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Sound of an axon’s growth
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Axons are linear structures of nerve cells that can range from a few tens of micrometers up to meters in length.
In addition to external cues, the length of an axon is also regulated by unknown internal mechanisms. Molecular
motors have been suggested to generate oscillations with an axon-length-dependent frequency that could be used
to measure an axon’s extension. Here, we present a mechanism for determining the axon length that couples the
mechanical properties of an axon to the spectral decomposition of the oscillatory signal.
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In order to assure proper function, the size of a biological
system typically needs to be regulated. There is currently no
general understanding of the underlying mechanisms. Best
studied are processes based on gradients for setting the ex-
tension of linear structures. Prominent examples are provided
by the length of cytoskeletal filaments [1–8] and the exten-
sion of antiparallel microtubule overlaps [9–11]. In addition,
length-dependent mechanical forces can play a role, as has
been suggested for setting the size of stereocilia [12]. Finally,
oscillations are involved in positioning the division plane of
some bacteria [13,14] and thereby determine the size of the
daughter cells. They may be viewed as a specific case of
cavity resonances of chemical waves that have been proposed
to provide a general mechanism for the size determination of
biological structures [15].

Axons are linear structures along which electrical sig-
nals emanating from the body (soma) of a nerve cell are
transported to other cells. The length of an axon can vary
from a few micrometers up to meters. It is set in part by
extrinsic mechanisms, for example, stretch growth: Axons
that have connected to other cells are experiencing me-
chanical tension as the organism is growing, which induces
axonal extension [16]. Prior to making contact with other
cells and driven by a structure called the growth cone, ax-
ons extend at their tip. Growth cones are guided in part
by external physical [17] and chemical cues [18]. In addi-
tion, there are intrinsic mechanisms to set the axon length
that are notably used in the early stages of organismal
development [19].

It has been shown that transport by molecular motors—
with kinesins moving from the soma to the axon tip and
cytoplasmic dynein in the opposite direction—is essential
for intrinsic axonal length regulation [20–22]. However, the
precise role of the motors in this process is currently un-
known. Similar to motor-dependent length regulation of fil-
aments [1–4,6], one possibility is that they generate a gra-
dient along the axon. Yet, a gradient-based mechanism is
unlikely to operate over more than a few micrometers in cells,

whereas in developing embryos, axons up to a few hundred
micrometers can emerge [19]. Furthermore, decreased motor
concentrations would imply shortened axons. However, the
opposite is observed [20,22]. These considerations have led
to the proposal that interactions between motors moving in
opposite directions along the axon generate an oscillating
signal with a length-dependent frequency [20]. Indeed, if
kinesins transported some signaling molecule to the tip, where
it initiated dynein-mediated transport of another signaling
molecule that in turn stopped the original chemical signal
at the soma, then the concentrations of these factors at the
growth cone and at the soma can oscillate [23] (see Fig. 1).
For motors with a constant velocity the associated period
would increase proportional to the axon length. However, it
is not clear how this frequency dependence could be used for
length regulation. One proposition is that there is a network
generating a frequency-dependent average of some signal-
ing molecule coupled to a switch turning off further axonal
growth as a certain concentration threshold and therefore
length is reached [24].

The actual growth dynamics of an axon regulated by
length-dependent oscillations has not yet been studied. Here,
we propose a mechanism for this regulation that couples the
oscillations to the axon’s mechanical properties. Axons are
known to be under mechanical tension: On one hand, the
growth cone pulls on the axon [25], and on the other hand,
the axon itself generates contractile mechanical stress by
the actin cytoskeleton [26,27]. The regulation of cytoskeletal
stresses has been suggested to generate bouts of elongation
and retraction [28]. The oscillations can be analyzed through
differential equations with delayed feedback [23].

We start from these equations and explicitly include the
axon growth dynamics, obtaining a set of equations with a
state-dependent delay. We show that our mechanism, rather
than reading out the oscillation frequency, exploits the in-
formation contained in the signal’s spectral composition for
regulating axon growth and length. Notably, we find regions in
parameter space where a reduction of the motor concentration
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FIG. 1. Illustration of axon length regulation. Motors transport
signals I and O along microtubules at velocity v, respectively, from
the soma to the growth cone and vice versa. Activation of O transport
in the growth cone by I and suppression of I at the soma by O gener-
ate oscillations with a frequency depending on the axon length L. The
total influx of I comprises both a constant J0 corresponding to the
maximal influx of motors and the inhibitory effect of O. Furthermore,
the signal I also stimulates actin polymerization leading to growth
cone extension, as well as inhibition of the response R. In turn, R
induces actin network contraction leading to growth cone retraction.
The extending and contracting actin networks are drawn separately
for clarity, but can be colocalized. Lines with arrowheads indicate
activation, and lines with blunt ends inhibition.

leads to an increase in the final axon length, consistent with
experimental findings [20,22].

Let us begin our discussion by noting that, typically, the
cellular response to a chemical signal shows a sigmoidal dose-
response curve [29]. It is often given in terms of a Hill function

fκ (c) = cn

κn + cn
, (1)

with Hill coefficient n and half concentration κ . For an os-
cillating chemical signal, the average response is independent
of the signal’s period T : Let cI denote the concentration of
an incoming signaling molecule with cI (t + T ) = cI (t ). The
response cR is then given by

ċR = JR(1 − fκ (cI )) − γRcR, (2)

where JR is the coupling constant between cI and cR and γR is
the response’s decay rate. In the following we will scale the
concentrations by κ and denote them by the same symbols as
before. The average response is then 〈cR〉 ≡ 1

T

∫ T
0 cR(t )dt =

J̄R(1 − 〈 f1(cI )〉), which is scaled by the dimensionless pa-
rameter J̄R ≡ JR/(γRκ ). It holds that 1

T

∫ T
0 f1(cI (t ))dt =

β

T

∫ T/β

0 f1(cI (βt ))dt for any β > 0 showing that 〈cR〉 is
independent of the oscillation period.

This general result can be illustrated in the limit n → ∞,
when the Hill function turns into a Heaviside function, and
one can determine the time dependence of cR explicitly. Let
the input signal be some oscillatory function with exactly one
minimum and one maximum per period T and let t = 0 and
t = t× be the times when the input signal equals the threshold,
such that cI (t ) > 1 for 0 � t < t× and cI (t ) < 1 for t× � t <

T . Then the average is given by

〈cR〉 = J̄R

(
1 − t×

T

)
. (3)

(a) (b)

FIG. 2. Two-step transformation of a periodic signal into a
frequency-dependent average response, Eqs. (2) and (4). (a) Dy-
namics of the response cR as a function of time and corresponding
mean value 〈cR〉 for two different frequencies of a sinusoidal oscilla-
tory signal O, cO(t ) = J̄R(1 + sin(2πt/T ))/2. (b) Response average
value 〈cR〉 as a function of the oscillatory signal frequency for two
different Hill coefficients. The solid line represents the analytic
expression Eq. (3) with t× replaced by t>. Parameter values are JR =
JI = 55 × 10−5 μm−1 s−1, κ = 2 × 10−2 μm−1, γ = 10−2 s−1, as
well as n = 4 (a) and n = 4 (dotted line with circles) and n = 50
(solid line with circles) in (b).

Apart from the coupling constant J̄R, 〈cR〉 only depends on the
fraction of the period during which the incoming signal cI is
larger than 1, but is independent of the period.

Whereas 〈cR〉 does not depend on the frequency of cI , the
form, i.e., the spectrum of cR, does. In turn, 〈cR〉 typically
depends on the spectrum of cI . This is easily seen if fκ is a
Heaviside function as above: As long as min cI < κ < max cI ,
a change in the spectrum of cI typically changes the fraction
of time cI > κ and hence 〈cR〉. Consequently, by first trans-
forming the frequency variation of a signal O into a variation
of the shape of the incoming signal I via a process similar to
Eq. (2), and then reading out its shape via Eq. (2), variations
in frequency can be ultimately turned into a variation of the
average value of the response R.

To give a specific illustration of this mechanism, consider
an oscillatory signal O, which feeds into I through

ċI = JI (1 − fκ (cO)) − γI cI , (4)

where JI is the coupling constant between O and I and γI is
the decay rate of the incoming signal. Furthermore, we used
the same sigmoidal function fκ in Eqs. (2) and (4), but our
general results do not rely on these specific choices. We will
also choose JI = JR and γI = γR ≡ γ to not blur the general
mechanisms by a multitude of parameters. As above, we will
scale the densities by κ . As anticipated, the incoming signal I
responds to frequency changes in O by variations of its shape
[see Fig. 2(a)]. Furthermore, the average value of the eventual
response R varies with the frequency of O [see Fig. 2(b)]. In
case fκ is a Heaviside function, the average of cR as a function
of the period T of cO takes the same form as Eq. (3) with
the replacement t× → t>. Here, t> is the length of the time
interval during which cI > 1, where t> > 0 requires J̄I > 1.
The value of t> is determined by a transcendent equation,
which we omit here. The average response increases with T
and 〈cR〉 → J̄R(1 − t>/T ) for n → ∞.

Having established a mechanism for reading out the fre-
quency of the incoming signal, we now return to axon length
regulation. As mentioned in the Introduction, motors moving
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FIG. 3. Motor-induced oscillations for fixed axon length. (a) Os-
cillation of the incoming and outgoing signals I and O, respectively,
obtained by solving Eqs. (5) and (6). (b) Frequency of the oscillations
generated by Eqs. (5) and (6). The solid line is obtained from Eq. (9).
Parameter values as in Fig. 2 and J0 = JO = JI , γO = γI = γ as well
as n = 4 (a) and n = 4 (squares) and n = 50 (circles) in (b).

in opposite directions and carrying motor-transport activating
or inhibiting signals can generate axon-length-dependent os-
cillations. Specifically, let I denote a signal released from the
soma and transported into the growth cone. Its concentration
at the growth cone is denoted by cI (t ). In addition to eliciting
the response R, it also triggers transport of an outgoing signal
O from the growth cone to the soma. There, O suppresses
further transport of I . The concentration of O at the soma
is denoted by cO(t ). This dynamics can be captured as in
Ref. [23] by the following delay-differential equations,

ċI (t ) = J0 − JI fκ (cO(t − τ )) − γI cI (t ), (5)

ċO(t ) = JO fκ (cI (t − τ )) − γOcO(t ). (6)

The delay τ = L/v accounts for the time motors need to
transport cargo along an axon of length L at a velocity v,
which we assume for simplicity to be the same for both kinds
of motors. Note that for τ = 0, Eq. (5) is the same as Eq. (4)
if J0 = JI . The incoming signal decays at rate γI at the growth
cone and the outgoing signal at rate γO at the soma. J0 is the
maximal incoming flux of signal I and JI � J0 as well as JO

denote the respective coupling constants between O and I . To
avoid unnecessary complications, we consider again the same
sigmoidal function fκ as in Eqs. (2) and (4) and focus on the
case γI = γO ≡ γ and J0 = JI = JO ≡ J .

For fixed length L, a linear stability analysis of the station-
ary state cI,0 and cO,0 of Eqs. (5) and (6) shows that the system
undergoes a Hopf bifurcation when the parameters fulfill

J̄ sin
(
γ τ

√
J̄2 − 1

) = 1, (7)

where J̄ = √
αJ/(κγ ) and α = 〈 f ′

1(cO)〉〈 f ′
1(cI )〉 [23]. In par-

ticular, f ′
1(x) = df1(x)/dx and the mean values are taken at the

instability point cI = c∗
I , cO = c∗

O [cf. Supplemental Material
(SM) [30]). This equation can only be fulfilled if J̄ > 1. The
linear stability analysis also shows that there is a minimal
axon length Lmin = vτmin, below which the system does not
oscillate, which is in agreement with numerical solutions of
Eqs. (5) and (6) [see Fig. 3(a)]. The frequency ωmin at this
critical axon length is finite and fulfills

cot (ωminτmin) = ωmin

γ
. (8)

Remarkably, this relation between the axon length and the
oscillation frequency also determines the frequency of the full
nonlinear oscillations [see Fig. 3(b)]. As a function of the axon
length L it is approximately given by

ω ∼ 1√
L
v

(
L
3v

+ γ −1
) . (9)

For Lγ � v, we have ω ≈ √
3v/L, which is the solution of a

wave equation with a rescaled sound velocity. In the opposite
limit, the frequency scales as ω ≈ √

vγ /L.
Whereas the previous analysis was for a fixed axon length,

we will now consider L to be a dynamic variable. The axon
length is regulated by two processes: an extension of the
growth cone and a shortening of the axon due to contractile
stresses [26,27]. The growth cone moves forward by a process
similar to mesenchymal cell migration on a flat substrate: Ex-
tension of the leading edge is driven by the polymerization of
actin, which is anchored to a large actin network and thus able
to exert protruding forces on the membrane. The protrusion
velocity is regulated by various processes. We assume here
that chemical regulation through signal I dominates and write
for the protrusion velocity vgcI . We notably neglect an effect
of membrane tension on the protrusion velocity [31].

The contractile stresses that are generated by molecular
motors in the axon and the growth cone can be captured phe-
nomenologically by a term ζ
μ [32]. Here, 
μ ≡ μATP −
μADP − μP, where μATP is the chemical potential of adenosine
triphosphate, μADP that of adenosine diphosphate, and μP that
of inorganic phosphate, such that 
μ is the chemical energy
liberated during an event of ATP hydrolysis. The phenomeno-
logical coefficient ζ describes the coupling of the liberated
chemical energy to the mechanical stress generated. For con-
tractile stresses, ζ < 0. The phenomenological coefficient ζ

depends on regulatory signals [33]. In particular, we assume
ζ ≡ ζ (cR). Contractile stresses tend to reduce the distance be-
tween the cell body and the growth cone. We assume the cell
body to be anchored to the substrate, such that contractile
stresses are balanced by dissipative forces as the growth cone
retracts. The latter can be written as ξ ẋgc = ζ
μ, where xgc

denotes the position of the growth cone and which we identify
with the axon length L. Assuming a linear dependence of ζ on
cR, ζ = ζ1cR, and adding the growth cone protrusion velocity
to the velocity due to contraction, we arrive at

L̇ = vgcI − vscR, (10)

where vs = −ζ1
μ/ξ > 0. The response R still depends
on I through Eq. (2). We will scale the length by Lmin and
concentrations by κ , while keeping the same notation for the
axon length as well as for the growth and shrinkage velocities.
Furthermore, we take γR = γ .

In Fig. 4(a), we present an example of the solution to the
dynamic equations (2), (5), (6), and (10). Starting from length
zero, the length increases and eventually oscillates with an
amplitude that is less than 1% of the average length. The final
average length decreases with an increasing coupling param-
eter JR [Fig. 4(b)]. This is because an increase of the coupling
between the incoming signal and actomyosin contractility will
increase the latter, which opposes the extension of the axon.
A similar effect is observed when reducing the actomyosin
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(a)

(b) (c)

FIG. 4. Axon length dynamics. (a) Solution to the
dynamic equations (2), (5), (6), and (10). Parameter values
are JR = 26 × 10−5 μm−1 s−1, J = 55 × 10−5 μm−1 s−1,
κ = 2 × 10−2 μm−1, κR = 5 × 10−3 μm−1, γ = 10−2 s−1,
vg = 0.1 μm2 s−1, vs = 0.5 μm2 s−1, and n = 4. (b) Dependence of
the mean length on JR for different values of the Hill coefficient n.
(c) Dependence of the mean length on J0 for different values of the
coupling constant JR and JI = J0. The other parameters are as in (a),
and Lmin is calculated from Eq. (7) with JI = 55 × 10−5 μm−1 s−1.

activity, which is generally achieved by decreasing ζ1
μ.
Importantly, in Fig. 4(c) it is visible that for sufficiently small
values of J0 the stationary length increases with decreasing
J0, that is, with decreasing kinesin motor concentration. This
is consistent with experimental findings [20,22]. Only beyond

a certain critical value of J0 does the average final length
increase with an increasing motor concentration [34]. An
increase of the axon lengths has been also observed when the
dynein concentration is reduced [20]. Accordingly, our model
shows an increase in the stationary length, when the parameter
JO is reduced (see SM [30]).

We have checked that the solutions are stable against
fluctuations of the delay time up to 10% (see SM [30]). We
also found that lossy transport of the signals along the axon
does not qualitatively change the system’s behavior, as we
show in the SM [30].

From a more general point of view, our system achieves
length regulation through an adaptive delay, which is deter-
mined by the axon length. Adaptive delays have also been
proposed as a mechanism to retrieve information from chaotic
neural networks [35]. It is also interesting to compare our
mechanism to Laughlin’s proposal of regulating lengths by
resonant chemical waves [15], where he exploits a formal
analogy of excitable systems with an effective amplifying
and saturable medium, such as in lasers or electronic circuits.
Even though a mapping from the present model to reaction-
diffusion equations is not evident, let us exploit the similarity
of the term of length growth and shrinkage in Eq. (10) with
gain and loss terms of a laser. As the system tunes its length,
it eventually reaches a state in which the gains on average
equal the losses. This goes hand in hand with the selection
of a specific frequency and phase locking of the different os-
cillating signals, which is akin to a resonance in an amplifying
medium.

For the parameters chosen in Fig. 4(a), the average axon
length would be 125 μm and the oscillation amplitude below
1 μm. Such small oscillations would likely be masked by
fluctuations in a real axon. It would now be interesting to link
in molecular detail the regulation of growth cone extension
and axon contraction. In particular, the regulation of axon
contractility most likely requires a description that explicitly
accounts for the spatial degree of freedom along the axon.
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