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Powerful harmonic charging in a quantum battery
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We consider a harmonic charging field as an energy charger for the quantum battery, which consists of an
ensemble of two-level atoms. The charging of noninteracting atoms is completely fulfilled, which exhibits a
substantial improvement over previous static charging fields. Involving the repulsive interactions of atoms, the
fully charging is achieved with shorter charged period over the noninteracting case, yielding an advantage for
the charging. Excluding the charging field, a quantum phase transition is induced by the attractive atom-atom
interactions, and the interacting atoms become degenerate in the ground state. We find that the degenerate states
play a negative role in the charging due to the gapless energies. The atoms with strong attractive interactions can
not be charged completely, which is accompanied by a drop of the maximum stored energy.

DOI: 10.1103/PhysRevE.99.052106

I. INTRODUCTION

Quantum information science develops very quickly in
recent years. Various kinds of tasks using quantum informa-
tion have been studied in detail such as quantum sensing,
computations, and communications. Among these proposals,
a quantum battery (QB) was proposed to use quantum effects
such as quantum correlations to enhance the charging power
and speed up the charging time in comparison with its clas-
sical counterpart [1–4]. The concept of a QB was originally
proposed as a two-level system used to temporarily store
energy transferred from an external field [5,6]. How to make
efficient energy storage by exploiting nonclassical effects is a
central and practical research subject.

Recent research efforts have been devoted to exploring
contributions provided by quantum correlations for charging
in collective QBs [6–11]. The Dicke QBs [7,8] describe
collective QBs coupling to one common cavity, which serves
as a global charger. The corresponding QB-charger coupling
produces indirect interactions between QBs. Consequently,
the advantage of quantum correlations of QBs mediated by
the global charger has been explored in the charging power
of the Dicke QBs. By contrast, there is another kind of QBs,
in which the quantum correlations are induced by intrinsic in-
teraction between QBs [10]. There is a physical phenomenon
that shares many of the features with the quantum correlations
in interacting systems—the quantum phase transition, which
is induced by the change of a coupling parameter. It is
interesting to study the properties of QBs in different phases
related to quantum correlations, which should be in a close
relation to the collective charging. For example, the connec-
tion between the phase transition induced by the QB-charger
coupling and the optimal energy storage has recently been
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studied [7,8]. However, the effects of quantum correlations
in the other kind of QBs with intrinsic interactions between
batteries, especially a phase transition, have been overlooked.
On the other hand, in all these studies QBs were investi-
gated with a static charging field [5,6,8–10,12]. Although a
harmonic driving as a charger has been studied numerically
[4,7,11,13], an analytical solution for the harmonic charging
remains elusive. It is challenging to solve a time-dependent
Hamiltonian analytically to give an optimal driving frequency
for the charging of the QB.

In this paper, we consider a QB system of N two-level
atoms and a semiclassical harmonic field as a charger. The
quantum correlations of the atoms rely on the interatomic
infinite-range interactions. The charging of the QB with non-
interacting atoms can be completely fulfilled, and the opti-
mal driving frequency of the harmonic charger is obtained
analytically. It exhibits a substantial improvement over the
previous static charging field. Involving repulsive intrinsic
interactions of atoms, the QB can be charged faster than that
of noninteracting atoms, while the optimal charging period
for the attractive interactions becomes longer as the coupling
strength increases. For strong attractive interactions there
occurs a quantum phase transition, which is accompanied by
degenerate energies of the ground state. We find the maximal
stored energy of the atoms in the degenerate phase drops from
the fully charged value, which indicates that the gapless states
play a negative role in the charging process.

The paper is outlined as follows. In Sec. II we study N two-
level atoms charging independently by the harmonic field. The
maximum stored energy and the optimal driving frequency are
given analytically. In Sec. III we discuss contributions of the
repulsive and attractive interatomic interactions in the process
of energy storage. Finally, a brief summary is given in Sec. IV.

II. CHARGING FOR NONINTERACTING ATOMS

The QB consists of an ensemble of independent two-level
atoms, which are collectively charged by a harmonic field
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FIG. 1. (a) Charging protocol of N two-level atoms as the QB.
At time t = 0 each atom is in the ground state |g〉. At the period T ,
the QB is fully charged, and the final state of atoms is |e〉⊗N . (b)The
QB is charged with a harmonic driving field A cos(ωt ). During the
charging time 0 < t < T , the QB interacts with a harmonic driving
field A cos(ωt ). Finally, the interaction is switched off at the end of
charging period T . (c) The intrinsic infinite-range interactions be-
tween arbitrary two atoms include the repulsive (g > 0) and attractive
(g < 0) coupling.

in Fig. 1(a). The Hamiltonian of N noninteracting atoms is
given as

H0 = �

2

N∑
i=1

σ z
i = �Sz, (1)

where the collective atom operators Sα = ∑
i σ

α
i /2 (α =

x, y, z), and � is the energy level splitting of the two-level
atom. The basis set for representing the atoms system is
the Dicke states |S, m〉 (m = −S,−S + 1, . . . , S), which are
eigenstates of S2 and Sz with the total pseudospin S = N/2.
We set � = 1 in the following.

We employ a harmonic field as a charger to transfer energy
to the battery as much as possible. All two-level atoms are
driven by the harmonic charging field as

H1 = A

2
cos(ωt )

N∑
i=1

σ x
i = A cos(ωt )Sx, (2)

where A and ω are the driving amplitude and the modulated
frequency. For a comparison, the driving Hamiltonian with a
static charging field is H1,s = ASx. It is noted that the coupling
between QB and the harmonic charger is the conchoidal
function of time instead of a constant in the static charger.
Figure 1(b) shows the charging procedure is designed to turn
on the interaction between N atoms and the harmonic field
during the charging interval 0 < t < T . Then the interaction
is turned off at time T , and the QB is isolated from the external
field and keeps its energy. The charging period is associated
with the alternative driving frequency as T = 2π/ω. During
the charging step, the total Hamiltonian for N two-level atoms
interacting with the harmonic field is H = H0 + H1, which is
viewed as the collective Hamiltonian.

To study the advantage for the charging with the har-
monic charging field, we focus on maximizing the stored
energy in the QB and minimizing the charging time. Initially,
N two-level atoms are prepared in the lowest-energy state
as |ϕN (0)〉 = |N/2,−N/2〉, for which each atom is in the
ground state |g〉. The wave function evaluates according to the
Schrödinger equation i∂|ϕN (t )〉/∂t = H |ϕN (t )〉. At the end of
charging period T , the stored energy that moves from the
harmonic field to the QB can be expressed in terms of the
mean local energy of the QB [7,10]:

EN (T ) = 〈ϕN (T )|H0|ϕN (T )〉 − 〈ϕN (0)|H0|ϕN (0)〉. (3)

A battery is a physical system that stored energy in atoms,
which is transferred from the charging field. We investigate
the maximum stored energy EN,max during the charging pro-
cess. The advantage of the harmonic field lies in the modu-
lated frequency ω, which can be tuned to produce maximum
stored energy EN,max at an optimal charging period Tmax =
2π/ωmax. As the QB is charged completely, each of the two-
level atoms is in the upper state, and the scaled stored energy
Emax(T )/N� is expected to be the fully charging value 1. The
corresponding final state at the end of the charging is

|ϕN (Tmax)〉 = |e〉⊗N , (4)

which is called the fully charging state in Fig. 1(a).
Inspired by the approximated analytical solution for the

driven semiclassical Rabi model for a driving two-level sys-
tem [14], we extend the approach to solve the dynamics of N
two-level atoms analytically. Using a unitary transformation
U = exp[i A

ω
√

N
ξ sin(ωt )Sx] with the undetermined parameter

ξ ∈ [0, 1], one obtains H ′ = UHU † − iU d
dt U

† as

H ′ = �

{
cos

[
A

ω
√

N
ξ sin(ωt )

]
Sz+ sin

[
A

ω
√

N
ξ sin(ωt )

]
Sy

}

+ A

(
1 − ξ√

N

)
cos(ωt )Sx. (5)

We expand the operator identities cos[ A
ω

√
N
ξ

sin(ωt )] = J0( A
ω

√
N
ξ ) + 2

∑∞
n=1 J2n( A

ω
√

N
ξ ) cos(2nωt ) and

sin[ A
ω

√
N
ξ sin(ωt )] = 2

∑∞
n=0 J2n+1( A

ω
√

N
ξ ) sin[(2n + 1)ωt],

where Jn( A
ω

√
N
ξ ) denotes the Bessel function of integer order

n. Then we reasonably neglect all higher-order harmonic
terms (n � 2) with the higher-order Bessel functions
Jn( A

ω
√

N
ξ ). The Hamiltonian is approximated as

H ′ = �J0

(
A

ω
√

N
ξ

)
Sz + A

(
1 − ξ√

N

)
cos(ωt )Sx

+2�J1

(
A

ω
√

N
ξ

)
sin(ωt )Sy. (6)

The Hamiltonian includes the counter-rotating (CR) terms
eiωt S+ + e−iωt S− and the rotating-wave terms eiωt S− +
e−iωt S+. Since the CR terms describe fast oscillation and
virtual atom-field interacting processes, it is reasonable to
make these terms vanish. We can choose the parameter ξ to
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tune the coefficient of the CR terms to be zero, giving

A

(
1 − ξ√

N

)
− 2�J1

(
A

ω
√

N
ξ

)
= 0. (7)

Then ξ is determined as ξ̄ . Consequently the transformed
Hamiltonian becomes

H ′′ = �J0

(
A

ω
√

N
ξ̄

)
Sz + Ã(eiωt S− + e−iωt S+), (8)

where �J0( A
ω

√
N
ξ̄ ) is the renormalized atomic transition fre-

quency, and Ã = A
2 (1 − ξ̄√

N
) is the effective coupling strength

between the QB and the charging field.
Using a unitary transformation S = exp(−iωtSz ), the time-

independent Hamiltonian H̃ = SH ′′S† − iSdS†/dt is given by

H̃ = �̃Sz + 2ÃSx, (9)

where the effective detuning is

�̃ = �J0

(
A

ω
√

N
ξ̄

)
− ω. (10)

In the rotating frame, H̃ can be solved independent on the
time. By contrast to a static charging field, the advantage
of the harmonic charger lies in the renormalized detuning
�̃ and the effective QB-charger coupling strength Ã of the
effective Hamiltonian H̃ , which can be tuned by the driving
frequency ω.

The charging of N noninteracting atoms is equivalent to
parallel charging for independent atoms, and the scaled stored
energy EN/(N ) equals E1 of the single-atom battery. So we
focus on the energy storage in the single atom. For N = 1, the
effective Hamiltonian H̃ (9) with S = 1/2 can be solved an-
alytically. The eigenvalues are given as ε± = ±�R/2, where
�R is the effective Rabi frequency

�R =
√

�̃2 + 4Ã2. (11)

The corresponding eigenstates are dressed states sinθ | ∓
z〉 ± cosθ | ± z〉 with tan(2θ ) = 2Ã/�̃, where | ± z〉 are the
eigenstates of Sz.

At the end of the charging protocol, the final state of the
one-atom battery is given explicitly by the eigenstates and
eigenvalues as

|ϕ1(T )〉 = −i
2Ã

�R
sin(ε+T )|e〉

+
[

cos(ε+T ) + i
�̃

�R
sin(ε+T )

]
|g〉. (12)

The corresponding stored energy in the single-atom battery
is

E1(T )/� = 2Ã2

�2
R

[1 − cos(�RT )]. (13)

The analytical stored energy E1(T )/� is consistent with
numerical results in a wide range of the charging period T
in Fig. 2.

At the optimal period Tmax = nπ/�R(for odd integer n =
1, 3, . . .), the maximal value of the stored energy in Eq. (13)
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FIG. 2. Stored energy E1(T )/� in the single-atom battery as a
function of charging period T for driving amplitude A = 0.5 (a),
A = 1 (b), and A = 1.5 (c). The QB couples to the harmonic charger
A cos(ωt ) (red sold line) and the static charger A (black dashed line),
respectively. The analytical results of E1(T )/� in Eq. (13) for the
harmonic charging filed are shown in the red circle.

is given as

E1,max/� = 4Ã2

�̃2 + 4Ã2
. (14)

The corresponding optimal driving frequency ωmax is deter-
mined as 2π/Tmax = 2�R/n. Figure 2 shows that the stored
energy E1(T )/� has local maximal values at a few peaks,
which depends on the optimal charging period Tmax with the
odd integer n. It is obvious that E1,max/� in Eq. (14) ranges
from 0 to 1 dependent on the effective transition frequency
of atoms �̃ in Eq. (10), which is a function of the driving
frequency ω. In particular, one can achieve the fully charging
value E1,max/� = 1 by modulating ω to satisfy �̃ = 0. It leads
to the fully charging condition

ωmax = �J0

(
A

ω
ξ̄

)
(15)

with ξ̄ determined in Eq. (7). The final state |ϕ1(T )〉 in
Eq. (12) evaluates to be |e〉, which demonstrates that each
atom is completely charged.

Figure 3 displays the maximum stored energy E1,max/�

for different driving amplitude A. The contour projection of
E1,max/� presents the optimal frequency ωmax. As A increases
to 1, E1,max/� increases to 1 and then decreases. The max-
imum stored energy has a jump around A = 1.2. It ascribes
to the discontinuous jump of the optimal frequency ωmax with
the odd integer n changing from 1 to 3.

For a comparison, the Hamiltonian of the QB coupled with
the static charging field is Hs = �Sz + ASx. Similarly, at the
end of charging time T the energy stored in the battery is

Es(T )/� = 1

2

A2

�2 + A2
[1 − cos(

√
�2 + A2T )]. (16)
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FIG. 3. Maximum stored energy Emax/� (red circles) in the
single-atom battery as a function of the driving frequency ω and
the amplitude A of the harmonic charger A cos(ωt ). The contour
projection displays the optimal frequency ωmax (solid black line)
dependent on A.

Obviously, the maximum stored energy is given by
Es,max/� = A2/(�2 + A2). It is impossible to achieve the
fully charging value Es,max = 1. It means that the charging of
the QB with a static charging field is not completely fulfilled.
The maximum stored energy with the harmonic charging field
is larger than that with the static charging field in Fig. 2,
exhibiting the powerful harmonic charging.

III. COLLECTIVE CHARGING WITH
INTERATOMIC CORRELATIONS

With the consideration of additional interatomic interac-
tions, a quite natural question follows as to the effects on
the charging battery. Quantum correlations in multipartite sys-
tems are connected to energy storage [1,5,6,9]. It is interesting
to study the positive and negative effects of the quantum cor-
relations induced by intrinsic interactions of two-level atoms
in the charging of the QB.

For N identical two-level atoms, long-range forces between
all atoms can be mediated by the electric field. Such long-
range interactions can be engineered and controlled using
atoms trapped in a photonic crystal waveguide [15] and Bose-
Einstein condensed atoms [16], which highlight the practical
relevance for the interacting Hamiltonian considered here.
Each two-level atom is polarized in Fig. 1(c), which can be
described as an electric dipole operator d̂ = dσ+ + d∗σ− with
the dipole momentum d and d∗. Involving the infinite-range
dipole-dipole interactions, the Hamiltonian of N interacting
atoms can be described by [17,18]

HI
0 = �

2

N∑
i=1

σ z
i + g

2N

N∑
i �= j

(
σ x

i σ x
j + σ

y
i σ

y
j

)

= �Sz + g

N

(
S2 − S2

z − N

2

)
, (17)
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FIG. 4. 〈Sz〉/(N/2) as a function of the repulsive and attractive
coupling strength λ for N = 200 atoms. The analytical results of
〈Sz〉/(N/2) for the infinite atoms N → ∞ display the quantum phase
transition at λc = −1 in the attractive interactions case (black dashed
line). The inset shows the scaled energy e/(N/2) for the ground
state(green solid line) and the first-excited state energy (blue dashed
line) dependent on λ.

where g is the atom-atom coupling strength including the re-
pulsive (g > 0) and attractive (g < 0) interactions. We define
the scaled coupling strength λ = g/�.

The interacting Hamiltonian HI
0 describes long-range in-

teractions in two-level systems such as the Lipkin-Meshkov-
Glick (LMG) model [19,20]. The ground state of HI

0 in
Eq. (17) lies in the subspace spanned by the Dicke states
{|N/2, M〉, M = −N/2, . . . , N/2} with the total spin S =
N/2, which is the eigenstate of Sz with the eigenvalue M.
The Hamiltonian reduces into two spaces dependent on even
or odd values of (N/2 − M ), and it is denoted as parity. The
interacting atoms with attractive interactions (g < 0) undergo
a quantum phase transition due to the competition between the
first noninteracting term and the second interacting terms of
HI

0 . For a weak attractive coupling strength, the even and odd
levels are obviously separated. The ground state is fully po-
larized in the Z direction and is given as |N/2,−N/2〉. When
λ exceeds the critical attractive coupling strength, the even
and odd levels become degenerate in the thermodynamical
limit. The inset of Fig. 4 displays that energy levels e/(N/2)
of N = 200 atoms in the ground state and the first-excited
state are almost degenerate for λ < −1. However, for arbitrary
repulsive coupling strength (g > 0), the ground state remains
|N/2,−N/2〉 with the lowest energy −�N/2, and the energy
levels are nondegenerate.

To explore the phase transition in the attractive interac-
tions, we now use the Hosltein-Primakoff transformation to
study the infinite atoms in terms of auxiliary bosonic operators
b† and b: Sz = b†b − N/2 and S+ = b†

√
N . Above the critical

coupling value λc, the bosonic field is expected to shift with
a value β as b† → b† + β. We then obtain the approximated
Hamiltonian

H̃ I
0 = �

[
(b† + β )(b + β ) − N

2

]

+ g

N

{
N2

4
−

[
(b† + β )(b + β ) − N

2

]2
}

. (18)
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FIG. 5. Stored energy EN (T ) (in unit of N�) as a function of
charging period T for different N with interatomic coupling strength
λ = 1.2 (a), λ = 0.5 (b), λ = −0.5 (c), and λ = −1.2 (d). The
driving amplitude is A = 1.

To make the linear terms (b† + b) vanish, one obtain

β2 = N (g + �)/(2g). (19)

Obviously, the critical value is given by λc = gc/� = −1.
Above the critical value, the expected value of atom po-
larization in the ground state is given by 〈Sz〉 = β2 − N/2.
Figure 4 shows the behavior of the polarized value per atom
〈Sz〉/(N/2) for infinite atoms N → ∞, exhibiting a quantum
phase transition at λc = −1.

It is interesting to study whether the attractive and repulsive
interactions, especially the phase transition, can enhance the
charging of the QB. The stored energy in the N interacting
atoms can be expressed as

EN (T ) = 〈ϕN (T )|HI
0 |ϕN (T )〉 − 〈ϕN (0)|HI

0 |ϕN (0)〉, (20)

where the state evaluates according to i∂|ϕN (T )〉/∂t = (HI
0 +

H1)|ϕN (T )〉 with the charging harmonic field H1 in Eq. (2).
Due to the intrinsic many-body interactions, the energy stored
in the interacting atoms is in general a complicated function
of the charging period T .

We numerically calculate the stored energy EN (T ) depen-
dent on the coupling strength λ for the driving amplitude A =
1. The dependence of the rescaled stored energy EN/(N�)
on the charging period T is shown in Fig. 5. We observe the
maximum stored energy EN,max(T ) ≡ maxT EN (T ) locates at
the first peak, where the optimal charging period Tmax is
determined. The corresponding optimal driving frequency is
given by ωmax = 2π/Tmax.

As the system size N increases to 600, EN,max/(N�) con-
verges to be 1 for the repulsive coupling strength λ = 0.5 and
1.2 in Figs. 6(a) and 6(b). For the attractive interacting atoms
with λ = −1.2, Emax/(N�) also converges with a lower value
in Fig. 6(b), for which the slope of the scaling line approaches
zero. It demonstrates that the scaling law of the maximum
stored energy for the repulsive and attractive interacting
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FIG. 6. Maximum stored energy in the battery EN,max/(N�) and
the optimal charging period Tmax as a function of atoms number N
for interatomic coupling strength λ = ±0.5 (open circle) (a), (c) and
λ = ±1.2 (solid circle) (b), (d), respectively. For λ = −1.2, the inset
shows Emax/(N�) versus N on a log-log scale, showing the slope of
the scaling line 0.0973 (b).

atoms is

EN,max ∝ N, (21)

which is the same as the results of the Dicke quantum battery
[7]. On the other hand, the optimal charging period Tmax

converges to the same value for weak attractive and repulsive
coupling strength λ = ±0.5 in Fig. 6(c). However, as the
attractive interactions become strong with λ = −1.2, Tmax

becomes longer than that for the repulsive coupling strength
λ = 1.2 in Fig. 6(d).

Furthermore, the maximum stored energy Emax/(N�) and
the optimal charging period Tmax depending on the coupling
strength are calculated in Fig. 7. It is observed that Emax/(N�)
approaches the fully charged value 1 in a wide range of
the repulsive coupling strengths. As the attractive coupling
strength gets close to the critical value λc = −1, the maximum
energy stored gets worse and drops sharply from 1 in Fig. 7(a).
Meanwhile, Tmax for the attractive coupling strength is longer
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FIG. 7. (a) Maximum stored energy Emax (in unit of N�) and
(b) the optimal charging period Tmax dependent on the interatomic
coupling strength λ for N = 140 atoms.
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over the noninteracting case λ = 0. By contrast, the charging
for strong repulsive interacting atoms with λ > 0 is faster in
Fig. 7(b). It reveals that the strong repulsive interactions of
atoms play a positive role in the charging, which can speed up
the charging of the interacting atoms.

Since the phase transition of the attractive interacting
atoms is induced by the first noninteracting �-term and the
second coupling g-term of the Hamiltonian HI

0 in Eq. (17).
The low energy of the first noninteracting term is responsible
for charging between the states |g〉 and |e〉 for each atom.
As the attractive coupling strength increases, the evolution
is dominated by the high-energy part of the second g-term.
The high-energy eigenstates can influence the charging states
of the many-body battery, which play a negative role in
the charging. However, the direct correlations between the
phase transition and the charging remain unclear due to the
complicated evolution in the interacting atoms.

IV. CONCLUSION

In this work, we introduce the harmonic driving field as
the energy charger for the quantum battery, which consists
of N two-level atoms. By contrast to previous studies with
a static charging field, the quantum battery of noninteracting
atoms can be fully charged by choosing an optimal driving
frequency. After the charging process, each of the two-level
atoms is finally in the upper state. Involving the intrinsic inter-
actions between atoms, two important effects are clearly seen:
(1) the repulsive interactions in large N atoms can enhance
the fully charging with shorter charging period, yielding an
advantage in charging over the noninteracting atoms; (2) for
the attractive interactions case, the quantum phase transition

with degenerate energies plays a negative role in the energy
storage in this quantum battery. The maximum stored energy
of the QB in the degenerate phase drops sharply from the fully
charging value with longer charging period.

In terms of outlook, the two-level quantum battery we
discuss here could be a physically realizable scheme. Re-
cently, experimental efforts have been devoted to quantum
simulations of an array of two-level systems, such as with a
solid-state platform [7,21], trapped ions [22], and cold atoms
[16], which could be considered as quantum battery. When
charging resources such as Raman laser beams with modu-
lated frequency are driven onto such two-level systems, the
charging of the quantum battery with a harmonic field could
be implemented realistically. The kind of quantum battery
facilitates the exploitation of the contributions of the quantum
correlations of many-body systems for a charging process,
especially the effects of quantum phase transitions.
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[21] P. Forn-Dĺaz, J. J. Garcĺa-Ripoll, B. Peropadre, J.-L. Orgiazzi,
M. A. Yurtalan, R. Belyansky, C. M. Wilson, and A. Lupascu,
Nat. Phys. 13, 39 (2016).

[22] D. Lv, S. An, Z. Liu, J. N. Zhang, J. S. Pedernales, L. Lamata,
E. Solano, and K. Kim, Phys. Rev. X 8, 021027 (2018).

052106-6

https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1103/PhysRevLett.111.240401
https://doi.org/10.1103/PhysRevE.93.042135
https://doi.org/10.1103/PhysRevE.93.042135
https://doi.org/10.1103/PhysRevE.93.042135
https://doi.org/10.1103/PhysRevE.93.042135
https://doi.org/10.22331/q-2018-04-23-61
https://doi.org/10.22331/q-2018-04-23-61
https://doi.org/10.22331/q-2018-04-23-61
https://doi.org/10.22331/q-2018-04-23-61
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevB.99.035421
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1103/PhysRevE.87.042123
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1088/1367-2630/17/7/075015
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevLett.120.117702
https://doi.org/10.1103/PhysRevE.94.052122
https://doi.org/10.1103/PhysRevE.94.052122
https://doi.org/10.1103/PhysRevE.94.052122
https://doi.org/10.1103/PhysRevE.94.052122
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevLett.118.150601
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevA.97.022106
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevB.98.205423
https://doi.org/10.1103/PhysRevB.98.205423
http://arxiv.org/abs/arXiv:1805.05507v1
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevLett.122.047702
https://doi.org/10.1103/PhysRevA.91.053834
https://doi.org/10.1103/PhysRevA.91.053834
https://doi.org/10.1103/PhysRevA.91.053834
https://doi.org/10.1103/PhysRevA.91.053834
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1073/pnas.1603777113
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1038/nature09009
https://doi.org/10.1103/PhysRevA.82.053841
https://doi.org/10.1103/PhysRevA.82.053841
https://doi.org/10.1103/PhysRevA.82.053841
https://doi.org/10.1103/PhysRevA.82.053841
https://doi.org/10.1103/PhysRevA.78.023634
https://doi.org/10.1103/PhysRevA.78.023634
https://doi.org/10.1103/PhysRevA.78.023634
https://doi.org/10.1103/PhysRevA.78.023634
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90863-1
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1016/0029-5582(65)90862-X
https://doi.org/10.1103/PhysRevA.76.012104
https://doi.org/10.1103/PhysRevA.76.012104
https://doi.org/10.1103/PhysRevA.76.012104
https://doi.org/10.1103/PhysRevA.76.012104
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1038/nphys3905
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027
https://doi.org/10.1103/PhysRevX.8.021027

