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Nonequilibrium abundances for the building blocks of life
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2Department of Information and Computer Sciences, University of Hawai‘i at Mānoa, Honolulu, Hawai‘i 96822, USA
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The difficulty of obtaining appreciable quantities of biologically important molecules in thermodynamic equi-
librium has long been identified as an obstacle to life’s emergence, and determining the specific nonequilibrium
conditions that might have given rise to life is challenging. To address these issues, we investigate how the
concentrations of life’s building blocks change as a function of the distance from equilibrium on average, in
two example settings: (i) the synthesis of heavy amino acids and (ii) their polymerization into peptides. We
find that relative concentrations of the heaviest amino acids can be boosted by four orders of magnitude, and
concentrations of the longest peptide chains can be increased by hundreds of orders of magnitude. The average
nonequilibrium distribution does not depend on the details of how the system was driven from equilibrium,
indicating that environments might not have to be fine-tuned to support life.
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I. INTRODUCTION

Biology requires the coordination of many complex
molecules to store and copy genetic information, harness
energy from the environment, and maintain homeostasis. The
spontaneous emergence of life thus hinges upon the abun-
dances of such molecules in an abiotic environment. At first
glance, statistical mechanics seems to pose a serious barrier:
the high molecular mass and structural specificity of many
biomolecules severely limit their abundances in thermody-
namic equilibrium and thus make the emergence of life im-
plausible [1–5]. Many biomolecules require considerable free
energy to form, and this leads to an exponential suppression
of their equilibrium concentrations.

The apparent severity of this problem, which appears under
rather general considerations, has motivated researchers to
search for special environments, either extant or belonging to
the early Earth, which would be ideally suited for producing
the necessary molecules in significant quantities. Due to the
free-energy requirement, an essential feature of these envi-
ronments is that they include nonequilibrium driving of some
kind [1,3–7]. Some proposed sources of this driving on pre-
biotic Earth are radiation [6,7], temperature and ion gradients
[6–9], concentration fluxes [10,11], and electrical discharge
[12]. Examples of such environments include hydrothermal
vent systems [13–16] and the surfaces of minerals [3]. Yet
it remains an open question to what extent environmental
conditions must be fine-tuned to give rise to life, and there
is considerable uncertainty about the chemistry of the early
Earth [5,17,18].

Here, we use a relatively new approach proposed by
Crooks [19] which allows us to explore how the abundances
of life’s building blocks change away from thermodynamic
equilibrium on average, where the average is taken over all the
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possible ways the system could be driven from equilibrium
and depends only on a simple parametric measure of the
distance from equilibrium.

Our calculation does not hinge upon specific assumptions
about the conditions that might have created life and therefore
does not require significant knowledge about the early Earth.
The question we answer is more general: can we quantify
how much nonequilibrium conditions typically change the
abundances of the complex molecules that life relies on?
We study this dependence for two simple models describing,
respectively, the concentrations of heavy amino acids and their
polymerization into peptides. The result is that away from
equilibrium, the abundances of rare molecules become, on
average, increasingly favorable, potentially boosted by many
orders of magnitude. The specific forms of nonequilibrium
driving previously considered can thus be recognized as part
of a much more general phenomenon, whereby driving is
expected on average to increase the probabilities of rare
states as one moves further from equilibrium. By dramati-
cally augmenting the concentrations of biologically important
molecules without fine-tuning conditions, this effect makes
the appearance of life on Earth a much more plausible event.

II. THE NONEQUILIBRIUM MODEL

Statistical mechanics tells us that we do not need to
describe the full microscopic state of a system in order to
predict macroscopic characteristics, as those are understood
as expectation values, or ensemble averages. Therefore, all
we need to infer is the probability, ρi, of every state, i =
1, . . . N . This is a hard problem, as we have only a handful
of constraints, namely measured average quantities, together
with normalization of probability. Say we have M constraints.
Then we are still lacking N − M equations to determine
the ρi. These probabilities can be assigned by choosing
the probability distribution with the largest entropy, S[ρ] ≡
−∑N

i=1 ρi ln(ρi ), subject to the constraints imposed by the
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system’s bulk properties [20]. This maximization of entropy
can be interpreted as choosing a model that makes use of only
the information provided by the measured quantities [20–22],
ensuring that information that we do not actually have is not
falsely being ascribed to the system. This powerful inference
tool has been applied successfully to many other problems
in a diverse range of fields from ecology to neuroscience,
and is commonly known under the name of MaxEnt [23,24].
In statistical physics, we find that under the constraint that
only the average energy is known, the Boltzmann distribution,
describing thermodynamic equilibrium states, ρ = 1

Z e−E/kT ,
is recovered by this MaxEnt inference method [20]. Here, the
temperature is denoted by T , Bolzmann’s constant by k, and
normalization is ensured by the partition function, Z , which is
related to the equilibrium free energy, F , by Z = e−F/kT .

On the early Earth, conditions governing the processes
preceding life were not consistently in thermodynamic equi-
librium. It is much harder to infer the distribution, θ , of a
system that is away from thermodynamic equilibrium with-
out detailed information. The distribution can no longer be
inferred straight from a MaxEnt argument, and information
is lacking to make up for the missing equations. Without
specific knowledge about some particular process generating
biomolecules on early Earth, little can be done.

Here, we propose to calculate instead the average nonequi-
librium distribution. The idea is that there are many diverse
environments on Earth and a large variety of energy sources
that act as nonequilibrium drives. If all we are interested in are
the expected abundances we would get somewhere on Earth,
then we can average out details of the nonequilibrium driving.
We do so, following [19], by giving probability distributions
a weight, i.e., we will assume that there is a distribution
over distributions, P(θ ), and compute the average: 〈θ〉 =∫

θP(θ )dθ .
For our purposes, we need only consider distributions on

a discrete state space. We will compare the probability of
finding the building blocks of life as computed from this
average nonequilibrium distribution to that computed from the
equilibrium distribution for two biologically relevant model
systems in the following sections. Clearly, the answer will
depend on the probabilities assigned to different nonequilib-
rium probability distributions, P(θ ). Crooks suggested [19]
to find P(θ ) by maximizing the entropy of the distribution
over distributions subject to physical constraints, in analogy to
what is done in equilibrium [20]. In the absence of additional
information, this maximum entropy approach ought to best
describe the ensemble of nonequilibrium distributions, as it
ensures that only available information is included in the
description.

We elaborate on the details of Crooks’ approach in the
Appendix and mention here only the resulting formula:

〈θ〉 = 1

Z (β, λ)

∫
θe−λD(θ‖ρ)dθ. (1)

The normalization constant, Z (β, λ) depends on the inverse
temperature, β = 1/kT , where k denotes the Boltzmann con-
stant. The factor e−λD(θ‖ρ) determines the weight given to
each distribution θ . It is controlled by the product of the
distribution-independent parameter λ � 0, and the relative
entropy D(θ ||ρ) between the nonequilibrium distribution, θ ,

in question, and the corresponding equilibrium distribution ρ:

D(θ ||ρ) =
∑

i

θi ln

[
θi

ρi

]
. (2)

A system away from thermodynamic equilibrium contains
free energy in excess of the corresponding equilibrium sys-
tem. This additional free energy is given by kT D(θ ||ρ)
[25–28]. The second law of thermodynamics implies that the
work input to a system is always greater than or equal to the
corresponding change in free energy, and so this formalism
assigns higher probabilities to distributions that require a
lower minimum amount of work to create. At a fixed value
of the parameter λ, a nonequilibrium distribution is thus more
likely to occur, if less work is needed to produce it.

Relative entropy also measures the coding cost encoun-
tered when the canonical distribution ρ is used as a model for
θ [29,30]. Relative entropy is thus both a physically and an
information-theoretically meaningful measure for deviation
from equilibrium.

In equilibrium, it is the free-energy difference between
reactants and products alone that sets their relative abun-
dances. Thus, a natural measure for the difficulty of creating a
molecule is its free energy of formation. The hyperensemble
extends this notion, in a sense, to the situation away from
equilibrium.

We stress that using this approach does not imply that
possible path dependencies of the nonequilibrium states are
being neglected; they may very well retain some memory
of their history. Each system in the ensemble is driven to a
nonequilibrium distribution in a path-dependent way, as the
arrival at a distribution, in general, depends on the trajectory
generated by the drive.

In the limit λ → ∞, all nonequilibrium distributions will
have negligible probability, and the average nonequilibrium
distribution converges to the equilibrium distribution: 〈θ〉= ρ.
For finite values of λ, the distribution 〈θ〉 is in general
flatter than its equilibrium counterpart, thereby augmenting
the probabilities of states that would otherwise be rare [19].
This is most apparent in the limit λ → 0. In that case, all
distributions become equally likely. In that sense, λ encodes
the extent to which driving conditions can push the system out
of equilibrium. In the most extreme out of equilibrium limit
(λ → 0), the average distribution over a finite state-space has,
by symmetry, equal probabilities for every state. The overall
flattening effect would persist if we were to replace the mea-
sure D(θ ||ρ) with any other function (see the Appendix for
details). Conclusions we draw for the extreme nonequilibrium
limit (λ → 0) in Sec. III are therefore invariant with respect
to how distance from equilibrium is measured.

The extreme nonequilibrium limit is different from the
high-temperature limit of an equilibrium distribution, because
the free energies of the molecules are themselves temperature
dependent, and so the high-temperature limit would not assign
equal weight to every possible distribution of molecules. For
example, polymerization of amino acids into long chains
would generally be disfavored in the high-temperature limit
(compare Sec. III B).

Probabilities of rare states are only augmented on aver-
age. There are individual nonequilibrium systems that give
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rise to worse-than-equilibrium odds for forming the desired
molecules. The nonequilibrium distributions describing those
systems are included in the average. Individual distributions
that exhibit large numbers of rare molecules are less probable
at all finite values of λ, due to the exponential dependence
on D(θ ||ρ) [see Eq. (A1)]. In what follows, it is the aver-
age nonequilibrium distribution 〈θ〉, and not any particular
nonequilibrium distribution θ , that we use for our analysis.

We interpret the average nonequilibrium distribution as de-
scribing the result that would be obtained if one took samples
from a diverse collection of nonequilibrium environments,
and averaged the concentrations of the various molecules
found. The average nonequilibrium distribution provides the
expected value, or best guess, for what we would find in a
single sample, taken anywhere on the planet. In the context
of molecules relevant for forming living structures, using
the average nonequilibrium distribution to make an inference
about relative abundances should be more appropriate than
using the equilibrium distribution, because we know that con-
ditions on early earth were not consistently in thermodynamic
equilibrium.

The average nonequilibrium distribution does not depend
on the details of any particular driving protocol, but rather on
the set of driving protocols that generate the nonequilibrium
systems in question. The set of local processes that could
drive a system out of equilibrium on the Earth is extremely
large and diverse, to the degree that the entropy over the set
of possible distributions might be, to a good approximation,
maximal. This would not necessarily be the case if, for
example, the only process driving various systems on early
Earth out of equilibrium was the rising and setting of the sun.
That restriction would then impose additional constraints on
our ensemble that would need to be taken into consideration,
and we could not expect the maximization of entropy to
sidestep those details. However, environments on the Earth
permit a diversity of local processes. This inhomogeneity of
conditions on early Earth supports the use of the maximum
entropy hyperensemble, which allows us to compute averages
without requiring any information beyond that captured by the
temperature T and the nonequilibrium parameter λ.

Let us now explore how the concentrations of large and
complex molecules change as a function of the distance from
equilibrium.

III. RESULTS

A. Amino acid abundances and functional proteins

The possibility of prebiotic synthesis of amino acids was
established in the landmark experiment by Miller and Urey
[12]. They have since been detected in meteors [31], and
produced in other experiments seeking to model the condi-
tions of the early Earth [17,32]. However, the abundances
with which the amino acids appear in abiotic settings do not
match their biotic abundances [33]. In particular, functional
proteins tend to employ the various amino acids in roughly
equal proportions [33,34], whereas in abiotic sources there is
an exponential suppression in the abundances of the larger
amino acids, and none heavier than threonine have yet been
found [35]. The apparent inability of the environment to

produce heavier amino acids in sufficient quantities has been
identified by several authors as a barrier to the emergence of
life [5,34,35].

The difficulty of synthesizing the heavier amino acids
in a prebiotic setting is usually ascribed to them having a
larger Gibbs free energy of formation, �G [35]. The free
energies of formation of the amino acids were calculated in
Ref. [16], assuming synthesis from CO2, NH+

4 , and H2 in
surface seawater at a temperature of 18 ◦C. The concentrations
of amino acids relative to glycine, taken from nine different
data sets, were fit using an exponential function [35]:

Crel = 15.8exp[−�G/31.3]. (3)

We rescale these values so that they may be interpreted as
probabilities (i.e., fraction of the total amino acid concentra-
tion occupied by amino acid x):

P(x) = Crel(x)∑N
i=1 Crel(i)

, (4)

where Crel(x) is the relative concentration of amino acid x, and
the index i = 1, . . . , N runs over all measured amino acids.
The exponential dependence of the probabilities on the free
energy of formation �G is consistent with an equilibrium dis-
tribution [35], although we caution that there are difficulties
with this interpretation [31]. Nevertheless, we take Eq. (4)
as our best approximation to the equilibrium distribution. We
furthermore assume that this function correctly predicts the
equilibrium abundances of the heavier amino acids which
have not yet been found in abiotic sources, consistent with the
fact that it predicts abundances too low to observe for these
heavy amino acids [35].

We compare the distribution calculated from Eqs. (3) and
(4) to the average nonequilibrium distribution, calculated
numerically from Eq. (1). We assume that amino acids are
the most thermodynamically costly molecules that can be
formed in the system. This ought to be the case if the system
is physically confined to a small volume (e.g., a mineral
pore), or the reactants are very diluted. Such a restriction on
the available state space is needed because in the extreme
nonequilibrium limit, all states become equally probable. This
means that if more costly molecules can be formed than
amino acids, then the probabilities of forming any amino acids
could go down relative to these more costly molecules. Yet,
even without this restriction, the distribution of amino acids
would become more uniform out of equilibrium. In the last
section we will relax this assumption on the maximum cost
of molecules, as we look at the asymptotic behavior of amino
acids polymerizing into arbitrarily long chains.

Figure 1 shows the probability of obtaining the rarest
amino acid, tryptophan, as a function of λ. On average, the
relative concentrations of the rarest amino acid can be boosted
by four orders of magnitude in the nonequilibrium regime. In
the extreme nonequilibrium limit, λ → 0, the hyperensemble
becomes a symmetric Dirichlet distribution, which, in a state
space of dimension d , has an expectation value for each
outcome of 1/d and a variance of 1

d2
(d−1)
(d+1) [36], meaning that

the standard deviation is of the same order as the mean. For a
state space of dimension d = 20, the relative concentration
of tryptophan in the extreme nonequilibrium limit is then
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FIG. 1. Tryptophan requires the largest free energy to form of
the protein amino acids and has not yet been found in an abiotic
setting. Here we show how the relative concentration of tryptophan
changes as one moves away from equilibrium, with the distance from
equilibrium controlled by the parameter λ. The equilibrium relative
concentration is plotted with an orange solid line. The average
nonequilibrium relative concentration is plotted with a blue dotted
line. Values are computed numerically from Eq. (1). We see that in
the extreme nonequilibrium limit λ → 0, the relative concentration
of tryptophan can be increased up to four orders of magnitude.

5.0 × 10−2 ± 4.8 × 10−2, while its equilibrium relative con-
centration is ∼6 × 10−6. Figure 2 shows a normalized his-
togram of amino acid samples in this limit. The distribution of
relative concentrations is the same for any amino acid in this
extreme nonequilibrium limit. For tryptophan, we observe that
while a significant fraction of samples end up close to their

FIG. 2. A normalized histogram of 107 samples of the relative
concentration of tryptophan from the hyperensemble in the extreme
nonequilibrium limit. The red vertical line indicates the mean value.
We have confirmed numerically that there are an equal number of
samples above and below the mean. On this scale, the equilibrium
relative concentration of tryptophan, at ∼6 × 10−6, would not be
distinguishable from the y axis.

FIG. 3. The distribution of amino acids, arranged on the x axis in
order of increasing Gibbs free energy, �G. The relative concentration
in thermodynamic equilibrium is given by Eq. (4) and plotted with
a solid red line. The other curves are the average nonequilibrium
distribution, computed numerically from Eq. (1), at different dis-
tances from equilibrium (i.e., different values of λ). Note that as the
distance from equilibrium increases, i.e., λ gets smaller, the distri-
bution becomes flatter, and the relative concentrations of the rarest
amino acids increase by several orders of magnitude. The flatter
distribution observed out of equilibrium is consistent with the fact
that roughly equal numbers of amino acids are found in functional
proteins, and thus boosts the odds of forming them.

equilibrium values, the distribution as a whole gives radically
more favorable odds of drawing a high concentration.

In Fig. 3, the average nonequilibrium distribution of amino
acids is plotted as a function of the free energy of formation
�G and compared to the equilibrium distribution, for various
values of the nonequilibrium parameter λ, showing how the
distribution becomes flatter as λ decreases. Importantly, the
roughly uniform distribution of amino acids employed in
functional proteins is exactly what the average nonequilibrium
distribution gives in the extreme nonequilibrium regime (for
values of λ close to zero). Thus, far away from equilibrium,
the distribution of amino acids moves closer to its biotic
distribution, thereby greatly enhancing the chances of spon-
taneously assembling functional proteins [2,34].

B. Polymerization of amino acids

Amino acids may be linked with one another via the
peptide bond to form long chains. These chains then fold into
proteins, with a typical protein containing ∼500 amino acids.
However, the free energy, �G, for the peptide bond is on the
order of several thousand kJ/mole [37], making the forma-
tion of long chains extremely improbable in thermodynamic
equilibrium. It has been estimated that a solution containing 1
molar concentrations of each of the amino acids would require
a volume 1050 times the size of the Earth to produce a single
molecule of protein in equilibrium [1].

The thermodynamics of polymerization of amino acids
were explored in Ref. [37], where, for simplicity, the chains
were assumed to consist entirely of glycine. It was found that
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dimerization of two glycine molecules requires the greatest
amount of free energy per bond (�G = 3.6 kcal/mole), being
about eight times more difficult to form than subsequent
additions to the chain. The relative concentration [GG]/[G]
is predicted to be about 1/400 in equilibrium, and each
subsequent addition of a glycine to the peptide results in a
decrease by a factor of 1/50 [37]. The probability of getting a
chain of length l � 2 then follows a power law,

Peq(l ) ∝
(

1

50

)l−2

, (5)

with the proportionality constant set by normalization of
the probability. We examine the change in this distribution
for nonequilibrium systems. To proceed, we identify each
macrostate of a solution containing N glycine molecules with
a partition of the number N into a sum of positive integers. For
example, in a solution containing N = 3 glycine molecules
there are three possibilities: the solution could contain three
monomers (corresponding to 1+1+1), one monomer and one
dimer (1+2), or one trimer. In number theory, the partition
function, which we denote here by Q(N ), counts the number
of distinct ways that a positive integer N can be decomposed
into a sum of positive integers. For example, Q(N = 3) = 3.
For tractability, we consider in this section only the extreme
nonequilibrium limit λ → 0, where all partitions of N become
equally likely. First, we examine the probability of the rarest
state, in which all N glycine molecules become bound into
one chain of length l = N . The probability of observing this
state is P(l = N ) = 1/Q(N ). For large N , we can estimate
P(l = N ) using the Hardy-Ramanujan asymptotic expression
for Q(N ) [38], giving us

Pneq(l = N ) ≈ 4N
√

3e−π
√

2N
3 . (6)

Far away from equilibrium, the maximum probability of
the rarest state is a decreasing function of N . Yet the odds
of finding all N particles bound into a single chain decrease
much more rapidly in equilibrium [refer to Eq. (5)], meaning
that as the system gets larger, the factor by which nonequilib-
rium driving enhances probabilities of the rarest states grows
without bound. This effect radically augments the chances of
forming proteins in an abiotic setting. We display the ratio
Pneq(l )/Peq(l ) in Fig. 4, computed from Eqs. (5) and (6) using
an exact expression for Pneq(l ) obtained from SageMath’s
built-in Partitions function. With only 100 glycine molecules,
the chance of finding them all bound into a single chain is
found to be more than 100 orders of magnitude greater out
of equilibrium than in equilibrium, and this effect continues
to become more dramatic as the number of molecules in the
system increases.

Of interest is also the number of chains of each possible
length l , which we denote by ml . When every partition is
equally likely, the average number of chains of length l is
given by [39,40]

〈ml〉 = 1

Q(N )

floor(N/l)∑
n=1

Q(N − nl ). (7)

This distribution was previously studied in the context of
a fragmentation process, e.g., where a nucleus is broken apart

FIG. 4. Glycine molecules can be linked together via a peptide
bond to form chains. Due to the large amount of free energy required
per bond, the concentrations of longer chains drop precipitously in
thermodynamic equilibrium [Eq. (5)]. Here we consider a system of
N glycine molecules, and compare the probability of finding all of
them bound into a single long chain, in thermodynamic equilibrium
(Peq) to that far away from thermodynamic equilibrium (Pneq), in the
extreme nonequilibrium limit [given approximately by Eq. (6) but
using exact values here]. We plot the ratio Pneq/Peq as a function of
N , and see an exponential increase.

and each partition is equally likely [39–44]. We calculate the
expected number of chains of length l , 〈ml〉, numerically for
a system of size N = 100 and compare to that computed from
the equilibrium distribution, Eq. (5). The results are displayed
in Fig. 5. The numbers of chains of all lengths are increased
dramatically, whereas in equilibrium most molecules would
remain unbound to one another.

FIG. 5. The expected number of chains of length l in the extreme
nonequilibrium limit is given by Eq. (7) and plotted with an orange
dashed line for a system of size N = 100. We compare it to the values
computed from the equilibrium distribution, given by Eq. (5) (plotted
with blue solid line). In equilibrium, long chains are suppressed
exponentially. This is not the case far away from equilibrium, where
concentrations of the longest chains are increased by hundreds of
orders of magnitude.
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When N is large and the chains are not too long relative to
N , Eq. (7) is well approximated by [39]

〈ml〉 ≈ 1

exp

[√
π2

6N l

]
− 1

, (8)

which again will drop off much more slowly than the equi-
librium distribution. Overall, this means that in the extreme
nonequilibrium limit, the abundances of long peptide chains,
and therefore proteins, can be increased by hundreds of orders
of magnitude. This shows that obtaining appreciable quanti-
ties of proteins on the early Earth, which is all but excluded
in equilibrium statistical mechanics, is a viable possibility
considering the average odds out of equilibrium.

IV. DISCUSSION

Using two examples for which equilibrium thermody-
namics seems to prohibit the spontaneous emergence of
biologically important molecules, we have demonstrated
that, under very modest assumptions, the concentrations of
these molecules might be significantly larger (by many orders
of magnitude) when odds are calculated from an average
nonequilibrium distribution instead of the equilibrium
distribution.

It is well known that nonequilibrium conditions of some
kind are necessary for life. The degree by which the abun-
dances are improved depends, of course, on how far from
equilibrium the system has been driven. Since this is not
known, we can not determine the parameter λ in our model,
and hence can not provide a definitive number for the concen-
trations of life’s building blocks. But what this study reveals is
that, on average, nonequilibrium systems exhibit significantly
more favorable conditions, provided that the distance from
equilibrium is large enough. Importantly, this approach does
not rely on specific knowledge about the conditions on the
early Earth.

Another model-independent approach to assessing the
odds of life’s formation was presented in Ref. [45]. The
chance of life’s emergence on other worlds was calculated
from estimating parameters in a Drake-type equation. One of
the parameters appearing in this equation is the abiogenesis
probability, which estimates the chances of life forming per
unit time within a set of building blocks. An implication of
our conclusions is that this parameter ought to be increased
on planets where conditions are far from equilibrium, as for
example on planets with rich weather phenomena, tectonic
activity, or tidal interactions [7]. The necessity for chemical
disequilibrium on a planetary scale for the emergence of life
has been identified by several authors [6,7,46]. The average
nonequilibrium distribution provides a concrete way of quan-
tifying this effect as a function of how far conditions are from
equilibrium.

Explaining the presence of heavy amino acids and peptides
is, of course, far from a complete account of life’s origins.
But we wish to emphasize that the average nonequilibrium
distribution’s increased odds for attaining otherwise rare states
should be independent of the details of any particular reaction.
Thus, the same effect is likely to play an important role in
other situations where equilibrium thermodynamics appear to

create barriers to the emergence of life, e.g., the polymeriza-
tion of nucleotides in RNA and DNA [10]. It is also possible
that the effect might be compounded. This could happen,
for example, if a more favorable distribution of amino acids,
resulting from a nonequilibrium process is input to another
nonequilibrium system that assembles the amino acids into
peptides.

Moreover, the biological relevance of this effect need not
be limited to the origin of life. Indeed, it is possible that
early metabolic processes drove intracellular molecular dis-
tributions even further from equilibrium, creating a feedback
process whereby the state-space of useful molecules could be
more effectively sampled. A similar effect can be observed
in kinetic proofreading, where energy is expended to drive
reactions out of equilibrium and reduce the rate at which
disadvantageous molecules are formed [47].

Altogether, the approach we presented here raises the pos-
sibility that the formation of life does not require a particular
environment that has been fine-tuned for life. Rather, it may
be sufficient to have a set of environments that have been
driven far enough away from thermodynamic equilibrium.
Not only is nonequilibrium driving a prerequisite for life, but
nonequilibrium driving may thus, in this very general way, be
a catalyst for life’s emergence.
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APPENDIX

Crooks’ approach [19] finds the P(θ ) that maximizes the
entropy S[P(θ )] = − ∫

P(θ ) ln P(θ )dθ , subject to:
(1) Normalization of probability:

∫
P(θ )dθ = 1.

(2) 〈Ē [θ ]〉 = ∫
P(θ )Ē (θ )dθ , a constraint on the average

energy. Here, Ē [θ ] = ∑
i Eiθi denotes the average energy,

averaged over an individual nonequilibrium distribution, θ .
(3) 〈S〉 = ∫

P(θ )S[θ ]dθ , a constraint on the average en-
tropy. The entropy of a nonequilibrium distribution is given
by S[θ ] = −∑

i θi ln(θi ). The Lagrange multiplier, λ, used to
enforce this constraint then parameterizes the deviation from
the equilibrium distribution. While this constraint is necessary
to distinguish equilibrium systems from nonequilibrium ones,
it also implicitly introduces the quantitative measure of devi-
ation from equilibrium.

Solving the above constrained optimization problem re-
sults in the distribution [19]

P(θ ) = 1

Z (β, λ)
exp[−λD(θ‖ρ)], (A1)

where Z (β, λ) is a normalization constant, and D(θ ||ρ) is the
relative entropy between the nonequilibrium distribution, θ ,
and the corresponding equilibrium distribution ρ. The average
nonequilibrium distribution is then found by integrating:

〈θ〉 =
∫

θP(θ )dθ = 1

Z (β, λ)

∫
θe−λD(θ‖ρ)dθ. (A2)
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The flattening effect on the average distribution, which is
observed as λ → 0, is invariant with respect to the choice
of distance measure used in constraint number 3. If this
constraint was replaced by a generic constraint on the average
distance from equilibrium,

∫
P(θ )d (θ, ρ)dθ , for any distance

measure d (θ, ρ), then P(θ ) ∝ e−λd (θ,ρ). This would change
the exact form of 〈θ〉, but the limit λ → 0 would nonetheless
give a flat average distribution.

Numerical calculations were performed in SageMath. To
calculate 〈θ〉 in Figs. 1 and 3, we generated 20 000 ran-
dom distributions, calculated the relative entropy of each one
[Eq. (2)] using the corresponding equilibrium distribution,
then weighted them using Eq. (A1) and took the average using
Eq. (A2). We also added a sample of the equilibrium distri-
bution to the set of random distributions, in order to correct
for the possibility that no samples would be generated close

enough to the equilibrium distribution to obtain appreciable
weight, when λ was high. For Fig. 2, each possible nonequi-
librium distribution was generated from a list of 20 random
numbers. Each entry in the list was sampled uniformly from
the interval [0,1]. The list was then normalized. We gener-
ated 107 such distributions, and examined the distribution
of a single element in the list, which corresponds with the
relative concentration of an amino acid. Due to symmetry,
the distribution is the same for each amino acid in the limit
λ → 0. For Figs. 4 and 5 we were only interested in the
extreme nonequilibrium limit λ → 0 where all states become
equally likely, in which case the probability of each state is
just the inverse of the number of states, and the number of
states is given by the partition function. The partition func-
tion was calculated exactly, using Sage’s built in Partitions
function.
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