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Scaling theory of shear-induced inhomogeneous dilation in granular matter
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Shearing with a finite shear rate a compressed granular system results in a region of grains flowing over a
compact, static assembly. Perforce this region is dilated to a degree that depends on the shear rate, the loading
pressure, gravity, various material parameters, and the preparation protocol. In spite of numerous studies of
granular flows a predictive theory of the amount of dilation is still lacking. Here, we offer a scaling theory that is
focused on such a prediction as a function of shear rate and the dissipative parameters of the granular assembly.
The resulting scaling laws are universal with respect to changing the interparticle force laws.
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The least understood regime of granular flow is the “inter-
mediate regime” between the solid and the kinetic regimes
[1–6]. In this regime grains interact both through enduring
contacts and through collisions [7]. The flow characteristics
depend on many variables and also on preparation protocols,
making it hard to develop predictive theories to foretell how
a compressed granular system would respond to finite shear
rates [8].

In this Rapid Communication we focus on the inhomoge-
neous dilation that results from shearing a compressed binary
assembly of circular disks [9,10]. It was already pointed
out almost 30 years ago by Thompson and Grest [11] that
understanding the dependence of the amount of dilation as a
function of the experimental and material parameters is hard.
In their words, “analytical treatments are difficult because
the boundary conditions and velocity distribution functions
are poorly understood, and microstructure induces complex
correlations among grains [12–15].” In spite of the large
literature on dense granular flows since Ref. [11], these words
are still relevant.

In this Rapid Communication we propose that some of
these difficulties can be surmounted by employing scaling
concepts. To do so, one needs to single out the important
parameters that can be incorporated into a scaling theory
without leaving out any essential physics that may mar the
predictability of such a theory. As did Thompson and Grest,
we will consider here a two-dimensional assembly of disks
confined in the ŷ direction by two walls, with a periodic
boundary condition in the horizontal x̂ direction. Contrary to
Ref. [11] we use a binary mixture of 4000 disks of mass m =
1, half with diameter σ1 = 2R1 = 1 and the other half with
σ2 = 2R2 = 1.4. Preparing binary mixtures of disks requires
some care to avoid segregation. We have prepared our system
to shearing in the following way: First, we select N random
positions for the N disks in a box of the final width but a
height large enough to avoid any initial overlap, having zero
pressure. Next, the upper piston is pushed quasistatically in
the absence of gravity to reduce the box height. This continues
until we achieve a small finite pressure. At this point gravity
is turned on and the piston is subjected to a wanted pressure,

and the system is allowed to equilibrate by employing a global
viscous damping. After equilibration the system is ready for
shearing. The boundary walls are made of glued disks with
random diameters in the range of [σ1, 2σ1]. The upper wall
has a mass M = 100 and is free to move. The lower wall is
fixed at y = 0. Gravity with g = 1 is applied, such that the unit
of length is σ1 and the unit of time is

√
σ1/g. To test our theory

we perform numerical simulations in which the upper wall is
pressed down with a pressure P and pulled in the x̂ direction
at a fixed velocity Ux̂. During shearing we update positions
and velocities of the disks using the velocity-Verlet algorithm
with a time step �t = 0.0001. The primary observed response
is the dilation δ that develops spontaneously under nonequilib-
rium steady state conditions (see Fig. 1).

The numerical simulations are standard [16,17]. When
the disks are compressed they interact via a normal force.
Particles i and j, at positions ri, r j with velocities vvvi, vvv j

experience a relative normal compression on contact given
by �i j = ri j − Di j , where ri j is the vector joining the centers
of mass and Di j = Ri + Rj ; this gives rise to a normal force
F (n)

i j . The normal force is modeled either as a Hertzian contact,

or a Hookean one. Defining R−1
i j ≡ R−1

i + R−1
j , the force

magnitudes are

F (n)
i j = k�i jni j − γ

2
vvvni j ,

k = k′√�i jRi j, γ = γ ′√�i jRi j, Hertzian, (1)

k = k′, γ = γ ′, Hookean.

Here, ni j is the normal unit vector, and k′ = 2 × 105 is the
spring stiffness. γ ′ is a viscoelastic damping constant that is
a variable parameter in our simulations. vvvni j is the normal
component of the relative velocity between two particles given
by vvvni j = (vvvi j .ni j )ni j , where vvvi j = vvvi − vvv j . The translational
acceleration of particles is calculated from Newton’s second
law; the total force on particle i is given by F (tot)

i = ∑
j F (n)

i j .
The numerical simulations and the studied dilation depend

on many parameters, namely, P, g, U , m, M, R1, R2, k, γ ,
the binary force laws, the grain shapes [18], and the boundary
conditions. In the present simulations we fix all the parameters
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FIG. 1. An example of the simulational setup with the dilated
layer that is the subject of this Rapid Communication.

with P = 10mg/σ1 and the x dimension of the box Lx = 60σ1.
First, we discuss Hookean binary forces, and at the end we
show that Hertzian contacts lead to the same scaling theory.
We study the amount of dilation as a function of changing
U and γ . Denoting the rest height of the box by Ly(0) we
measure the actual height Ly(t ) of the upper wall which is a
function of time and the U . Once the flow is reaching a steady
state we denote the dilation as δ(t, γ ,U ) ≡ Ly(t ) − Ly(0) and
its average as

〈δ〉(γ ,U ) ≡ lim
τ→∞

1

τ

∫ T +τ

T
δ(t, γ ,U )dt . (2)

The data that we want to understand are presented in Fig. 2,
showing how the dilation depends on U for different values
of γ and vice versa. It is also interesting to note that for any
given γ there is a minimal value of U below which no dilation
is observed. To find this value of U , denoted as Uc(γ ), we
extrapolate the data of δ vs γ to δ = σ1 and read the value of
Uc. A plot of Uc vs γ is shown in Fig. 3. Note that in our theory
we only consider dilations larger than a few disk diameters.

As said above, we want to approach the problem with
the help of a scaling theory. The first step is to understand
the typical timescale in this problem. Observing a generic
trajectory of δ(t, γ ,U ) as shown in the upper panel of Fig. 4,
we see that it follows a noisy periodic behavior. This is
underlined by the spectrum shown in the lower panel of
the same figure. Although there exists a prominent peak in the
spectrum, it remains broad enough, and therefore we cannot
take the typical timescale as the inverse frequency of the
peak. Thus we define an average frequency which will set the
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FIG. 2. Upper panel: Typical results for the dependence of
〈δ〉(γ ,U ) on U for four different values of the damping coefficient
γ . Lower panel: Typical results for the dependence of 〈δ〉(γ ,U ) on
the damping coefficient γ for three different values of the piston
velocity U .

timescale of granular collisions

〈 f 〉 =
∫ ∞

0
f S( f )df

/ ∫ ∞

0
S( f )df . (3)

This frequency could in principle depend on U , the gravita-
tional acceleration g, and γ . A crucial simplifying feature of
the scaling theory is that 〈 f 〉(U, g, γ ) does not depend on U .
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FIG. 3. Uc for different values of γ .
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FIG. 4. Upper panel: A typical temporal trajectory of the dilation
δ(t ). Lower panel: A power spectrum of the above trajectory. In both
panels, U = 14 and γ = 10. The peak frequency is determined by
the time that sound waves travel the system hight.

We shall therefore make the scaling ansatz

〈 f 〉(g, γ ) = γ F (
√

g/σ/γ ). (4)

To test this ansatz we present the proposed scaling function
F (

√
g/σ/γ ) as computed from simulations. Its lack of depen-

dence on U is clearly evident in Fig. 5.
The essence of the scaling theory is the identification of

the balance between the rate of work done Ẇ by the piston
that is moving at a fixed velocity U and the rate of dissipation
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FIG. 5. A plot of the scaling function F (
√

g/σ/γ ). The impor-
tant lesson is that it is independent of U . Shown is a data collapse for
three values of U . The line is the analytic form of Eq. (13).

by the various dissipative mechanisms that maintain a steady
state motion. The assumption is that the rate of work done is
dominated by the interaction of the piston with the uppermost
layer of grains that are being sheared by the motion. Since
there are about Lx/σ grains interacting with the piston which
imparts momentum of the order of mU per unit time σ/U , we
estimate the rate of work done as

Ẇ ∼ Lx

σ

mU

σ/U
U = LxmU 3

σ 2
. (5)

This estimate indicates that for some velocity U < Uc the rate
of work done by the piston is so small that it dissipates without
creating a sizable dilated layer. Below we will estimate the
size of this critical velocity.

The rate of dissipation is dominated by at least two pro-
cesses. We denote by Ḋ1 the rate of viscous dissipation due to
the intergranular force mγ
vni j between all pairs of particles i
and j in the dilated region of size δ. The number of particles in
the dilated region scales as ∼Lxδφ/σ 2, where φ is the average
area fraction in the dilated region. The rate of work done on
each of these particles is estimated as mγ v2

i j . We also estimate
vi j ∼ vx(y + σ ) − vx(y) ≈ (Uσ/δ). In total,

Ḋ1 ∼ Lxδφ

σ 2
mγ v2

i j ∼ Lxδφ

σ 2
mγ (Uσ/δ)2 ∼ LxφmγU 2/δ. (6)

The other contribution to the rate of dissipation, denoted as
Ḋ2, results from grain collisions that occur at the bottom of
the dilated layer as they strike the compact granular medium.
These collisions result in the piston fluctuations shown in
Fig. 4. We thus estimate

Ḋ2 ∼ (Lx/σ )mδ̈δ̇, (7)

where δ̈ is the typical magnitude of the grain acceleration,
while δ̇ is the typical grain speed at the bottom of the dilated
region. As before, (Lx/σ ) is the number of grains involved.
At this point employ the scaling ansatz Eq. (4) for the average
frequency to estimate the average velocities and accelerations
of grains near the bottom of the dilated region,

δ̇ ∼ 〈 f 〉δ ≈ γ F (
√

g/σ/γ )δ,

δ̈ ∼ 〈 f 〉2δ ≈ γ 2F 2(
√

g/σ/γ )δ. (8)

Thus our final estimate for the collisional contribution to the
rate of dissipation is

Ḋ2 ∼ (L/σ )m〈 f 〉3δ2 ≈ (L/σ )mγ 3F 3(
√

g/σ/γ )δ2. (9)

Balancing the estimates given by Eq. (5) with Eqs. (6) and (9)
yields the algebraic equation for δ,

δ3 + aU 2 = bU 3δ, (10)

where

a = C1φγσ

〈 f 〉3
≈ C1φσ

γ 2F 3(
√

g/σ/γ )
,

b = C2

σ 〈 f 〉3
≈ C2

σγ 3F 3(
√

g/σ/γ )
, (11)

and C1,C2 are dimensionless constants of O(1).
Consider first the solution of this equation for U suffi-

ciently large. Then the quadratic term in Eq. (10) is negligible

050902-3



DAS, HENTSCHEL, AND PROCACCIA PHYSICAL REVIEW E 99, 050902(R) (2019)

and we find the solution

δ(U, γ ) =
√

bU 3/2. (12)

We will show below that the dependence of δ on U when U is
large agrees very well with this prediction. But the coefficient√

b contains a complex γ dependence that comes from the
scaling function F (

√
g/σ/γ ). This function does not have a

simple scaling form in the whole regime of our simulations.
The scaling function F (x) followed from the definition of an
average frequency Eq. (3), and it depends on whether we have
a thin dilation layer (γ large) or thick dilation layer when
γ is small. Consider first the function F (x) for large x (or
γ small). We expect that in this limit the dilation would be
large, and therefore insensitive to the grain size σ . Using
Eq. (12) we therefore demand that

√
b would be independent

of σ . This will occur if F (x) ∼ x2/3 in this regime. On the
other hand, for x → 0 or γ → ∞, we expect that the typical
frequency will be determined fully by γ , so F (x → 0) =
const. In the intermediate range of moderate values of x the
scaling function can have yet another form that we cannot
determined by pure theory. We use therefore the numerical
results as shown in Fig. 5, and find the best fit to the following
function,

F (x) = 0.035 + 2.781x2/3 − 1.942x5/9. (13)

The exponent 5/9 was chosen as the closest rational number to
the numerically obtained best fit of an exponent 0.55 ± 0.03.
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FIG. 6. Upper panel: Equation (14) presented in a log-log plot;
the slope of the line is −1/2. Lower panel: The same test of the
prediction Eq. (15); the slope is −2/3.
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FIG. 7. A test of the theoretical prediction for Uc, Eq. (17).

This result controls the scaling form of δ(U, γ ) for the whole
available range of γ and U . For γ relatively small (i.e., large
x), F (x) ∼ x2/3. Then we predict

δ(U, γ ) ∼ U 3/2

γ 1/2
, γ small. (14)

In the upper panel of Fig. 6 we display δ(U, γ )/U 3/2 for all
values of U � 30 and observe that we have data collapse with
the expected dependence of γ −1/2. In the intermediate regime
of larger values of γ (but still sufficiently large U ), F (x) ∼
x5/9, and we expect that

δ(U, γ ) ∼ U 3/2

γ 2/3
, γ large. (15)

The lower panel of Fig. 6 supports this prediction as well.
At this point we should study the dilation at low velocities,

and understand the critical velocity Uc shown in Fig. 3. To this
aim we solve the cubic equation (10) exactly. This equation
has three roots, only one of which yields a real and positive
value for δ,

δ = (2/3)1/3bU 3

[−9aU 2 + √
81a2U 4 − 12b3U 9]1/3

+ [−9aU 2 + √
81a2U 4 − 12b3U 9]1/3

181/3
. (16)

FIG. 8. A theoretically predicted phase diagram using the scaling
function F (x) from Eq. (13).
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FIG. 9. Typical results for the dependence of 〈δ〉(γ ,U ) on U for
four different values of the damping coefficient γ ′. Here, the binary
forces are Hertzian.

This solution becomes singular when the square root in
Eq. (16) goes through zero at some critical velocity U =
Uc(γ ). This occurs at 27a2U 4

c = 4b2U 9
c or

Uc =
[

27a2

4b3

]1/5

=
[

27φ2

4

]1/5

(γ σ )F 3/5(x). (17)

This result indicates that we should replot the data in Fig. 3
divided by F 3/5(x) as a function of γ to get a linear plot with
slope of the order of unity. Figure 7 supports this conclusion
very well.

Finally, we can summarize the predictions of the scaling
theory as a phase diagram of δ as a function of γ and U . To
this aim we plot δ from Eq. (16) using the expressions for a
and b from Eq. (11) and the scaling function Eq. (13). The
result is shown in Fig. 8. One should notice the line of Uc(γ )
which indicates the onset of dilation as a function of U and
γ . In addition, the theory indicates a fast growing dilation for
small γ and large U .

The reader should note that changing the interaction force
from Hookean to Hertzian does not change the scaling theory.
The only effect is renormalizing γ . It should be stressed
that the scaling exponent 2/3 in the scaling function was
derived solely on the demand that for a thick dilation layer
the amount of dilation should be independent of σ . On the
other hand, this determines the dependence of δ on U when
γ is small in the form of Eq. (14). This result should be
therefore universal, also independent of the interparticle bi-
nary force. To test this we have repeated our calculations with
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FIG. 10. The average dilation compensated by U 3/2 for different
values of γ ′. Here, the binary forces are Hertzian and we find good
agreement with Eq. (15).

Hertzian rather than Hookean forces. The result is shown in
Fig. 9, which indeed supports the universality of Eq. (14).
In Fig. 10 we show that the average dilation compensated by
U 3/2 agree with the scaling law Eq. (14). The straight line in
Fig. 10 has a slope −1/2. The reader should note that in the
Hertzian case γ is effectively smaller than in the Hookean case
[cf. Eq. (1)], and this is why the “small γ ” regime extends all
the way to γ ′ ≈ 50 in Fig. 10.

The use of scaling concepts in fluid flows has a long and
honorable history. However, the identification of bifurcations
and instabilities in granular flows has not been treated with
scaling concepts nearly as often. The success of applying
scaling concepts to polymer physics [19], with the coil-stretch
transition under shear as an example, indicates that transitions
of the type discussed here of dilation under shear should
be subject to similar efforts. The theory described above is
simple, assuming that all the pertinent dissipation mechanisms
have been identified. Yet it appears to rationalize all the ob-
served scaling laws and in addition it predicts the dependence
of the threshold Uc for all the simulated range of U and γ . The
onset of dilation itself is presently beyond the scope of the
theory offered here. Approaching from the nondilated side,
one expects a stick-and-slip regime with larger and larger
fluctuations as the dilated layer forms. Clearly, a rich field of
research awaits a scaling approach.
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