases with s-wave interaction and the
asymptotic behavior of the momentum distribution have been
predicted theoretically [5–11]; these relations are observed in
the ultracold gas of 40K atoms [12,13], as well as in nuclear
reactions [14] in which the spatial density of fermions is
20 orders of magnitude higher. In nuclear matter, the rise
of the particle correlation is identified as a precursor of
deuterons formed in the Fermi liquid before transit into the
dilute deuteron gas; the density of virtual pairs matches the
deuteron density at the Mott transition line [15,16]. Particle
interactions also determine the density profile which is the
key element in obtaining the equation of state in studies of
trapped Fermi gases [17–21], nucleus [22,23], neutron stars
[24,25] and exploding supernovae [26].

Transport properties are also affected by the quantum na-
ture of particle interactions. For example, the reduction of vis-

cosity upon approaching the phase of condensation from the
normal phase is studied in the context of heavy-ion reactions
[27–30], large-hadron collider [31] and quark-gluon dynamics
[32]. In ultracold gases viscosity is experimentally accessible
as it determines the breathing mode and other collective
oscillations [33–38] of the trapped gas and its anisotropic
expansion [39] after the trap is released. Experiences from
ultracold Fermi gases show that linear response theory may
be inadequate in many cases [40–47].

Fermi-liquid theory provides a framework to study many-
body systems in the weakly interacting BCS and BEC regimes
by introducing quasiparticles. Particles are represented by
quasiparticles with energy ε having the dominant bare single-
particle energy ε and a momentum-dependent potential pro-
vided by other particles. As long as quasiparticles have suffi-
ciently long lifetimes, the dynamics of the system is well rep-
resented by their quasiclassical motion interrupted by binary
collisions.

Numerical techniques are often employed in the study of
heavy-ion reactions ([48] comparing 18 alternative methods).
Standard techniques include the use of molecular-dynamics
simulation with Monte Carlo collisions, and more direct nu-
merical solution of the Boltzmann equation.

Between the two well-known weak-interaction regimes
is the strongly interacting regime where many-body effects
dominate; systems in this regime are no longer accessible in
terms of quasiparticles. With increasing interaction strength,
particles spend an increasingly higher fraction of time in
interacting with others (collision states); as a particle with
a given momentum passes others, momentum and energy
are exchanged; the chance for the particle to possess energy
other than the energy-momentum relation of a quasiparticle
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is increased. These events are known as off-shell motions
and cause the reduction of quasiparticle peaks in the spectral
function. Experiments have shown how the spectrum evolves
with increasing interaction strength, going from the dominant
singularity to the fully off-shell form, in atom-photoemission
spectroscopy [49]. Spectroscopic studies of ultracold Fermi
gases have shown that energy conservation with virtual pro-
cesses included reveals many-body features which cannot be
captured with single-particle spectra [50].

In nuclear physics, the contribution of the off-shell motion
has been recognized and discussed for decades. This effect ac-
companying collision processes is first discussed in the study
of phase transitions in the expansion of nuclear matter by
Schmide and Röpke in which the correlated density emerging
from collisions is identified as a precursor of deuterons formed
in the Fermi liquid before transit into the dilute deuteron gas
[15,16]. Studies have shown that this more complex motion
can be accommodated by a generalized Boltzmann equation
featuring gradient corrections in the collision integral [51].
The correlated density counts collision states; it is an effec-
tive collision duration weighted with collision rates for both
Pauli-blocked and Bose-enhanced binary collisions. In the
standard Boltzmann equation collisions occur instantaneously
and locally; the generalized transport equation is known as the
nonlocal Boltzmann equation.

Based on nonequilibrium Green functions, the nonlocal
Boltzmann equation is applicable to systems in nonequilib-
rium states and with interaction potentials of any symmetry.
Its derivation [51] justifies its validity for the weakly off-shell
systems, where the correlated density is much smaller than
the quasiparticle density. Normal nuclear matter satisfies this
requirement. The present study is restricted to this regime.

Spatial nonlocality is not a novel concept. The nonzero
distance between colliding particles results in an increase of
pressure [52,53]; this is known as the excluded volume of the
van der Waals equation of state. The delay of collision in time
is interpreted as the lifetime of a new particle, in particular in
a resonance state [30,54–58].

Compared to intuitive nonlocal corrections, the Green-
function approach has advantages. An encounter of two
fermions either proceeds as the Pauli-blocked collision event
or as the Bose-stimulated correlation. The former is very
natural because the Pauli-blocked collisions control dissipa-
tion in the system. The latter possibility was made promising
by Danielewicz and Pratt [54], in which Bose-stimulated
correlations were treated via collisions of a negative duration.

Another advantage of the Green-function approach is that
all nonlocal corrections appear in a controlled way; the col-
lision delay, space displacements, and shifts in energy and
momentum are mutually consistent, and consistent with the
scattering rate and the quasiparticle energy.

B. Consistency and balance

The consistency of all components is essential in the
present work. While the nonzero distance between particles
can be introduced as the only ad hoc correction independent
of others, collision duration always emerges in the case of

nonlocal corrections. Indeed, shifts in energy and momentum
represent the external action on the colliding pair as well as its
interaction with the background (the medium). In the presence
of time-dependent external fields controlling particle interac-
tions, the collision frequency changes and particle correlations
change; dynamics of quasiparticles change correspondingly.
Whether this nonlocal Boltzmann equation captures features
of the dynamics and, at the same time, preserves the conser-
vation laws of mass, energy, and momentum, as the standard
Boltzmann equation does, are issues of reliability.

In the present paper we extract the conservation laws
from the nonlocal Boltzmann equation, in the form of
familiar-looking balance equations. This is done by incor-
porating the microscopic theory. Interested in the dynamics
of out-of-equilibrium strongly correlated systems, we con-
sider a system consisting of different types of Fermi gas
with tunable particle interactions near Feshbach resonances.
The interaction strength is restricted to values with a small
fraction of correlated density (which excludes the unitary
region).

We show that the dynamics of interactions gives rise to
the off-shell motion due to which the momentum distribution
(directly observed in trap releasing experiments) differs from
the quasiparticle distribution by the power-law tail, and their
integrals differ by the correlated density.

The system is subject to general external fields at suf-
ficiently low temperatures where particle correlation and
relevant quantum effects are pronounced. We assume that
the external fields change slowly on the space-time scale
of collisions; at the same time these changes may be fast
compared with the characteristic scales of thermalization and
hydrodynamics. We verify that although quasiparticles, as a
subsystem, do not satisfy the conservation laws, correlated
particles emerging from the collision events possess different
physical properties to compensate the loss.

Deriving the conservation laws is more involved in com-
parison to the standard Boltzmann equation. Since energy
transfers include interaction between collision states and
quasiparticles, contributions of the quasiparticle energy (drift
terms) and energy shifts in the collision integrals ought to be
combined according to interation type.

In Sec. II we introduce the nonlocal Boltzmann equation
which emerges as the quasiclassical limit of the nonequilib-
rium Green function transport equation. Then, using varia-
tions of the optical theorem, we arrange it into a form suitable
for quasiclassical Monte Carlo simulations.

In Sec. III we set up the machinery required to employ the
nonlocal Boltzmann equation in what we call a scattering-
symmetric calculation; we then discuss the implications for
Bose stimulation.

In Sec. IV we derive the local conservation law of par-
ticle number (the equation of continuity) from the kinetic
equation; the quasiparticles and correlated particles together
exhibit the conservation law. Based on microscopic theory,
we further discuss the properties of correlated particles in
Sec. IV B. We make comparison with the theory of Noziéres
and Schmitt-Rink [59] in the limit of thermal equilibrium in
Sec. IV C.
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In Sec. V the conservation law of energy is derived. We
start from the microscopic theory to calculate the total energy
density of the system which consists of the contributions from
the quasiparticles and the correlated particles.

In Sec. VI we focus on momentum conservation and derive
the Cauchy momentum equation. We evaluate the shear vis-
cosity for a gas with the s-wave scattering in Sec. VI B using
relaxation time approximation.

Definitions of Green functions and self-energies, general
formulas such as Kramers-Kronig relations, and various re-
lated optical theorems are included in the Appendixes.

II. THE NONLOCAL KINETIC THEORY

In this section we prepare the necessary methodology to
be employed in subsequent sections. The technology here is
generally selected from [51] and various references therein.
Here we summarize succinctly, in appropriate notation, what
will be needed in subsequent sections.

We begin with the standard Boltzmann equation, and ex-
hibit the nonlocal kinetic equation as it appears from quantum
statistics. In Sec. III this leads to a new form of the nonlocal
Boltzmann equation suitable for Monte Carlo simulations.

A. Local Boltzmann equation

The standard Boltzmann equation is based on local colli-
sions. The distribution (a density in phase space) of a type-a
quasiparticle is f (a, k, r, t ). Here, a represents an internal
particle state; for example a could be the spin, the isospin,
or an atomic species and its excitation state.

Considering particle 1, of several in a collision event, the
dynamics can be written as

df1

dt
= I1, (1)

where I1 is the collision integral, and the drift term is

df1

dt
= ∂t f1 + ∇kε1 · ∇r f1 − ∇rε1 · ∇k f1. (2)

The quasiparticle energy ε1 = ε(a, k, r, t ) is defined using the
spectral function [seen later in Eq. (46)]; this energy includes
kinetic energy, external potentials, and self-energy.

As usual, the self-energy contribution is what leads to the
quasiparticle concept; the self energy produces a change in
the distribution. The influence of other particle types gives
rise to a further modification of the distribution; this effect
is described by the collision integral. Later it will lead us to
the concept of correlated particles in the next section.

We separate a collision event into two components;

I1 = I (in)
1 − I (out)

1 . (3)

I (in) and I (out) describe ‘scattering in,’ into the intermediate
state (k, r) and ‘scattering out,’ from the state (k, r). The
reason for this separation is to accommodate in the following
section nonlocal correction to interactions. Each component
of I represents a two-particle collision event; in the local
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FIG. 1. Phase space near a local collision: The horizontal axis
represents r and the vertical axis k. (a) Particles 3 and 4 switch to
new trajectories x and y following the ‘scattering in’ event. Particle
1 leaves from (r, k) and particle 2 from (r, k2) at time t . (b) Particles
1 and 2 switch to new trajectories x′ and y′ following the ‘scattering
out’ event. Particle 3 leaves from (r, k3) and particle 4 from (r, k4)
at t .

approximation we have

I (in)
1 =

∑
b

∫
p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× (1 − f1)(1 − f2) f3 f4, (4)

I (out)
1 =

∑
b

∫
p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× (1 − f3)(1 − f4) f1 f2. (5)

We write
∫

k or
∫

k, omitting notation like d3k/(2π )3. b is the
particle type.

The specific scattering event shown in Fig. 1 is of two
particles of different types. We assume that particle types are
invariant during such an event. In the scattering event shown
in Fig. 1(b), particle 1 of type a on trajectory x collides with
particle 2 of type b, resulting in particles 3 and 4. During the
collision, momentum q is transferred between the particles;
we write k1 = k, k2 = p, k3 = k − q, and k4 = p + q since
momentum is conserved. A similar event is shown in Fig. 1(a)
where an a-type particle 3 and a b-type particle 4 collide and
result in particles 1 and 2.

In collisions of identical species, a = b, the direct pro-
cess shown in Fig. 1 interferes with the exchange process
in which k1 = k and k2 = p become k3 = p + q and k4 =
k − q. The transferred momentum is now k − p − q. The T
matrix T R

sc includes this interference; details can be found in
Appendix A 1.

For any quantity λ, we write for the four particle states in
a scattering event, λn = λ(sn, kn, rn, tn) where n = 1, 2, 3, 4,
s1 = s3 = a, and s2 = s4 = b; for a local collision, rn = r and
tn = t .

|T R
sc |2 describes scattering from states 1,2 to states 3,4, or

3,4 to 1,2. Since it always connects all four states involved,
we often omit them for notational simplicity.

B. Nonlocal Boltzmann equation

The nonlocal kinetic equation below is obtained using
quasiclassical approximation of nonequilibrium Green func-
tions. Including off-shell contributions of strong interactions
with collision durations parametrized by �, this nonlocal

052108-3



P. LIPAVSKÝ AND PEI-JEN LIN PHYSICAL REVIEW E 99, 052108 (2019)

Boltzmann equation is written as

df1

dt
= I1[ f ; �]. (6)

The collision integral of the quantum-field transport theory
and that of the quasiclassical kinetic equation have identical
structure; without the off-shell contributions, the former re-
duces to the latter. Below, we study the properties of the col-
lision duration �, and use derived optical theorems to recast
the equation to a form suitable for Monte Carlo simulations.

The collision duration is in agreement with the first-order
off-shell contribution beyond the Landau theory of Fermi
liquids.

C. Particle-hole symmetry

It will be important to incorporate shifts of momentum, po-
sition, and time into the collision parametrization. Throughout
the paper a tilde or bar on a quantity will be used to indicate
such a positive or negative shift. The precise shift is dependent
on the subscript indicating one of the four particle states.
Such a shift involves a momentum change �K , displacement
�(i), and collision delay �t ; these shifts, due to gradient
corrections, are characteristic of the collision and will be
discussed below.

Thus for any quantity λ(a, k, r, t ) (e.g., ε or f ), we define

λ̄1 := λ(a, k, r, t ),

λ̄2 := λ(b, p, r − �(2), t ),

λ̄3 := λ(a, k − q − �K , r − �(3), t − �t ),

λ̄4 := λ(b, p + q − �K , r − �(4), t − �t ), (7)

and similarly for λ̃ but with the sign of every � shift reversed.
In Eq. (7), the reference point (k, r) of particle 1 is not

shifted, but is included in this definition for notational consis-
tency.

A collision event spanning the time interval from t − �t to
t is said to have a collision-delay time of �t ; there are shifts
in phase space and energy as a consequence. Each � shift is
evaluated at E , k, p, q, r, and t as given in (12). The �(n),
n = 2, 3, 4 is the displacement in space for particle state n;
the f and ε functions are shifted as in (7) above.

The shifted collision integral is written as

Ī (in)
1 =

∑
b

∫
p,q

∣∣T̄ R
sc

∣∣2
2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E )

× (1 − χ )(1 − f̄1)(1 − f̄2) f̄3 f̄4, (8)

Ī (out)
1 =

∑
b

∫
p,q

∣∣T̄ R
sc

∣∣2
2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E )

× (1 − χ )(1 − f̄3)(1 − f̄4) f̄1 f̄2. (9)

Scattering probability is described by

T̄ R
sc =T R

sc

(
Ē , k− 1

2�K , p− 1
2�K , q, r−�r, t − 1

2�t
)

(10)

with the two-particle energy Ē = 1
2 (ε̄1 + ε̄2 + ε̄3 + ε̄4).

This T matrix has no dependence on individual particle
positions; the position dependence is solely on the center
of mass of the four particle states. The T matrix can also

accommodate the tunable interatomic potential. The two-
particle correlation function is important in the consideration
of in-medium effects (Appendix A).

All � shifts result from the gradient (linear-order) ex-
pansion of the T matrix. Throughout this paper we shall
use the notation ≈ to denote equality up to this order of
approximation.

The scattering phase shift is

φ = Im lnT R
sc (�, k, p, q, r, t ) (11)

and produces the � shifts by differentiation:

�(2) = (∇p − ∇q − ∇k )φ|�=E , �K = 1
2∇rφ

∣∣
�=E ,

�(3) = −∇kφ|�=E , �t = ∂�φ
∣∣
�=E ,

�(4) = −(∇q+∇k )φ|�=E , �E =− 1
2∂tφ

∣∣
�=E . (12)

We have defined

�r = 1
4 (�(2) + �(3) + �(4) ). (13)

Each � has the same arguments as the T matrix. The on-shell
two-particle energy E = 1

2 (ε1 + ε2 + ε3 + ε4) is used for the
substitution.

Due to displacements, the energy-conserving δ function is
accompanied by the factor (1 − χ ) where

χ = 1
2

{
∂t∂�φ + (

∂2
�φ

)
∂t (ε3 + ε4)

+∇r · [(∇p − ∇q − ∇k )φ]

+ (∇rε2) · [(∇p − ∇q − ∇k )∂�φ]

− (∇rε4) · [(∇q + ∇k )∂�φ] − (∇rε3) · (∇k∂�φ)

+ 1
2 (∇kε3 + ∇pε4) · (∇r∂�φ)

}
�=E . (14)

To the authors’ knowledge this factor has not yet been ana-
lyzed in detail. Implementations of the nonlocal kinetic theory
based on the Galitskii-Feynman T matrix are restricted to
the nuclear matter [51,60,61], and approximate all � shifts
by constant �t and related displacement of the center of
mass. The factor χ is zero in these implementations. The χ

is nontrivial in a Fermi gas system, whether due to external
modification of the interaction potential or due to effects
within the medium.

In the approach summarized here the collision delay and
the spatial displacements in (8) and (9) are obtained from
the gradients of the two-particle propagator represented by
the T matrix. These gradient corrections are different from
those used in the study of Ivanov and Voskresensky [62,63]
where their off-shell corrections are obtained by gradients of
the single-particle propagator. Necessarily, these two forms
of gradient corrections are associated with different values of
the collision delay and displacements. Here the corrections
vanish in the second-order Born approximation T R

sc ≈ Vsc,
while those of Ivanov and Voskresensky do not. Several inter-
pretations of the collision delay are compared by Kolomeitsev
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and Voskresensky [63] and Texier [64]. The concept used here
corresponds to Wigner’s collision delay [65].

D. Optical theorem

In the local Boltzmann equation, I (in) and I (out), exhibit
particle-hole symmetry: interchanging particles and holes
f ↔ 1 − f causes I (in) ↔ I (out). Although this particle-hole
symmetry remains in the collision integral with gradient cor-
rections, the time ordering of states requires a more careful
understanding.

Considering the case �t > 0, Ī (out) describes the a-type
particle with (k, r) at time t scattering to the phase-space point
(k − q − �K , r − �(3) ) and earlier time t − �t . To order the
times, we can instead introduce an a-type hole with (k − q −
�K , r − �(3) ) which enters the collision at t − �t ; at time t ,
this hole annihilates the a-type particle with (k, r). That is,
the ‘scattering out’ process is equivalent to an event where
two holes collide at time t − �t and annihilate two particles
at time t .

Contemporary evolution of particles and holes is natural in
quantum field theory, but it is a complication for quasiclassical
simulations. It is possible to simulate trajectories of holes
along with trajectories of particles, but there are an infinite
number of holes while the number of particles is limited. For
this reason we want to avoid holes in simulations.

To avoid holes, we need a collision integral which corre-
sponds to a semiclassical picture of two-particle collisions.
Let us suppose that in a simulation we generate a single colli-
sion event with k, p → k − q, p + q lasting from t to t + �t .
In the kinetic equation it would correspond to four integrals:
‘scattering out’ of k and p states at time t , and ‘scattering in’ of
k − q and p + q states at time t + �t . The ‘scattering in’ pro-
cess has initial states earlier in time than the collision event;
‘scattering out’ has final states which occur later in time.

If the Pauli blocking reduces the scattering rate, both final
states have to be empty. In the above picture of the ‘scattering
out’ at time t one needs to know occupation at t + �t to
decide whether the collision happens or is rejected as Pauli
blocked. To employ such information in the future requires a
step which is anticausal on the microscopic time scale �t .

The perturbative expansion of nonequilibrium Green func-
tions is strictly causal, therefore it is not explicitly dependent
on occupation of states at later times. It is possible, however,
to accommodate dependence on later times in the ‘scattering
out’ stage via the anticausal form of the optical theorem.
The causal and anticausal optical theorem are discussed in
Appendix A 2.

The causal optical theorem M = T R
sc · A · T A

sc requires that
the spectral function of the T matrix M = i(T R

sc − T A
sc ) equals

the two-particle spectral function A = i(GR − GA) weighted
with scattering rates. The anticausal version is written M =
T A

sc · A · T R
sc and it is this which we will utilize in Sec. III

in deriving an appropriate form of the nonlocal Boltzmann
equation.

III. SCATTERING-SYMMETRIC NONLOCAL
BOLTZMANN EQUATION

In this section we derive a new form of the nonlocal
Boltzmann equation which is symmetric in what we term

‘scattering in’ and ‘scattering out’ states; it will be seen to
be particularly suited to Monte Carlo simulation.

The two-particle spectral function for uncorrelated parti-
cles,

A34(�) =
∫

ω

(G>
3 (� − ω)G>

4 (ω) − G<
3 (� − ω)G<

4 (ω)),

(15)
corresponds to the occupation factor (1 − f3)(1 − f4) − f3 f4,
therefore we subtract

J̄1 =
∑

b

∫
p,q

∣∣T̄ R
sc

∣∣2
2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E )

× (1 − χ ) f̄1 f̄2 f̄3 f̄4 (16)

from each collision integral.
From Eq. (9),

Ī (out)
1 = Ī (out)

1 − J̄1

=
∑

b

∫
p,q

∣∣T̄ R
sc

∣∣2
2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E )

× (1 − χ ) f̄1 f̄2(1 − f̄3 − f̄4). (17)

The key at this point is to notice that the factor 1 − f̄3 − f̄4

functions as the occupation for the final state, therefore we can
use the equivalence of the causal and anticausal expressions of
the optical theorem to interchange retarded and advanced T
matrices. This will allow us to express all shifts in a positive
temporal direction in a hole-free formulation.

Since T A
sc = T R

sc
†,

Im lnT A
sc (�, k, p, q, r, t ) = −φ, (18)

which changes the sign of gradient corrections. From (17),

Ĩ (out)
1 =

∑
b

∫
p,q

W̃1234, (19)

where W̃1234 is the probability of the collision event 12 → 34.
For convenience, we write a generic form for such an event
nm → n′m′,

W̃nmn′m′ = ∣∣T̃ R
sc

∣∣2
(1 + χ ) f̃n f̃m(1 − f̃n′ − f̃m′ )

× 2πδ(ε̃1 + ε̃2 − ε̃3 − ε̃4 + 2�E ), (20)

where nmn′m′ is one of the permutations 1234, 2143, 3412,
or 4321. The energy and momentum can be modified by
external fields or the interaction with the background during
each collision; ε̃1 + ε̃2 − ε̃3 − ε̃4 + 2�E = 0 and k1 + k2 −
k3 − k4 + 2�K = 0.

The sign changes between (17) and the equivalent (19) are
the reason for our tilde notation. This applies also to the T
matrix

T̃ R
sc =T R

sc

(
Ẽ , k+ 1

2�K , p+ 1
2�K , q, r+�r, t + 1

2�t
)
, (21)

where the two-particle energy is Ẽ = 1
2 (ε̃1 + ε̃2 + ε̃3 + ε̃4).

Similarly, applying to the ‘scattering in’ process, we write

Ī (in)
1 = Ī (in)

1 − J̄1 =
∑

b

∫
p,q

W̄3412 (22)
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FIG. 2. Phase space near nonlocal collisions: The horizontal axis
represents r and the vertical axis k. The scattering effects nonlocal
shifts in r and k.

with

W̄nmn′m′ = ∣∣T̄ R
sc

∣∣2
(1 − χ ) f̄n f̄m(1 − f̄n′ − f̄m′ )

× 2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E ) (23)

and now ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E = 0, k1 + k2 − k3 − k4 −
2�K = 0.

We realize that since Ī (out)
1 = Ĩ (out)

1 , gradient corrections to
the integral vanish; all the corrections are in Ī (in)

1 which has
no anticausal form. Since the gradient expansion is limited
to linear order in gradients, we might replace Ĩ (out)

1 with
a form like I (out)

1 , but defined without gradient corrections.
However, to retain the manifest symmetry between initial and
final states, we write the kinetic equation in terms of Ĩ (out).

The spatial and temporal ordering of the particles in the
scattering event is now amenable to adaptation for numerical
simulation. The result is that the nonlocal kinetic equation (6)
is now written

df1

dt
= Ī (in)

1 − Ĩ (out)
1 (24)

with the causal form of the ‘scattering in’ and the anticausal
form for the ‘scattering out’ events. The corresponding nonlo-
cal picture of a collision is illustrated in Fig. 2.

Pauli blocking and Bose stimulation

Integrals Ī (in)
1 and Ĩ (out)

1 in the collision integral are cus-
tomary scattering integrals incorporating Pauli blocking with
gradient corrections, in the form required for quasiclassical
simulations. Their contribution to the dynamics of the Fermi
liquid has been studied for heavy-ion reactions [51,60].

Integrals J̃1 and J̄1 represent the ‘scattering in’ and ‘scatter-
ing out’ processes stimulated by pairs on occupied states. In
Bose systems such stimulated processes are common, but such
processes have not been explored in the case of composite
bosons made of a pair of colliding fermions. As is known from
the cases of lasers and superconductors, Bose-stimulated pro-
cesses are not inherently dissipative, and can lead to coherent
dynamics. We define

J̃1 − J̄1 = f1ϒ1, (25)

where ϒ1 = ∑
b

∫
p,q υ1 and

υ1 = ∣∣T̃ R
sc

∣∣2
(1 + χ ) f̃2 f̃3 f̃42πδ(ε̃1 + ε̃2 − ε̃3 − ε̃4 + 2�E )

− ∣∣T̄ R
sc

∣∣2
(1 − χ ) f̄2 f̄3 f̄42πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4 − 2�E ).

ϒ1 is a function of all the � shifts, and is nonzero if and only
if gradient corrections are nonvanishing. Positive ϒ1 corre-
sponds to insertion of quasiparticles at (k, r), and negative ϒ1

corresponds to removal.
The authors know of no process which can demonstrate

Bose-stimulated collisions in normal Fermi systems; such
processes can indeed be found at the interface of a normal
metal and a superconductor. In Andreev reflection [66], a
quasiparticle with energy in the superconducting gap is re-
flected back to the normal metal as a hole by the gradient
of the Bardeen-Cooper-Schrieffer gap at the interface, while
the condensate gains a Cooper pair. Thus a gradient of the
occupied pair state acts as a sink for quasiparticles.

IV. CONSERVATION OF MASS

A weakly interacting system can be described using quasi-
particles. However, in a strongly interacting system there
arises a difference between the density of physical particles
and the density of quasiparticles, which in nuclear physics is
known as the correlated density.

This correlated density can be attributed to collisions, and
is identified as a precursor of deuterons formed in the Fermi
liquid before transit into the dilute deuteron gas; it matches
the deuteron density at the Mott transition line [15,16]. In a
generalized Beth-Uhlenbeck theory, it is concluded that the
correlated density is a consequence of the noninstantaneous
collisions. The correlated density is an off-shell contribution
which cannot be described using quasiparticles alone [16].

In this section we derive the local conservation law of mass,
a continuity equation, from the nonlocal Boltzmann equation,
and show that our correlated density indeed corresponds to the
difference of the densities of physical particles and quasiparti-
cles. To show that the correlated density is of off-shell origin,
we will use the extended quasiparticle approximation of the
microscopic theory [67–72].

A. Particle numbers

We begin by deriving a balance equation for particle num-
bers. Integrating the nonlocal Boltzmann equation (24),

∫
k

df1

dt
= Sa(r, t ), (26)

where we have defined

Sa(r, t ) =
∑

b

∫
k,p,q

(W̄3412 − W̃1234). (27)

The left side of (26) is the sum of the quasiparticle terms ∂t n
q
a

and ∇r · jq
a, where

nq
a(r, t ) =

∫
k

f1, jq
a(r, t ) =

∫
k

f1∇kε1. (28)

In the standard Boltzmann-equation formulation, an impor-
tant concept is collision invariance; Sa(r, t ) ≡ 0. The nonlocal
version (24) only exhibits collision invariance when all �

shifts vanish. This can be seen by interchanging the initial and
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the final states by means of the transformation,

X :=
⎧⎨
⎩

k → k − q
p → p + q
q → −q

. (29)

Clearly, X 2 = 1. The T matrix is X invariant:

XT R
sc = T R

sc (�, k − q, p + q,−q) = T R
sc (�, k, p, q), (30)

assuming that space and time variations of external fields are
small on the scale of collision events. Therefore,

XW3412 = W1234. (31)

As expected, we have Sa → 0 in the limit of vanishing gradi-
ent corrections � → 0. In the case of gradient corrections, we
can use X to extract the nonlocal contribution.

Although φ = Xφ, the derivatives of φ transform as

X∇pφ = ∇pφ, X∇kφ = ∇kφ,

X∇qφ = (∇p − ∇k − ∇q)φ. (32)

Energy-shell � shifts from (12) transform as
X�(2) = �(3) − �(4), (33)

X�(4) = �(3) − �(2), (34)

X�r = �(3) − �r, (35)

while the rest of the � shifts are X invariant.
To calculate the X transformation up to linear order on the

quasiparticle energies and on the distribution functions, in �,
we introduce an operator

L = 1 − �(3) · ∇r − �K · (∇k + ∇p) − �t∂t (36)

in terms of which

X ε̄1 = Lε̃3 = ε(a, k − q, r, t ),

X ε̄2 = Lε̃4 = ε(b, p + q, r − �(3) + �(4), t ),

X ε̄3 = Lε̃1 = ε(a, k − �K , r − �(3), t − �t ),

X ε̄4 = Lε̃2 = ε(b, p − �K , r − �(3) + �(2), t − �t ). (37)

X exchanges an incoming particle with its outgoing counter-
part. Similarly, with the help of (12),

Xχ = −χ + ∂t�t + (∇p + ∇k ) · �K + ∇r · �(3). (38)

Finally,

XW̄3412 = W̃1234 − ∂t (�tW̃1234) − ∇r · (�(3)W̃1234)

− (∇k + ∇p) · (�KW̃1234). (39)

The collision contribution (27) is

Sa = −
∑

b

∫
k,p,q

(∂t (�tW1234) + ∇r · (�(3)W1234)). (40)

We have neglected higher orders in gradients; W̃1234 ≈ W1234.
To compare with the continuity equation, we write

Sa = −∂t n
c
a − ∇r · jc

a, (41)

where the correlated density is defined as

nc
a =

∑
b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

×�t f1 f2(1 − f3 − f4) (42)

and the correlated current density is defined

jc
a =

∑
b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

×�(3) f1 f2(1 − f3 − f4). (43)

The balance equation (26) then yields the expected equation
of continuity

∂t na + ∇r · ja = 0, (44)

with total density and current

na = nq
a + nc

a, ja = jq
a + jc

a. (45)

Considering a Fermi gas at temperature higher than the
Fermi energy, for the �t > 0 case, nc

a can be interpreted
as the density of type-a particles undergoing collisions; the
probability of finding colliding pairs at given initial and final
states is P = �tW1234. Similarly, jc

a is the current carried
by collision states; during collisions the mean velocity of a
particle is vvvc

a = �(3)/�t , thus �(3)W1234 = vvvc
aP.

At low temperature, the factor f1 f2(1 − f3 − f4) appearing
in (42) and (43) has a dominant negative contribution, since
the Pauli-blocked part f1 f2(1 − f3)(1 − f4) “freezes out”
while in superfluid systems the Bose-stimulated part f1 f2 f3 f4

does not [16]. We avoid speculative interpretations of the
correlated density in this regime; instead, in the following sec-
tion we calculate the correlated density from the microscopic
theory and show in Sec. IV C that this definition of correlated
density is in agreement with the density obtained by Nozières
and Schmitt-Rink [59] in the first-order approximation of the
off-shell contribution to the self-energy.

B. Correlated density

The Wigner distribution (like f , a density in phase space),
also called the local-momentum distribution, in addition to the
quasiparticle contribution includes contributions from colli-
sion processes occurring at short time scales.

Here we evaluate the Wigner distribution from the mi-
croscopic theory using nonequilibrium Green functions, and
split it into the quasiparticle and off-shell components. After
integration over momentum to get particle density, we show
that this off-shell contribution is responsible for a reduction of
quasiparticle number potentially observable in experiments of
ultracold Fermi gases near Feshbach resonances; this type of
experiment is reviewed in [73]. Details of the Green functions
used below can be found in Appendix A and [51].

The spectral function evaluated for a particle in the inter-
acting system A(ω, a, k, r, t ) has the form

A1(ω) = �1(ω)

[ω − ε1 − �1(ω)]2 + 1
4�2

1 (ω)
(46)

with ε1 equal to ε(a, k, r, t ), the bare energy including the
kinetic energy of a quasiparticle and also that due to general
external fields acting on the particle. �1(ω) and �1(ω) are
the real and imaginary parts of the self-energy. Now we
approximate, keeping only terms linear in �. We have

A1(ω)≈ [1+∂ω�1(ω)]2πδ(ω−ε1)+�1(ω)
℘′

ω−ε1
(47)
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with the quasiparticle energy ε1 = ε1 + �1(ε1). We use the
notation

℘′

z − ω
= ∂

∂ω

(
℘

z − ω

)
= Re

1

(z − ω + iδ)2
, (48)

where the eventual limit δ → 0+ is understood.
The self-energy satisfies the Kramers-Kronig relation

�1(ω) = �HF
1 −

∫
z
�1(z)

℘

z − ω
, (49)

where �HF
1 is the Hartree-Fock self-energy. The spectral func-

tion (46) satisfies two basic sum rules:∫
ω

A1(ω) = 1;
∫

ω

ωA1(ω) = ε1 + �HF
1 . (50)

The approximate expression given in (47) also satisfies both
of these sum rules exactly (see Appendix D of [51]).

As in [74], the correlation function is

G<
1 (ω) ≈ [1 + ∂ω�1(ω)]2πδ(ω − ε1) f1 + �<

1 (ω)
℘′

ω − ε1
.

(51)

In the ladder approximation of the T matrix,

�<
1 (ω) =

∑
b

∫
p,v,q,z

∣∣T R
sc (v + ω, k, p, q)

∣∣2

× G>
2 (v)G<

3 (ω − z)G<
4 (v + z), (52)

and its hole counterpart �> is obtained by interchang-
ing > and <. Since the self-energy already contains
off-shell corrections, the Green functions within are ap-
proximated by G>

2 (v) ≈ (1 − f2)2πδ(v − ε2), G<
3 (ω − z) ≈

f32πδ(ω − z − ε3), and G<
4 (v + z) ≈ f42πδ(v + z − ε4). We

then have

�<
1 (ω) ≈

∑
b

∫
p,q

∣∣T R
sc (ω + ε2, k, p, q)

∣∣2

× (1 − f2) f3 f42πδ(ω + ε2 − ε3 − ε4), (53)

and similarly

�>
1 (ω) ≈

∑
b

∫
p,q

∣∣T R
sc (ω + ε2, k, p, q)

∣∣2

× f2(1− f3)(1− f4)2πδ(ω + ε2−ε3−ε4). (54)

The imaginary part � = �> + �< is related to the real part
� by the Kramers-Kronig relation (49).

This approximation is known as the limit of small scatter-
ing rates [67–70,72], or the extended quasiparticle approxi-
mation [71]. A nonlinear modification is extended by Arshad,
Kondratyev, and Siddique [75]. The dominant on-shell term
depends on the quasiparticle distribution f1; the off-shell
correction is to be evaluated from the correlation function of
the self-energy �> and �<.

Having the singularity on the energy shell ω = ε1, the
spectral function (47) is applicable on the long time scale in
which quasiparticle contribution dominates over quickly de-
caying off-shell contributions. The sum rules in (50) guarantee
correct behavior at short time scales which is important during
internal states of scattering processes.

We have seen in the previous section that the particle
density na can be written as the sum of quasiparticle density
and correlated density (45). We will next show that the corre-
lated density defined in (42) as a contribution from collision
processes is identified with the off-shell contribution.

In the microscopic theory, the density of particles defined
with the Wigner distribution ρ1 = ρ(a, k, r, t ) is written as

na(r, t ) =
∫

k
ρ1, (55)

where

ρ1 =
∫

ω

G<
1 (ω). (56)

In the extended quasiparticle approximation (51),

ρ1 ≈ f1 +
∫

ω

(�<
1 (ω)(1 − f1) − �>

1 (ω) f1)
℘′

ω − ε1
. (57)

The off-shell part of (57) has an asymptotic k−4 momentum
“tail,” which can be seen as follows. For a contact interac-
tion, the T matrix is of a simpler form; instead of T R

sc (ω +
ε2, k, p, q) we write T R

sc (ω + ε2, k + p). Due to the factor
f3 f4 in self-energy (53), |k + p| < 2kF. In the case k � kF we
can thus use p ≈ −k. The self-energy is nonzero only when
ω ≈ −ε2 ≈ −εb(−k). At large k, the Wigner distribution (57)
behaves as ρ1 ≈ [εa(k) + εb(−k)]−2

∫
ω

�<
1 (ω) ∝ k−4. This

asymptotic behavior, independent of interaction potentials, is
sometimes termed Tan’s identity [5].

The density from the off-shell part is given by

n(1)
a =

∫
k,ω

(ρ1 − f1) (58)

=
∫

k,ω

[�<
1 (ω)(1 − f1) − �>

1 (ω) f1]
℘′

ω − ε1
. (59)

Substitution of the self-energy (53) and (54) gives

n(1)
a =

∑
b

∫
k,p,q

∣∣T R
sc (ε3 + ε4)

∣∣2 ℘′

ε3 + ε4 − ε1 − ε2

× [(1 − f1 − f2) f3 f4 − f1 f2(1 − f3 − f4)]. (60)

To bring this formula into a two-particle form, we write

n(1)
c =

∑
a,b

∫
k,p,q

1

2
(δac + δbc)

∣∣T R
sc (ε3 + ε4)

∣∣2

× [(1 − f1 − f2) f3 f4 − f1 f2(1 − f3 − f4)]

× ℘′

ε3 + ε4 − ε1 − ε2
(61)

so that we can read off the two-particle representation

n(1)
c =

∫
�,�′,q

{
Tr

[
T R

sc (�) · G<(�) · T A
sc (�) · A(�′) · C]

− Tr
[
T R

sc (�) · A(�) · T A
sc (�) · G<(�′) · C]} ℘′

�−�′ ,

(62)

where we have defined

Tr[λ] =
∑
a,b

∫
k,p

λ. (63)
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Here the dot notation indicates a “matrix product” with
∑

a

∫
k.

The two-particle functions in (62) now depend on the particle
types a and b. We have

G<(�) ≈ 2πδ(� − ε3 − ε4) f3 f4,

G<(�′) ≈ 2πδ(�′ − ε1 − ε2) f1 f2,

A(�) ≈ 2πδ(� − ε3 − ε4)(1 − f3 − f4),

A(�′) ≈ 2πδ(�′ − ε1 − ε2)(1 − f1 − f2), (64)

and the operator for the presence of particle type c in the two-
particle propagator is

C = 1
2 (δac + δbc). (65)

Using the optical theorem Mex = T R
sc · A · T A

sc from (A6),
the Kramers-Kronig relation for Tex and Mex is∫

�

�
℘′

� − �′Mex(�) = Vex − Tex(�′) − �′ ∂Tex

∂�′ , (66)

and the Kramers-Kronig relation between G and A is∫
�′

℘′

� − �′A(�′) = − ∂G
∂�

. (67)

We can now simplify (62),

n(1)
c =

∫
�,q

Tr

[
G< ·

(
C · ∂Tex

∂�
− T A

sc · ∂G
∂�

· C · T R
sc

)]
. (68)

In this case C commutes with the other factors present; sim-
plification using the anticausal optical theorem (A20) yields

n(1)
c = Im

∫
�,q

Tr

[
C · G< · T A

sc · A · ∂T R
sc

∂�

]
. (69)

In terms of the collision delay,

n(1)
c =

∑
a,b

∫
k,p,q

∣∣T R
sc (E , k, p, q)

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× 1

2
(δac + δbc)�t f1 f2(1 − f3 − f4). (70)

This is equal to the correlated density (42) in the case c = a.

C. Correlated density of Nozières and Schmitt-Rink

In the ground state, the existence of correlated density
implies that the k-volume under the Fermi momentum is not
equal to the number of particles. This is in conflict with
Luttinger’s theorem [76], shown recently by Pieri and Strinati
[77] for any �-derivable approximation; those authors discuss
the T -matrix approximation for which they obtain zero cor-
related density provided that the ground state is the normal
Fermi liquid. They also comment on the formula of Nozières
and Schmitt-Rink [59], arguing that the nonzero correlated
density might be a consequence of the non-self-consistent
Green functions used in the expansion. Nevertheless, the T -
matrix approximation becomes unstable at the superconduct-
ing critical temperature, therefore conclusions based on the
“normal” ground state are potentially erroneous, as discussed
by Dave and Phillips [78].

The long-persisting discussion about the correlated density
can now be embellished with experimental input. There are

already two methods to measure the momentum distribution:
time-of-flight expansion followed by absorption imaging [79]
and sudden photoexcitation of atoms from the interacting state
into a noninteracting state [80]. To support such experimental
effort we have derived the momentum distribution (57). Using
(53) and (54) it becomes a functional of the quasiparticle
distribution.

Here we show that the correlated density (42) agrees with
the Nozieres and Schmitt-Rink (NS) formula. In thermal
equilibrium, the particle density obtained by NS [59] is

nNS
a = −2

∫
k,ω

fFDIm
(
ĜR

1 + ĜR
1 �R

1 ĜR
1

)
, (71)

where ĜR
1 (ω) = 1/(ω − ε1 + iδ) is the retarded free-particle

Green function, fFD(ω) = 1/{1 + exp[(ω − μ)/T ]} and
�R = � − i

2� is the retarded self-energy.
The formula of NS is thus linear in the self-energy for both

on- and off-shell contributions. We can compare it with the
linear approximation in the off-shell motion (51). With the
help of the free-particle spectral function (−2)Im ĜR

1 (ω) =
2πδ(ω − ε1) we arrive at

nNS
a =

∫
k

fFD(ε1) +
∫

k,ω

�<
1 (ω) Re

1

(ω − ε1 + iδ)2

−
∫

k,ω

fFD(ω)�1(ω) 2Im
1

(ω − ε1 + iδ)2
, (72)

where we have used the equilibrium correlation part of self-
energy �<

1 (ω) = (−2)Im �R
1 (ω) fFD(ω). The second term

parallels the off-shell contribution of the extended quasipar-
ticle approximation (51). The extended quasiparticle approx-
imation has the quasiparticle energy ε in the denominator,
while the NS expansion has the bare energy ε. This difference
is at second order in �R. The last line can be rearranged using

2Im
1

(ω − ε1 + iδ)2
= ∂

∂ω
(−2)Im

1

ω − ε1 + iδ

= ∂

∂ω
2πδ(ω − ε1). (73)

After performing the integration by parts, we obtain

nNS
a =

∫
k
{ fFD(ε1)[1 + ∂ω�1(ω)] + �1(ε1)∂ω fFD(ω)}ω=ε1

+
∫

k,ω

�<
1 (ω) Re

1

(ω − ε1 + iδ)2
. (74)

The first line represents a linear expansion of the on-shell part
of the extended quasiparticle approximation (51) in �. That
is, in the limit of thermal equilibrium, our result reduces to
the Nozières and Schmitt-Rink formula in the linear order of
the self-energy.

In this section, we have seen that the kinetic equation with
nonlocal collision integral includes consistently the particle
interactions up to the first order of the off-shell contributions.
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During collisions the correlated density emerges at the ex-
pense of quasiparticle density. We anticipate a corresponding
role of the correlated density in energy balance and investigate
this in Sec. V.

V. LOCAL ENERGY BALANCE

In the Boltzmann-equation formulation, two consequences
of interactions are slow momentum changes in quasiparticle
drift and abrupt changes of momentum in collisions. In the
presence of time-dependent interactions, changes of the inter-
action energy are transformed to quasiparticle kinetic energy
in the same two ways; between and during collisions. The
drift contribution is described already by Landau’s concept of
quasiparticles; here we require a nonlocal collision integral, in
particular with nonzero collision duration.

The drift mechanism can be described by use of effec-
tive forces and time-dependent effective mass and vector
potentials, along the lines of a framework known as Berry
connections. These concepts are closely tied to quasiparticle
energy, and their use is widespread in nuclear physics and
condensed matter physics, for example in [81–83].

In the present context, it is desirable clearly to understand
the collision mechanism; to this end it is useful to think
initially in classical terms.

The interaction strength has a time dependence, affecting
how kinetic energy is distributed during collision processes.
When the change in interaction is on a short time scale, the
subsequent asymptotic “tail” of the momentum distribution of
particles is pronounced. This effect has been observed in the
ultracold gas of 40K atoms [12,13]. In the present case we
discuss only changes slow on the time scale of collisions [14].

In the nonlocal approach energy is only conserved when
both drift and collision processes are taken into account; the
Landau picture is insufficient as quasiparticle collisions do not
contribute to the energy balance.

We begin by considering two-particle interaction and de-
rive the energy density from the microscopic theory. We show
energy conservation from the kinetic equation, making use
of relations obtained via the time derivative of this energy
density.

A. Energy density

We calculate the energy density using the extended quasi-
particle approximation discussed in Sec. IV B. By definition,
the total energy density of the system is the expectation value
of its Hamiltonian,

E (r, t ) =
∑

a

∫
k
ρ1ε1 + 1

2

∑
a,b

∫
k,p

ρ12V12. (75)

ρ12 is a two-particle density matrix for particles 1 and 2. The
interaction potential between particles V12 is tunable via time-
dependent external fields. The integral over the interaction
potential can be evaluated from the energy-dependence of the
Green function [84],

E = 1

2

∑
a

∫
k,ω

(ω + ε1)G<
1 (ω). (76)

At linear order in the off-shell motion, we substitute G<
1

with (51) and obtain

E = 1

2

∑
a

∫
k

{
(ε1 + ε1) f1

−
∫

ω

[�>
1 (ω) + �<

1 (ω)](ε1 − ω) f1
℘′

ω − ε1

+
∫

ω

[�<
1 (ω)(1 − f1) − �>

1 (ω) f1](ω + ε1)
℘′

ω − ε1

}
.

(77)

The first two rows can be combined by using the Kramers-
Kronig relation for the self-energy (49);

E =
∑

a

∫
k

(
ε1 + 1

2
�HF

1

)
f1 + 1

2

∑
a

∫
k,ω

[�<
1 (1 − f1)

−�>
1 f1](ω + ε1)

℘′

ω − ε1
. (78)

The Hartree-Fock self-energy �HF
1 is proportional to the

Wigner distribution; it can be written as a sum of the on-shell
and off-shell parts,

�HF
1 = Vex · ρ = Vex · f + Vex · (ρ − f ). (79)

The interaction potential is antisymmetrized with respect to
the exchange of identical particles,

Vex(k, p, q) = V (k, p, q) − δabV (k, p, k − p − q). (80)

Since the convoluted potential Vex · ρ is instantaneous, �HF
1

does not depend on ω.
The total energy density to linear order in the off-shell

expansion is

E ≈ E (0) + E (1). (81)

The on-shell part is

E (0) =
∑

a

∫
k
ε f1 + 1

2

∑
a,b

∫
k,p

Vex(k, p, 0) f1 f2 (82)

and the off-shell part is

E (1) = 1

2

∑
a

∫
k,ω

[�<
1 (1 − f1) − �>

1 f1](ω + ε1)
℘′

ω − ε1
.

(83)

As we will see below, the on-shell part comes from quasipar-
ticle motion; the off-shell part contains collision contributions
of quasiparticles and correlated particles.

Substitution of �<
1 and �>

1 using (53) and (54) gives

E (1) = 1

2

∑
a,b

∫
k,p,q,�

{∣∣T R
sc (�)

∣∣2
2πδ(� − ε3 − ε4)

× [(1 − f1 − f2) f3 f4 − f1 f2(1 − f3 − f4)]

× (� + ε1 − ε2)
℘′

� − ε1 − ε2

}
. (84)

E (1) is symmetric with respect to 1↔2 combined with 3↔4;
the term associated with ε1 − ε2 must vanish. Thus, it is
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convenient to write E (1) in the manifestly symmetric form

E (1) = 1

2

∑
a,b

∫
k,p,q,�,�′

∣∣T R
sc (�)

∣∣2
2πδ(� − ε3 − ε4)

× [(1 − f1 − f2) f3 f4 − f1 f2(1 − f3 − f4)]

× 2πδ(�′ − ε1 − ε2)�
℘′

� − �′ . (85)

In terms of the two-particle functions G and A given in (64),
we write

E (1) = 1

2

∫
�,�′

Tr
[
A(�′)T R

sc (�)G<(�)T A
sc (�)

−G<(�′)Mex(�)
]
�

℘′

� − �′ . (86)

The second term inside the trace has been simplified using the
optical theorem Mex = T R

sc · A · T A
sc .

E (1) is further simplified using the Kramers-Kronig rela-
tions and the anticausal derived optical theorem as was done
for n(1)

a in Sec. IV. Using the Kramers-Kronig relations (67)
and (66) we write E (1) as a sum of two terms,

E (1) = 1

2

∫
�,q

Tr[G< · (Tex − Vex)]

+ 1

2

∫
�,q

�Tr

[
G< ·

(
∂Tex

∂�
− T A

sc · ∂G
∂�

· T R
sc

)]
, (87)

where the second line can be simplified with the anticausal
derived optical theorem (A20). Consequently, we have

E (1) = 1

2

∫
�,q

Tr
[
G< · (Tex − Vex)

]

+ Im
∫

�,q
�Tr

[
G< · T A

sc · A · ∂T R
sc

∂�

]
. (88)

Compared with (69), we see that the second term corresponds
to the correlated density.

At linear order of the off-shell correction,

E (1) = 1

2

∑
a,b

∫
k,p

f1 f2[Tex(ε1 + ε2, k, p, 0) − Vex(k, p, 0)]

+ 1

2

∑
a,b

∫
k,p,q

2πδ(ε1 + ε2 − ε3 − ε4)E f1 f2

× (1 − f3 − f4)Im

(
T A

sc (�) · ∂T R
sc

∂�

)∣∣∣∣
�=E

, (89)

where E = (ε1 + ε2 + ε3 + ε4)/2. The T matrix with q = 0
in the first line denotes interaction processes with zero deflec-
tion angle of the relative velocity of the two colliding particles.
The second integral of (89), as we expected, is the energy due
to noninstantaneous collisions; in terms of collision delay,

Ec = 1

2

∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× E f1 f2(1 − f3 − f4)�t . (90)

This term is analogous to the correlated density; it is the
correlated energy density. This is the energy contribution from
the colliding pairs during the effective collision time �t .

The quasiparticle energy density is the sum of E (0) given
in (82) and the Tex − Vex part of E (1) which is the first line of
(89). Thus,

Eq =
∑

a

∫
k

f1ε1 + 1

2

∑
a,b

∫
k,p

f1 f2Tex(ε1 + ε2, k, p, 0).

(91)

The T matrix within accounts for correlations with zero mo-
mentum transfer; the interaction time dependence is reflected
in the off-shell dynamics. Eq contains all the energy due to
quasiparticle dynamics, including the interaction with other
collision pairs as will be discussed in detail subsequently.

The total energy density of the system contains the domi-
nant part Eq and a correction from collisions Ec,

E = Eq + Ec. (92)

In nuclear matter, for instance, the collision contribution is
about 10% for the symmetric matter of normal density [71].
In ultracold gases, it is tunable via interaction potentials. In
the presence of interactions, the difference between E , Eq, and
〈ε〉 := ∫

k ε f rise as we will see in the following.
The quasiparticle energy defined from the singularity of the

spectral function is ε1 = ε1 + �1(ε1) where the self-energy
�1 is given by the convolution of the T matrix with the real
part of single-particle Green function G1, which we denote as
�1 = Tex · G<

1 − T <
ex · G1.

The self-energy of reference particle 1 is

�1(ω) ≈ �mf
1 (ω) + �HF′

1 + �
pair
1 (ω), (93)

which includes the mean-field, off-shell Hartree-Fock and pair
contributions.

The on-shell part of G<
1 gives

�mf
1 (ω) =

∑
b

∫
p
Tex(ω + ε2, k, p, 0) f2. (94)

This term contains part of the off-shell propagation of inter-
acting pairs included in the T matrix.

The off-shell part of G<
1 leads to the interaction with

background off-shell states,

�HF′
1 =

∑
b

∫
p,ω′

Tex(ω + ω′, k, p, 0)

× [G<
2 (ω′) − 2πδ(ω′ − ε2) f2]

≈
∑

b

∫
p
Vex(k, p, 0)(ρ2 − f2). (95)

Since �HF′
1 is a first-order correction of off-shell contribution

ρ − f , we use Tex ≈ Vex as in the Hartree-Fock approxima-
tion.

The pairing self-energy contains a contribution from inter-
action with other colliding pairs,

�
pair
1 (ω) = −

∑
b

∫
p,�

T <
ex (�, k, p, 0)

℘

� − ω − ε2
, (96)

where T <
ex = T R

sc · G< · T A
sc . We use

T <
ex (�, k, p, 0)≈

∫
q

∣∣T R
sc (�, k, p, q)

∣∣2
f3 f42πδ(�−ε3−ε4).

(97)
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Since we do not assume bounded pairs, this self-energy in-
cludes only binary interactions.

The Landau quasiparticle energy εL is the change in total
energy when adding a quasiparticle; for a time-independent
Hamiltonian it implies ∂tE = ∑

a

∫
k εL∂t f so that ∂tE can be

directly evaluated from the kinetic equation; obtaining the
energy balance equation is trivial. However, in the strongly
interacting case, the spectral function is not of the δ-function
form; more than only the quasiparticle peak must be consid-
ered. That is, inclusion of a Landau-type contribution

∂tEq|L =
∑

a

∫
k
ε1∂t f1 (98)

does not conserve the total energy; ∂tEq|L �= ∂tE . The differ-
ence εL − ε known as the rearrangement term [85,86] in nu-
clear physics, thus deforms quasiparticle trajectories in order
to mimic hydrodynamic consequences of nonlocal collisions.

In order to describe these hydrodynamical effects without
deforming quasiparticle trajectories, the energy and momen-
tum balance must be reconsidered, taking into account corre-
lated particles as we show below.

In what follows, we will show that at linear order the
power of the quasiparticle subsystem can be attributed to three
sources;

∂tEq ≈ ∂tEq|L + ∂tEq|c + ∂tEq|e. (99)

The terms represent the Landau-type contribution, the col-
lision energy gain, and the external-field energy gain. The
collision energy gain ∂tEq|c is the energy transferred from
the collision processes to quasiparticles. The external-field
energy gain ∂tEq|e corresponds to the response of free
quasiparticle to external fields, and the correlated effect to
the interaction between particles. Like the self-energy (93),
the Landau-type contribution is expected to contain three
terms:

∂tEq|L ≈ ∂tEq|L;mf + ∂tEq|L;HF′ + ∂tEq|L;pair. (100)

We calculate ∂tEq using (91), and will identify each contri-
bution listed in (99):

∂tEq =
∑

a

∫
k

f1∂tε1 (101a)

+
∑

a

∫
k

∂ f1

∂t

(
ε1 +

∑
b

∫
p
Tex f2

)
(101b)

+ 1

2

∑
a,b

∫
k,p

f1 f2
∂Tex

∂t

∣∣∣∣
�=ε1+ε2

(101c)

+ 1

2

∑
a,b

∫
k,p

f1 f2
∂Tex

∂�

∣∣∣∣
�=ε1+ε2

(∂tε1+∂tε2). (101d)

In the following we shall refer to the four rows on the
right side of (101) as expressions (101a), (101b), (101c), and
(101d), and we shall also use similar notation in referring to
other expressions.

Expression (101a) is part of ∂tEq|e; it represents the single-
particle kinetics in response to external fields excluding the
particle-particle interactions. The effect from the dynamics

of interaction between particles is encoded in the T matrix
coming from (101c) and (101d).

Expression (101b) represents the mean-field part of the
Landau-type contribution;

∂tEq

∣∣
L;mf =

∑
a

∫
k

(
ε1 + �mf

1 (ε1)
)
∂t f1. (102)

More complicated is expression (101c); to identify the
contributions within, we use the time-derived optical theorem

∂Tex

∂t
= T R

sc ·
(

∂G
∂t

− ∂V−1

∂t

)
· T A

sc

+ i

2

(
T R

sc · A · ∂T A
sc

∂t
− ∂T R

sc

∂t
· A · T A

sc

)
, (103)

where V accounts for time-dependent interactions, as shown
in Appendix A 3. In terms of the T -matrix element used in the
collision integral,

∂Tex

∂t
(�, k, p, 0) = −

∫
q

∣∣T R
sc

∣∣2
∂tV−1 (104a)

−
∫

q

∣∣T R
sc

∣∣2
2πδ(� − ε3 − ε4)2�E (1 − f3 − f4)

(104b)

+
∫

q

∣∣T R
sc

∣∣2
(1 − f3 − f4)(∂tε3 + ∂tε4)

℘′

� − ε3 − ε4

(104c)

−
∫

q

∣∣T R
sc

∣∣2
(∂t f3 + ∂t f4)

℘

� − ε3 − ε4
. (104d)

Expression (104a) enters expression (101c) and gives the
dominant contribution of the interactions between particles in
∂tEq|e.

Expression (104b) corresponds to a phase shift of the T
matrix transferring energy �E from collision processes to
quasiparticles;

∂tEq|c = −
∑
a,b

∫
k,p,q

|Tsc|22πδ(� − ε3 − ε4)

×�E f1 f2(1 − f3 − f4). (105)

The two contributions (104c) and (104d) come from the
time derivative of G which includes the effect of interactions
between quasiparticles and colliding pairs. Using expression
(104d), we are able to identify the ∂tEq|L;pair contribution in
(101);

∂tEq

∣∣
L;pair = −1

2

∑
a,b

∫
k,p,q,�

∣∣T R
sc

∣∣2
2πδ(� − ε1 − ε2)

× f1 f2(∂t f3 + ∂t f4)
℘

� − ε3 − ε4

=
∑

a

∫
k
�

pair
1 (ε1)∂t f1. (106)

The last equality can be obtained by renaming variables 1↔3
and 2 ↔ 4 for the term with ∂t f3, and 1 ↔ 4 and 2 ↔ 3 for
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the term with ∂t f4. This pairing energy is the contribution of
the colliding pairs coming from the correlated function of the
T matrix.

Making use of expression (104c) in (101c) and combining
with (101d) we can identify the off-shell contribution

F =
∑

a

∫
k
(ρ1 − f1)∂tε1. (107)

Here we have used relations between two-particle correlators
derived in Appendix B. We use ε ≈ ε + Vex f to decompose
the quantity (107) into three parts:

F ≈
∑

a

∫
k
(ρ1 − f1)∂tε1 (108a)

+
∑
a,b

∫
k,p

(ρ1 − f1)Vex∂t f2 (108b)

+
∑
a,b

∫
k,p

(ρ1 − f1) f2∂tVex. (108c)

Now (108a) and (108c) are attributed to ∂tEq|e and (108b) is
a Landau-type contribution, containing the off-shell Hartree-
Fock self-energy. After exchanging 1 ↔ 2, we have

∂tEq|L;HF′ =
∑

a

∫
k
�HF′

1 ∂t f1. (109)

At this stage, we have shown that the Landau-type contribu-
tion is the sum of (102), (106), and (109).

Finally, all the terms related directly to the external fields
can be collected:

∂tEq|e =
∑

a

∫
k
ρ1∂tε1 + 1

2

∑
a,b

∫
k,p

ρ12∂tV, (110)

where the two-particle density matrix is

ρ12 =
∫

q

{
Ûsc[ f2(ρ1 − f1)+ f1(ρ2− f2)]Ûsc+

∣∣T R
scV−1

∣∣2
f3 f4

}
.

(111)

The ρ1 term of (110) is the sum of (101a) and (108a). The
ρ12 term is obtained from (101c), using (104) and (108c). The
off-shell contribution with antisymmetrization operators Ûsc

is transferred from the interaction potential to the two-particle
density matrix, ÛscT R

sc = T R
ex. Further details can be found in

Appendix C.
We have shown that the time derivative of the quasiparticle

energy density is indeed the form given in (99). The Landau-
type contribution ∂tEq|L follows from the drift of quasiparti-
cles. ∂tEq|c is the energy gain during collisions, the summation
of small energy changes in collision processes. ∂tEq|e has the
expected structure of the energy of the external sources, as we
can see by comparing (110) with (75). As we expect, the time
derivative of the Hamiltonian is the only external contribution
to the change of the total energy density ∂tE .

B. Energy balance

The balance equation for energy can be obtained from the
nonlocal kinetic equation (24);∑

a

∫
k
ε1

df1

dt
= Sε(r, t ). (112)

The left side can be written with the Landau-type contribution
(98) where jq

ε is the energy flux of quasiparticles,

jq
ε =

∑
a

∫
k
ε1 f1∇kε1. (113)

The right side of the balance equation is the energy contri-
bution from collision events,

Sε(r, t ) =
∑
a,b

∫
k,p,q

(ε1W̄3412 − ε1W̃1234). (114)

The method of interchanging initial and final states has
been discussed in Sec. IV A using the transformation X
defined in (29), and we can thereby calculate the energy
contribution from the collision processes, obtaining

Sε =
∑
a,b

∫
k,p,q

{(ε̃3 − ε̃1)W̃1234 − ∂t (�t ε̃3W̃1234)

−∇r · (�(3)ε̃3W̃1234)}. (115)

Comparing with the collision contribution of the particle
number (40), we see that the additional term with ε̃3 − ε̃1

appears as the energy input from the external fields.
We can see from the form of the collision integral that en-

ergy is conserved among particles save for the �E correction.
By interchanging particles under the summation of a and

b, we will show explicitly this compensation in the energy
balance equation of the nonlocal kinetic equation. This inter-
change is

Y :=
⎧⎨
⎩

a ↔ b
k ↔ p.
q → −q

(116)

Now, we require a symmetric T matrix;

YT R
sc = T R

sc . (117)

Accordingly, the scattering phase shift φ = Y φ, and the
derivatives of the phase is

Y ∇kφ=∇pφ, Y ∇pφ=∇kφ, Y ∇qφ=−∇qφ. (118)

On the energy shell these derivatives imply

Y �(2) = −�(2), Y �(3) = �(4) − �(2),

Y �(4) = �(3) − �(2). (119)

The �t , �E , and �K remain unchanged under Y transforma-
tion. χ is transformed to

Y χ = χ − ∇r · �(2). (120)

At linear order in gradient correction,

Y ε̃1 = P ε̃2 = ε(b, p, r, t ),

Y ε̃2 = P ε̃1 = ε(a, k, r − �(2), t ),

Y ε̃3 = P ε̃4 = ε(b, k + p + �K , r + �(4) − �(2), t + �t ),

Y ε̃4 = P ε̃3 = ε(a, k − q + �K , r + �(3) − �(2), t + �t ),

where we have used a linear operator for the shift

P = 1 − �(2) · ∇r ; (121)
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Y f̃n is of similar form. Since the T matrix is centered between
initial and final states,

Y T̃ R
sc = PT̃ R

sc . (122)

Next we calculate

Y [(ε̃3 − ε̃1)W̃1234] = (ε̃4 − ε̃2)W̃2143

−∇r · [�(2)(ε̃4 − ε̃2)W̃2143]. (123)

In obtaining this expression, divergence of �(2) follows from
χ while other gradients follow from P .

Using (115) and (123) to express Sε,

Sε ≈ 1

2

∑
a,b

∫
k,p,q

{(ε̃3 + ε̃4 − ε̃1 − ε̃2)W̃1234 (124a)

−∇r · [(ε3�(3) + ε4�(4) − ε2�(2) )W̃1234] (124b)

− ∂t [(ε3 + ε4)�tW̃1234]}. (124c)

Looking first at (124a), we use

1
2 (ε̃3 + ε̃4 − ε̃1 − ε̃2)W̃1234 = �EW̃1234; (125)

to identify the integral as the −∂tEq|c term defined in (105).
Unlike the corresponding term in the collision contribution
of the particle number, which is zero, this term arises due to
energy exchange of colliding pairs with the background. This
contribution is affected by time-dependent external fields, in
particular it can be enhanced by increasing the strength of
interactions and the rate of change.

Expressions (124b) and (124c) are of linear order in the
� shifts; we can approximate W̃1234 = W1234. The divergence
term in (124b) can be written as −∇r · jc

ε where

jc
ε = 1

2

∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× (ε3�(3)+ε4�(4)−ε2�(2) ) f1 f2(1− f3− f4). (126)

We write ε3 + ε4 ≈ E , so that the time derivative term in (124)
can be written as −∂tEc, in terms of Ec defined in (90).

Consequently the energy balance (112) takes the form

∂tEq|L + ∇r · jq
ε = −∂tEq|c − ∂tEc − ∇r · jc

ε. (127)

To obtain the familiar form of conservation laws, we write it
in terms of the total energy density E = Eq + Ec discussed in
Sec. V A and the total energy flux defined as

jε = jq
ε + jc

ε. (128)

We thereby obtain the concise energy conservation law

∂tE + ∇r · jε = ∂tEq|e, (129)

which is our main result of this section.
The conservation law (129) features a driven term on the

right side which is the externally driven quasiparticle energy
given by (110). In the case of time-independent Hamiltonian,
the driven term vanishes and the law reduces to a usual
continuity equation.

The energy density described by this local conservation
law corresponds to the value obtained from Green functions

in the T -matrix approximation and linear approximation of
off-shell motion. The off-shell contribution is the first step
beyond the standard quasiparticle approximation based on
Feynman diagrams.

As we have seen from (105) and expression (124a), quasi-
particles can exchange energy with colliding pairs, but the to-
tal energy balance must be satisfied. The quasiparticle energy
must therefore be consistent with gradient corrections to the
collision integral. Briefly, in the nonlocal theory the scattering
rates and the quasiparticle energies are no longer independent
parameters.

For the case of time-dependent Hamiltonian the driven
term acts as a source term, transferring energy into the system.
While usual effects of external scalar and vector potentials are
well understood, less is known about effects due to such a
field controlling the interaction; for example one such effect
might be the temperature evolution given a slow ramp of
the magnetic field producing increasing interaction strength.
The nonlocal Boltzmann equation allows one to study such
adiabatically slow processes.

VI. HYDRODYNAMICS

To complete our set of hydrodynamical equations, we
derive the Cauchy momentum equation, and subsequently
convert this to the Navier-Stokes equation. Since we do not
employ phenomenological relations for the static pressure,
we keep the stress tensor in a compact form. Accordingly,
we derive, at linear approximation, the constitutive equations
which relate the stress tensor to the pressure and velocity for
a Newtonian liquid.

The diagonal components of the stress tensor are propor-
tional to the pressure, and contain the compressibility deter-
mining the density profile of trapped Fermi systems [17–21],
nuclear matters in nucleus [22,23], neutron stars [24,25], and
supernova [26]. The off-diagonal components of the stress
tensor are shear viscosity components.

The viscous effects that lead to the shear stresses are of
recent interest in nuclear physics [17,27–32]. In [87] it is
conjectured that, determined by quantum considerations, the
minimum value of the ratio of viscosity to entropy is located
at the transition point of condensation. This reduction of
viscosity of normal liquid when approaching the transition
point is also drawing attention in the field of ultracold atoms
[33–38].

To demonstrate how nonlocal corrections affect the shear
viscosity, in Sec. VI B we limit our attention to small depar-
tures from local equilibrium and derive the shear viscosity
to linear order in this perturbation. In the relaxation-time
approximation for s-wave scattering we show that the effect
of the collision delay can be recast as an effective relaxation
time.

A. Momentum balance

Using the nonlocal kinetic equation (24), we write the
balance equation for momentum,

∑
a

∫
k

k
df1

dt
= SK (r, t ), (130)
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where the collision contribution SK is

SK =
∑

a

∫
k

kI1[ f ; �]. (131)

The drift part of (130) contains time- and space-derivative
terms; as we expect, this is similar to the other two balance
equations discussed above. In the present case there is an
additional force term:

∑
a

∫
k

k
df1

dt
= ∂t Qq + ∇r · Jq − f . (132)

Here the momentum density of quasiparticles is

Qq =
∑

a

∫
k

k f1, (133)

and the momentum flux of quasiparticles is

Jqi j =
∑

a

∫
k

k j f1
∂ε1

∂ki
(134)

in the standard form from the Boltzmann theory. The remain-
ing force term is not in the form of a divergence:

f =
∑

a

∫
k

f1(−∇rε1). (135)

This term behaves as a force accelerating a quasiparticle of
energy ε1.

As in the previous section in the case of energy conserva-
tion, we decompose the force term:

f = −∇r〈ε〉 + ∇rEq

∣∣
L. (136)

The first term is an average of quasiparticle energy defined as

〈ε〉 =
∑

a

∫
k
ε1 f1; (137)

the second term is the Landau-type quasiparticle contribution

∇rEq

∣∣
L =

∑
a

∫
k
ε1∇r f1, (138)

which is a contribution to the total force on quasiparticles

∇rEq = ∇rEq|L + ∇rEq|c + ∇rEq|e. (139)

(139) is obtained by following the derivation of ∂tEq shown
in Sec. V A. We anticipate that the force contributions of
the drift appear together with the collision contributions and
only their combination yields the momentum conservation
law.

As we have seen, the collision contribution to the momen-
tum balance must be entirely due to gradient corrections. To
demonstrate cancellation of the nongradient parts of collision
terms (131), we again make use of our X and Y transforma-
tions, using

X (kW̄3412) = (k − q)W̄1234. (140)

Substituting into SK , we have

SK =
∑
a,b

∫
k,p,q

W̃1234(�K − q)

−∇r ·
∑
a,b

∫
k,p,q

�(3)W̃1234(k − q)

− ∂

∂t

∑
a,b

∫
k,p,q

�tW̃1234(k − q). (141)

As before, to achieve a more symmetric expression we apply
Y ; then

SK ≈ −∂t Qc − ∇r · Jc + ∇rEq|c. (142)

The momentum density due to the nonlocal corrections is

Qc = 1

2

∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× (k + p)�t f1 f2(1 − f3 − f4) (143)

representing the momentum carried by colliding particles.
The corresponding correlated-particle momentum flux has
elements

Jci j = 1

2

∑
a,b

∫
k,p,q

{∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× [(k j − q j )�(3)i + (p j + q j )�(4)i − p j�(2)i]

× f1 f2(1 − f3 − f4)
}
. (144)

This describes the transfer of momentum during the colli-
sion. The momentum k is carried by the type-a particle over
distance �(3), while the p is carried by the type-b particle
over �(4) − �(2). During the interaction, momentum q is
transferred over distance �(4) − �(3) from the type-a to the
type-b particle. The collision momentum gain

∇rEq|c =
∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

×�K f1 f2(1 − f3 − f4) (145)

collects small changes in total momentum of colliding quasi-
particles. These might result from external and background
forces acting on single-particle states during collision, from
external effect on the interaction potential, and from back-
ground effects on two-particle correlation in internal states of
the collision.

The collision momentum gain (145) and the Landau-type
term (138) can be merged together, leaving the mean external
force transferring momentum into the system via coupling
with quasiparticles,

∇rEq|e =
∑

a

∫
k
(ρ1∇rε1) + 1

2

∑
a,b

∫
k,p

(ρ12∇rV ). (146)

The Wigner distribution ρ1 and the two-particle reduced den-
sity matrix ρ12 are taken to the proper order to keep ∇rEq|e
consistent in the linear order of the gradient corrections.

From (139) and (130) we obtain the momentum balance

∂t Q + ∇r · J = −∇rEq|e. (147)
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The total momentum density Q is composed of parts from
quasiparticles and collision states,

Q = Qq + Qc. (148)

The total flux of momentum has components

Ji j = Jci j + Jqi j + (〈ε〉 − Eq)δi j . (149)

The major contribution of the 〈ε〉 − Eq term is from the
Hartree-Fock self-energy; this term is zero in the absence of
interaction. The pressure is p = − 1

3 (J11 + J22 + J33).
It has been shown that nonlocal theory with collision

duration gives results in agreement with the second order
viral expansion [54]. The off-diagonal components, for a
Newtonian liquid, are proportional to the spatial derivatives of
velocity; we will calculate the shear viscosity for an isotropic
system in the next section.

B. Shear viscosity

We consider a system near a local equilibrium with a
steady-state velocity field u(r). We make an expansion in
terms of ∇ru which we assume to be small. With a standard
approach for small perturbations,

f̄n = f̄ 0
n + δ fn (150)

for the distribution of a colliding particle n close to the local
equilibrium

f̄ 0
n =

[
exp

(
ε̄n − k̄n · ūn − μ̄n

T̄n

)
+ 1

]−1

. (151)

The shift notation λ̄ is as in (7), and ūn = u(r̄n) and μ̄n =
μ(r̄n). A plausible form of δ fn near the equilibrium is

δ fn = f̄ 0
n

(
1 − f̄ 0

n

)
�n, (152)

where �n is proportional to ∇ru.
To avoid the Bernoulli term, at linear approximation, we

use a coordinate system such that u(r) = 0 at the coordinate
position r of particle 1 (which therefore does not change);
this comoving frame is an approximately inertial coordinate
choice in our case, since the time scale of the velocity field is
much smaller than the time scales associated with collisions.
The formalism developed in earlier sections can be applied
in the comoving frame. This can also be expressed by noting
that the leading correction to the Bernoulli term is at quadratic
order in the velocity gradient. The local velocity at particle 3
is u(r − �(3) ) = −(∇ru)�(3) �= 0. We approximate temper-
ature T̄n and chemical potential μ̄n with constant T and μ

respectively.
Insertion of these ingredients into the linearized kinetic

equation, we have, in steady state,

(∇kε1) · (∇r f 0
1

) − (∇rε1) · (∇k f 0
1

) = I1[ f ; �], (153)

where the collision integral I1 = Ī (in)
1 − Ī (out)

1 is divided into

Ī (in)
1 =

∑
b

∫
p,q

{∣∣T R
sc

∣∣2
(1 − χ )2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4)

× [
1 − f̄ 0

1 �1 − f̄ 0
2 �2 + (

1 − f̄ 0
3

)
�3 + (

1 − f̄ 0
4

)
�4

]
× (

1 − f̄ 0
1

)(
1 − f̄ 0

2

)
f̄ 0
3 f̄ 0

4

}
(154)

and

Ī (out)
1 =

∑
b

∫
p,q

{∣∣T R
sc

∣∣2
(1 − χ )2πδ(ε̄1 + ε̄2 − ε̄3 − ε̄4)

× [
1 − f̄ 0

3 �3 − f̄ 0
4 �4 + (

1 − f̄ 0
1

)
�1 + (

1 − f̄ 0
2

)
�2

]
× (

1 − f̄ 0
3

)(
1 − f̄ 0

4

)
f̄ 0
1 f̄ 0

2

}
, (155)

where �E = 0.
At first order in gradient corrections, the Pauli factor in the

two scattering events has a simple relation,(
1 − f̄ 0

1

)(
1 − f̄ 0

2

)
f̄ 0
3 f̄ 0

4 = (
1 − f̄ 0

3

)(
1 − f̄ 0

4

)
f̄ 0
1 f̄ 0

2 (1 − ζ ),

(156)

with the correction from nonlocality,

ζ = 1 − exp

[
− k̄1 · ū1 + k̄2 · ū2 − k̄3 · ū3 − k̄4 · ū4

T

]

≈ ∇ru
T

· [p · �(2) − (k − q) · �(3) − (p + q) · �(4)].

(157)

Here we have used that local velocity is zero so that �K · u =
0. We realize from

I1[ f ; �] = −
∑

b

∫
p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× f 0
1 f 0

2

(
1 − f 0

3

)(
1 − f 0

4

)
× (�1 + �2 − �3 − �4 + ζ ) (158)

that the collision integral is of the form I[�] + I[ζ ]. The
linearized kinetic equation (153) reduces to

I1[�] = 1

T
f 0
1

(
1 − f 0

1

)
k · ∇ru · ∇kε1 − I1[ζ ]. (159)

The system is driven by the gradient of local velocity in two
ways: drift of quasiparticles and the nonlocal character of
collisions (within term I[ζ ]).

The collision stress tensor Jc and the part of the quasipar-
ticle Jq driven by the collision source I[ζ ] make together a
collision contribution to the shear viscosity. To demonstrate
how they combine we adopt approximations, following [33],
which allow for an analytic solution in an isotropic system
with s-wave scattering.

At low temperatures the effective mass m∗ at the Fermi
velocity is defined as ∇kε1 = k/m∗, by which (159) is written
as

I1[�] = f 0
1

(
1 − f 0

1

)
m∗T

k · ∇ru · k − I1[ζ ]. (160)

In the relaxation-time approximation [33],

I1[�] = −δ f1

τ1
= −�1

τ1
f 0
1

(
1 − f 0

1

)
(161)

with the relaxation time

1

τ1
=

∑
b

∫
p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× f 0
2

(
1 − f 0

3

)(
1 − f 0

4

)
. (162)
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Here we assumed that integrals over �n for n = 2, 3, 4 lead to
thermalization and thus their contributions are negligible. The
kinetic equation (160) differs from the one used in [33]; we
include the corrections due to interactions in the quasiparticle
velocity and the collision integral.

In the case of s-wave scattering, the � shifts reduce to
�(2) = 0 and �(4) = �(3) = (k + p)�t/(2m∗), and the cor-
rection (157) simplifies to

ζ = − �t

2m∗T
(k + p) · ∇ru · (k + p). (163)

The off-diagonal components of the shear ∇ru are all
nonzero; terms proportional to p2

x, p2
y, and p2

z are zero in ζ .
Contributions proportional to p thus vanish under integra-

tion in (158), and we have

I1[ζ ] = κ1
f 0
1

(
1 − f 0

1

)
m∗T

k · ∇ru · k (164)

with

κ1 = 1

2
(
1 − f 0

1

) ∑
b

∫
p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

×�t f 0
2

(
1 − f 0

3

)(
1 − f 0

4

)
. (165)

We obtain from (160) the perturbation as

�1 = −(1 − κ1)
τ1

m∗T
k · ∇ru · k, (166)

which includes a local and a nonlocal contribution; the nonlo-
cal correction is proportional to �t .

For simplicity we consider a steady flow near r = 0. u(r) =
(αy, 0, 0) so the perturbation is

�1 = −(1 − κ1)
ατ1

m∗T
kxky. (167)

In the following we calculate the total momentum flux
J = Jq + Jc due to the perturbation near the equilibrium.
In the linear approximation, we see from (144) that the
diagonal components of Jc come from the local equilibrium
distributions, while the off-diagonal components come from
the nonequilibrium distribution,

Jcxy = 1

4m∗
∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× (ky + py)(kx + px )�t f1 f2(1 − f3 − f4). (168)

Using X and Y transformation, the off-diagonal components
corresponding to (167) reduce to

Jcxy = α

2m∗2T

∑
a,b

∫
k,p,q

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4)

× τ1k2
x k2

y �t f 0
1

(
1 − f 0

1

)[
f 0
3 f 0

4 − f 0
2

(
1 − f 0

3 − f 0
4

)]
.

(169)

Similarly, from (134), the corresponding off-diagonal compo-
nent of Jq is dependent on the nonequilibrium distribution

Jqxy = 1

m∗
∑

a

∫
k

kykx f1 (170)

so that

Jqxy = − α

m∗2T

∑
a

∫
k

k2
y k2

x f 0
1

(
1 − f 0

1

)
τ1(1 − κ1). (171)

The total off-diagonal stress is

Jxy = − α

m∗2T

∑
a

∫
k

k2
x k2

y f 0
1

(
1 − f 0

1

)
τ1(1 − K1). (172)

Here, the final result appears as a correction due to particle
interactions which produces the collision duration,

K1 =
∑

b

∫
p,q

�t

∣∣T R
sc

∣∣2
2πδ(ε1 + ε2 − ε3 − ε4) f 0

2 f 0
3 f 0

4 .

(173)

Alternatively, this term can be interpreted as an effective
quasiparticle lifetime τef = τ (1 − K) reminiscent of the re-
lation between the relaxation time of viscosity and the mean-
free time of quasiparticle studied in [30]. However, the present
result is rather different from the viscosity affected by the
finite range interaction studied in [88]. For a positive collision
delay, K is positive and the viscosity is reduced. For a negative
collision delay, which can be used as an approximation of the
nonlocality in hard-sphere-type collisions [54], K is negative
and viscosity increases in agreement with Enskog theory of
hard-sphere gas [89].

The stress tensor (149) also combines Landau and nonlocal
terms. The drift stress as well as all diagonal components
are known from the Landau theory. One must expect that
a different definition of the quasiparticle energy might lead
to different quantitative results, but this difference likely be-
comes invisible for simulations with a fitted interaction. More
observable is our genuinely nonlocal collision stress tensor
(144) which modifies the material properties like the shear
viscosity. As demonstrated in Sec. VI B, the collision stress
and nonlocal effect together affect the quasiparticle response
to the external fields or boundary conditions.

We have written down a term representing the force acting
on colliding pairs via space-modulated binary interaction
contained in the second term of (146). In terms of only system
variables, this force does not respect Newton’s law of action
and reaction, but it is a result of the nontrivial interaction
which arises with external fields.

The problem of compressibility and viscosity has been
discussed extensively within the nuclear physics community.
Access to nuclear matter is restricted either by the very small
size of nuclei or by very large distances to astronomical
objects. There is a hope that studies of ultracold Fermi gases
can shed some light on the relation between dynamics of
highly nonequilibrium states and thermodynamic properties.
The regime of interest in such cases is not the extreme unitary
limit but one of interaction of moderate strength; in such
a regime the quasiparticle picture with corrections for the
off-shell motion is permissible.

VII. DISCUSSION

We have shown that the nonlocal Boltzmann equation with
nonzero collision duration in the collision integral, consoli-
dated with the microscopic theory at linear order in the off-
shell contribution of the spectral function, does not violate
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conservation laws of mass, energy, or momentum. Along with
the usual dressing of particles as quasiparticles, these off-shell
contributions include a genuine two-particle motion which
appears in internal dynamics of collisions.

As a result of noninstantaneous collision, the � shifts
in time, space, momentum, and energy account for particle
interactions in terms of the phase shift of the T matrix. Corre-
lated particles, which are particles in collisions with kinetics
different from that of quasiparticles, emerge with increasing
collision rate resulting in the reduction in quasiparticles.
Consequently, the subsystem of quasiparticles alone does not
satisfy conservation laws; the conserved quantities consist of
the contributions from correlated particles and quasiparticles.

In the three balance equations, the � shift in time shows up
in the relevant densities of correlated particles; the � shifts in
space show up in the relevant flux quantities. We have shown
that the kinetic equation describes the external power supply
in a manner consistent with general expectations inherent in
the quantum statistical approach. The momentum and energy
conservation laws are valid only when the quasiparticle energy
includes effects of colliding pairs. Unlike in all previous
kinetic equations of the Boltzmann type, in our nonlocal
kinetic equation the quasiparticle energies and the collisions
(rates and the � shifts) cannot be handled as independent
parameters subject to fitting.
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APPENDIX A: OPTICAL THEOREM

We assume that T R includes only direct processes, defined
as those allowed for distinct particles, and we describe the
exchange in the momentum representation.

1. Exchange processes

Inside the T matrix, k, p, and q represent that particles
initially in states k and p end in states k − q and p + q. If
a = b, their exchange k → p + q and p → k − q leads to
a state which interferes with the direct process when the
transferred momentum depends on the momentum difference
of initial states,

T R
ex (k, p, q) = T R(k, p, q) − δabT R(k, p, k − p − q), (A1)

where T R includes direct processes allowed for distinct parti-
cles. The T matrix also depends on �, r, and t , but as these are
unimportant in the present discussion, we write the exchange
channel as

↔
T R(k, p, q) = T R(k, p, k − p − q). (A2)

For the direct channel the scattering rate depends on the
product T RT A = |T R|2. The exchange can be made either in

the retarded or the advanced T matrix, but exchange in both
leads to double counting in the direct as well as the exchange
channel. To make the scattering rate symmetric with respect
to the retarded and advanced T matrices, one defines

T R
sc = (1 − δab)T R + 1√

2
δab(T R −

↔
T R). (A3)

We express antisymmetrization of T using an operator Ûsc

which we shall write concretely in (A15),

T R
sc = ÛscT R = T RÛsc. (A4)

Using this operator we can obtain the exchange T matrix

ÛscÛscT R = ÛscT R
sc

= (1 − δab)T R
sc + 1√

2
δab

(
T R

sc −
↔
T R

sc

)

= T R
ex, (A5)

where we have used

↔↔
T R = T R.

2. Causal and anticausal optical theorem

Particle-number conservation in the present case is guaran-
teed by the optical theorem

Mex = T R
sc · A · T A

sc . (A6)

The imaginary part of the T matrix M = i(T R − T A) repre-
sents the scattering out process; the square of the scattering
T matrix and the two-particle spectral function A = i(GR −
GA) have the structure associated with scattering in. In the
momentum representation the advanced T matrix T A is the
complex conjugate of T R; this is true for all such advanced
functions.

For the ladder approximation of the T matrix,

T R = V + V · GR · T R, (A7)

the derivation is straightforward. From T −1
R = V−1 − GR it

follows that i(T −1
R − T −1

A ) = −A. Therefore

M = −iT R · (
T −1

R − T −1
A

) · T A = T R · A · T A. (A8)

Finally we multiply (A8) from left and right with operators of
antisymmetrization arriving at the optical theorem (A6).

The anticausal optical theorem results from analogous
steps

M = −iT A · (
T −1

R − T −1
A

) · T R = T A · A · T R. (A9)

As above we multiply Eq. (A9) by antisymmetrizing opera-
tors,

Mex = T A
sc · A · T R

sc . (A10)

The equivalence of the causal and anticausal versions of the
optical theorem implies that linear gradient corrections to the
optical theorem vanish.

3. Derived optical theorems

The real part of the T matrix T = 1
2 (T R + T A) satisfies

Tex = T R
sc · (V−1 − G) · T A

sc , (A11)
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where G = 1
2 (GR + GA) is the real part of the two-particle

Green function. The derivation is analogous to the above,

T = 1
2 (T R + T A) = T R · 1

2

(
T −1

R + T −1
A

) · T A

= T R · (V−1 − G) · T A, (A12)

and antisymmetrization gives the identity (A11).
The identity (A11) has no straightforward physical mean-

ing and there is no common name for it. As far as the
authors know, the identity (A11) itself is rarely used. Its
energy derivative, however, has been presented by a number
of authors under different names. We use the name derived
optical theorem introduced by Zimmermann and Stolz [69].

Let us take the energy derivative of identity (A11),

∂Tex

∂�
= ∂T R

sc

∂�
· (V−1−G) · T A

sc +T R
sc · (V−1−G) · ∂T A

sc

∂�

− T R
sc · ∂G

∂�
· T A

sc . (A13)

To rearrange the first and second terms, we write

V−1 − G = V−1 − GA + i

2
A = V−1 − GR − i

2
A, (A14)

and use the concrete representation

T R
sc · (V−1 − GR) = Ûsc, (V−1 − GA) · T A

sc = Ûsc. (A15)

Since Ûsc does not depend on the energy �, from antisym-
metrization (A5) directly follows

∂T R
sc

∂�
· Ûsc = ∂T R

ex

∂�
, Ûsc · ∂T A

sc

∂�
= ∂T A

ex

∂�
. (A16)

Making use of (A14)–(A16), the first and the second terms of
(A13) can be rearranged as

∂T R
sc

∂�
· (V−1 − G) · T A

sc + T R
sc · (V−1 − G) · ∂T A

sc

∂�

= 2
∂Tex

∂�
+ i

2

∂T R
sc

∂�
· A · T A

sc − i

2
T R

sc · ∂T A
sc

∂�
. (A17)

Substituting from (A17) into (A13) we immediately obtain the
causal derived optical theorem

∂Tex

∂�
− T R

sc · ∂G
∂�

· T A
sc

= − i

2

∂T R
sc

∂�
· A · T A

sc + i

2
T R

sc · A · ∂T A
sc

∂�
. (A18)

Proofs of identity (A18) can also be found in [69] and [16].
As before, in (A12) we can interchange retarded and

advanced T matrices arriving at the anticausal expression for
the real part of the T matrix,

T = 1
2 (T R + T A) = T A 1

2 · (
T −1

R + T −1
A

) · T R

= T A · (V−1 − G) · T R, (A19)

which yields the anticausal derived optical theorem

∂Tex

∂�
− T A

sc · ∂G
∂�

· T R
sc = i

2

∂T A
sc

∂�
· A · T R

sc − i

2
T A

sc · A · ∂T R
sc

∂�
.

(A20)

Comparing to the causal form (A18), the opposite sign on the
right side is a consequence of the antisymmetry of the spectral
function A with respect to retarded and advanced functions.

Of course the two forms of the derived optical theorem yield
the same linear gradient corrections.

Similarly, the time derivative of the identity (A11) gives the
time-derived optical theorem. It parallels the derived optical
theorem (A18) and (A20) in which ∂� stands in the place
of ∂t and the second term on the left side is simplified via
∂�V = 0. The derivations of the two time-derived optical
theorems follow identical steps; we have the causal form

∂Tex

∂t
+ T R

sc · ∂ (V−1 − G)

∂t
· T A

sc

= i

2
T R

sc · A · ∂T A
sc

∂t
− i

2

∂T R
sc

∂t
· A · T A

sc , (A21)

and the anticausal form

∂Tex

∂t
+ T A

sc · ∂ (V−1 − G)

∂t
· T R

sc

= i

2

∂T A
sc

∂t
· A · T R

sc − i

2
T A

sc · A · ∂T R
sc

∂t
. (A22)

APPENDIX B: OFF-SHELL CONTRIBUTION
TO DERIVATIVES

Here we show that (107) can be rearranged into the sum
of expressions (101d) and (104c) in (101c). The Wigner
distribution ρ1 = ∫

ω
G<

1 (ω) in the extended quasiparticle ap-
proximation yields

F =
∑

a

∫
k,ω

∂ε1

∂t

(
2πδ(ω−ε1) f1

∂�1(ω)

∂ω
+ �<

1 (ω)
℘′

ω − ε1

)
.

(B1)

The integrand differs from the integrand of the correlated
density (58) by the factor ∂tε1. Following the same steps as
in Sec. IV B, we arrive at

F =
∫

�

Tr

[
C · ∂Tex

∂�
· G< − G< · T A

sc · ∂G
∂�

· C · T R
sc

]
, (B2)

with

Ci j = 1

2

(
∂εi

∂t
+ ∂ε j

∂t

)
. (B3)

Using G<
12(z) = 2πδ(z − ε1 − ε2) f1 f2 one finds that the first

term in the trace in (B2) yields expression (101d). From
A34(z) = 2πδ(z − ε3 − ε4)(1 − f3 − f4) and the Kramers-
Kronig relation (67) follows the real part of the Green function
∂�G34 = −(1 − f3 − f4)℘′/(� − ε3 − ε4) so that the second
term in the trace in (B2) produces the contribution of (104c)
in (101c).

APPENDIX C: TWO-PARTICLE DENSITY MATRIX

In the T -matrix approximation the two-particle density
matrix ρ12 = ∫

�
G<

12(�) is the energy integral of the two-
particle Green function,

G<(�)= Ûsc · [1 + GR(�) · T R(�)]
∫

ω

G<(� − ω) · G<(ω)

· [1 + T A(�) · GA(�)] · Ûsc. (C1)
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Taking the on-shell approximation of correlation functions
G< one obtains the first term of the two-particle reduced
density matrix (111). For off-shell corrections to G< we can

neglect the correlations represented by the ladder, writing
1 + T A(�)GA(�) ∼ 1. This yields the second and third terms
of (111).
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